Задачи для экзамена по начертательной геометрии

Примеры решения задач по начертательной геометрии

Здравствуйте на этой странице я собрала примеры решения задач по предмету начертательная геометрия с решением по каждой теме, чтобы вы смогли освежить знания!

Начертательная геометрия

Начертательная геометрия служит теоретической основой построения технических чертежей в виде графических моделей конкретных объектов машиностроения. Инженерная графика вырабатывает у студентов умение и навыки понимания по чертежу конструкции изделия и принципа действия изображенного технического объекта.

Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу!

Начертательная геометрия включена в число обязательных дисциплин ведущих технических вузов мира. И связано это, прежде всего, с тем, что она как никакая другая дисциплина развивает логическое конструктивно-геометрическое мышление, пространственное представление и воображение, а также способность к анализу и синтезу пространственных форм.

Задача начертательной геометрии – изучение визуально-образного геометрического языка и технологии его реализации. Она является уникальным техническим языком, информативность которого настолько велика, что заменить его другим практически невозможно. Роль ее в подготовке специалистов и решении прикладных задач возрастает в связи с необходимостью повышения эффективности труда конструктора.

Проецирование геометрических фигур. Параллельное проецирование

Любую геометрическую фигуру рассматривают как множество всех при надлежащих ей точек. Чтобы получить параллельную проекцию фигуры на плоскости (плоскости проекций), необходимо через каждую точку фигуры пронести проецирующие лучи параллельно заранее вы бранному направлению до пересечения с Примеры решения задач по начертательной геометрии (рис. 1).

Примеры решения задач по начертательной геометрии

Основные свойства параллельного проецирования.

  1. Проекция точки есть точка.
  2. Проекции прямой есть прямая или точка (Примеры решения задач по начертательной геометрии — точка).
  3. Примеры решения задач по начертательной геометрии
  4. Примеры решения задач по начертательной геометрии
  5. Примеры решения задач по начертательной геометрии
  6. Примеры решения задач по начертательной геометрии

Самоконтроль I. На рис. 2 показано проецирование Примеры решения задач по начертательной геометрии и Примеры решения задач по начертательной геометрии на плоскость Примеры решения задач по начертательной геометрии но направлению Примеры решения задач по начертательной геометрии. Какой из треугольников расположен в плоскости, параллельной Примеры решения задач по начертательной геометрии?

Примеры решения задач по начертательной геометрии

1 a . Треугольник Примеры решения задач по начертательной геометрии (с. 55).

2 б. Треугольник Примеры решения задач по начертательной геометрии (с. 56).

Таким образом, Вы отметили еще два свойства параллельного проецировання:

  1. Если фигура расположена в плоскости, параллельной плоскости проекций, то она проецируется на эту плоскость в натуральную величину,
  2. Фигура, принадлежащая проецирующей плоскости, проецируется в отрезок прямой, совпадающей с проекцией плоскости (проецирующая прямая вырождается в точку).

Если направление проецирования Примеры решения задач по начертательной геометрии, получают ортогональные (прямоугольные) параллельные проекции, которыми чаще всею пользуются на практике.

Проекции точки

Проекцией точки называется точка пересечения проецирующего луча, проходящего через точку, с плоскостью проекций.

Одна проекций точки не определяет положение точки в пространстве. Для получения обратимого чертежа ортогональное проецирование осуществляется на две (и более) перпендикулярные плоскости проекций (рис. 3)t которые затем совмещают в одну (метод Монжа). Получается плоское изображение, которое является носителем двух плоскостей. Это изображение называют эпюром или комплексным чертежом.

Примеры решения задач по начертательной геометрии

Примеры решения задач по начертательной геометрии — горизонтальная плоскость проекций, Примеры решения задач по начертательной геометрии — фронтальная плоскость проекций, Примеры решения задач по начертательной геометрии — ось проекций.

На эпюре горизонтальная и фронтальная проекции точки связаны вертикальной линией связи, т.е Примеры решения задач по начертательной геометрии

Положение точки в пространстве определяется ее расстоянием до плоскостей проекций. При этом Примеры решения задач по начертательной геометрии покрывает расстояние до Примеры решения задач по начертательной геометрии — показывает расстояние до Примеры решения задач по начертательной геометрии.

Самоконтроль 2. Какая из заданных точек (рис. 4) принадлежит плоскости Примеры решения задач по начертательной геометрии?

2а. Точка Примеры решения задач по начертательной геометрии (с. 55) 26. Точка Примеры решения задач по начертательной геометрии (с. 56).

Характерным признаком эпюра точки, принадлежащей плоскости проекций, является то, что одна проекция точки принадлежит оси проекции.

Примеры решения задач по начертательной геометрии

На рис. 5 показано получение трех картинного чертежа точки Примеры решения задач по начертательной геометрии.

Примеры решения задач по начертательной геометрии

Примеры решения задач по начертательной геометрии — профильная плоскость проекций.

Является очевидным, что Примеры решения задач по начертательной геометрии.

Определитель точки в пространстве — три координаты точки, т.е. расстояние от точки до трех координатных плоскостей Принимается, что плоскости проекций совмещены с координатными плоскостями.

Условная запись определителя точки: Примеры решения задач по начертательной геометрии. Положение проекции точки определяют две координаты: Примеры решения задач по начертательной геометрии Определителем точки на эпюре является совокупность двух проекций точки: Примеры решения задач по начертательной геометрии. Координаты точки устанавливаются измерением (рис. 6).

Примеры решения задач по начертательной геометрии

Пример задачи №1.

Построить три проекции точки Примеры решения задач по начертательной геометрии.

Решение:

  1. Координатные плоскости принимаем за плоскости проекций и строим на чертеже оси проекций (рис. 7), отмстив на них масштабные единицы.
  2. Последовательно откладываем на соответствующих осях заданные значения Примеры решения задач по начертательной геометрии
  3. Из полученных точек Примеры решения задач по начертательной геометрии проводим прямые, параллельные соотвстствуюхцнм осям, и получаем проекции Примеры решения задач по начертательной геометрии (см. рис. 7).

Проекции прямой

Определитель прямой: две точки. Условная запись: Примеры решения задач по начертательной геометрии. На чертеже прямую определяют двумя проекциями (рис. 8). Примеры решения задач по начертательной геометрии или Примеры решения задач по начертательной геометрии.

Условие принадлежности точки прямой: точка принадлежа прямой, если проекции точки принадлежат одноименным проекциям прямой, (см. точку Примеры решения задач по начертательной геометрии на прямой Примеры решения задач по начертательной геометрии — рис. 8),

След прямой — точка пересечения прямой с плоскостью проекций (рис. 9). Примеры решения задач по начертательной геометрии — горизонтальный след прямой, Примеры решения задач по начертательной геометрии — фронтальный след прямой,

Заметим, что так как Примеры решения задач по начертательной геометрии. Прямую, которая не параллельна ни одной из плоскостей проекций, называют прямой общего положения. Проекции прямой общего положения всегда наклонены к осям проекций (см. рис. 8, 9).

Примеры решения задач по начертательной геометрии
Примеры решения задач по начертательной геометрии
  • Прямые частного положения делятся на прямые уровня и проецирующие прямые.

Прямые уровня — прямые, параллельные одной плоскости проекций (рис. 10).

Примеры решения задач по начертательной геометрии

Таким образом, направление одной проекции прямой уровня постоянно — параллельно направлению оси проекций. Вторая проекция наклонена к оси под углом.

Проецирующие прямые — прямые, перпендикулярные плоскости проекций (рис. 11).

Примеры решения задач по начертательной геометрии

Таким образом, одна проекция проецирующей прямой — точка, вторая проекция направлена параллельно линиям ивязи.

Самоконтроль 3. На рис 12 изображен отрезок профильной прямой Примеры решения задач по начертательной геометрии. Можно ли построить горизонтальную проекцию точки Примеры решения задач по начертательной геометрии, которая принадлежит отрезку, не построив профильную проекцию отрезка?

Примеры решения задач по начертательной геометрии

За. Можно (с. 55) 36. Нельзя (с, ,56)

Пример задачи №2.

Достроить фронтальную проекцию отрезка горизонтальной прямой Примеры решения задач по начертательной геометрии (рис. 13а).

Решение:

Так как отрезок Примеры решения задач по начертательной геометрии параллелен горизонтальной плоскости, то фронтальная проекция его должна быть параллельна направлению оси Примеры решения задач по начертательной геометрии. Положение фронтальной проекции точки Примеры решения задач по начертательной геометрии определяем в пересечении линии связи, проведенной с Примеры решения задач по начертательной геометрии вертикально (рис 136), и направления фронтальной проекции прямой.

Пример задачи №3.

Построить проекции фронтально проецирующего отрезка Примеры решения задач по начертательной геометрии, длина которого 20 мм (рис. 14а).

Примеры решения задач по начертательной геометрии

Решение:

У фронтально проецирующей прямой фронтальная проекция вырожденная — точка, а горизонтальная проекции расположена вертикально,

На горизонтальную плоскость проекций отрезок проецируется без искажения.

Выполненные построения ясны на чертеже (рис. 146).

Взаимное расположение прямых. Прямые параллельны, если одноименные проекции двух прямых параллельны.

Прямые пересекаются, если точки пересечения одноименных проекций двух прямых лежат на одной линии связи.

Если на чертеже отсутствуют признаки параллельности и пересечения, то заданы скрещивающиеся прямые.

Самоконтроль 4. На каком рисунке изображены скрещивающиеся прямые?

4а. На рис. 15а (с. 55)

4б. На рис, 156 (с. 56)

Примеры решения задач по начертательной геометрии

Теорема о проецировании прямого угла. Если одна сторона прямого угла параллельна, а другая сторона не перпендикулярна плоскости проекций, то прямой угол на эту плоскость проецируется в натуральную величину.

Пример задачи №4.

Через точку Примеры решения задач по начертательной геометрии провести прямую а, пересекающую прямую Примеры решения задач по начертательной геометрии под прямым углом (рис. 16а),

Примеры решения задач по начертательной геометрии

Решение:

  1. Так как прямая Примеры решения задач по начертательной геометрии параллельна Примеры решения задач по начертательной геометрии, то на фронтальной проекции величина прямого угла сохранится.
  2. Построение начинаем с фронтальной проекции, проведя Примеры решения задач по начертательной геометрии (рис. 16 6),
  3. Отмечаем фронтальную проекцию точки пересечения прямых — Примеры решения задач по начертательной геометрии.
  4. Строим горизонтальную проекцию точки Примеры решения задач по начертательной геометрии.
  5. Примеры решения задач по начертательной геометрии.

Пример задачи №5.

Через точку Примеры решения задач по начертательной геометрии провести горизонтальную прямую, пересекающую отрезок Примеры решения задач по начертательной геометрии (рис. 17а),

Решение:

  1. Так как искомая прямая является горизонтальной, то фронтальная проекция ее должна быть направлена параллельно направлению оси Примеры решения задач по начертательной геометрии. Проводим Примеры решения задач по начертательной геометрии.
  2. Отмечаем фронтальную проекцию точки пересечения прямых: Примеры решения задач по начертательной геометрии (рис. 176).
  3. Строим горизонтальную проекцию Примеры решения задач по начертательной геометрии, учитывая сохранение пропорционального деления отрезка на проекциях.
  4. Примеры решения задач по начертательной геометрии.
Примеры решения задач по начертательной геометрии

Проекции плоскости

Задание плоскости. Плоскость на чертеже задается проекциями ее элементов, которые определяют положении ее в пространстве, а именно; проекциями трех точек, не лежащих на одной прямой; проекциями параллельных прямых; проекциями пересекающихся прямых; проекциями прямой и точки вне этой прямой, проекциями плоской фигуры; следами.

По отношению к плоскостям проекций плоскости разделяются на плоскости общего и плоскости частного положения. Плоскости частного положения могут быть перпендикулярными к одной из плоскостей (проецирующие) иди к двум плоскостям одновременно {плоскости уровня).

Опознавательным признаком плоскости частного положения является наличие вырожденной проекции (проекции-линии) плоскости на эпюре. Точка и прямая в плоскости. Точка принадлежит плоскости, если она находится на примой, лежащей в данной плоскости.

Прямая лежит в плоскости, если она пересекается с прямыми, задаюшими эту плоскость, или пересекается с одной из них и параллельна другой.

Примеры решения задач по начертательной геометрии

Признаком принадлежности точки и прямой к плоскости частного положения является совмещение на эпюре их проекций с одноименными вырожденными проекциями данной плоскости.

Самоконтроль 6. На каком рисунке прямая Примеры решения задач по начертательной геометрии принадлежит плоскости Примеры решения задач по начертательной геометрии? 6 а. На рис. 19 а (с. 55) б б. На рис. 19 6 (с. 56).

Примеры решения задач по начертательной геометрии

Пример задачи №6.

Построить горизонтальную проекцию прямой Примеры решения задач по начертательной геометрии, лежащей в плоскости Примеры решения задач по начертательной геометрии (рис. 20 а).

Решение:

  1. Прямые одной плоскости либо пересекаются, либо параллельны. Так как фронтальная проекция прямой Примеры решения задач по начертательной геометрии пересекает фронтальные проекции прямых Примеры решения задач по начертательной геометрии и Примеры решения задач по начертательной геометрии, то эти прямые в пространстве пересекаются.
  2. Отмечаем фронтальные проекции точек пересечения прямых Примеры решения задач по начертательной геометрии
  3. Строим горизонтальные проекции точек Примеры решения задач по начертательной геометрии и Примеры решения задач по начертательной геометрии, учитывая что Примеры решения задач по начертательной геометрии.
  4. Примеры решения задач по начертательной геометрии (см. рис. 20 б).
Примеры решения задач по начертательной геометрии

Пример задачи №7.

Построить фронтальную проекцию прямой Примеры решения задач по начертательной геометрии, принадлежащей плоскости Примеры решения задач по начертательной геометрии (рис 21 а).

Решение:

Так как фронтальные проекции прямых Примеры решения задач по начертательной геометрии и Примеры решения задач по начертательной геометрии совпадают, то заданная плоскость Примеры решения задач по начертательной геометрии является фронтально проецирующей плоскостью. В этом случае фронтальная проекция плоскости, Примеры решения задач по начертательной геометрии (вырожденная проекция) обладает собирательным свойством и поэтому Примеры решения задач по начертательной геометрии (рис. 216).

Примеры решения задач по начертательной геометрии

Следует отметить, что для плоскости общего положения на эпюре произвольно можно задавать только одну проекцию любой прямой, принадлежащей плоскости. Вторую проекцию этой прямой необходимо строить, учитывая, что прямые одной плоскости либо пересекаются, либо параллельны.

Для проецирующей плоскости достаточно совпадения соответствующей проекции прямой с вырожденной проекцией плоскости, чтобы эта прямая принадлежала плоскости.

Пример задачи №8.

Построить фронтальную проекцию точки Примеры решения задач по начертательной геометрии, принадлежащей плоскости Примеры решения задач по начертательной геометрии (рис. 22 а).

Решение:

1. Известно, что точка принадлежит плоскости, если она находится на какой-либо прямой, лежащей в данной плоскости. Поэтому через Примеры решения задач по начертательной геометрии и Примеры решения задач по начертательной геометрии (рис. 226) проводим горизонтальную проекцию вспомогательной прямой» лежащей в данной плоскости.

Примеры решения задач по начертательной геометрии

Примеры решения задач по начертательной геометрии

Главные линии плоскости. К главным линиям плоскости относятся:

  1. Линии уровня плоскости, т.е. прямые плоскости, параллельные плоскостям проекций

Примеры решения задач по начертательной геометрии — горизонталь плоскости; Примеры решения задач по начертательной геометрии — фронталь плоскости.

  1. Линии наибольшего наклона плоскости к плоскостям проекций. Такие прямые принадлежат плоскости и перпендикулярны к линиям уровня плоскости.

Для построения горизонтали Примеры решения задач по начертательной геометрии плоскости Примеры решения задач по начертательной геометрии(рис. 23) необходимо;

Примеры решения задач по начертательной геометрии

На рис. 23 построены проекции линии наибольшего наклона плоскости Примеры решения задач по начертательной геометрии к плоскости Примеры решения задач по начертательной геометрии т.к. Примеры решения задач по начертательной геометрии (согласно теореме о проекциях прямого угла) Линию наибольшего наклона плоскости к плоскости Примеры решения задач по начертательной геометрии называют линией ската.

Аналогично на рис. 24 построены проекции фронтали Примеры решения задач по начертательной геометрии и линии наибольшего наклона плоскости Примеры решения задач по начертательной геометрии к плоскости Примеры решения задач по начертательной геометрии.

Примеры решения задач по начертательной геометрии

Самоконтроль 7. Можно ли считать заданной плоскость, если на эпюре задана линия ската плоскости?

7 а. Можно (с. 55)

7 б. Нельзя (с. 56)

Пример задачи №9.

Построить проекции отрезка Примеры решения задач по начертательной геометрии, принадлежащею плоскости Примеры решения задач по начертательной геометрии, зная что Примеры решения задач по начертательной геометрии и величина отрезка Примеры решения задач по начертательной геометрии равна 30 мм (рис. 25).

Примеры решения задач по начертательной геометрии

Решение:

Отрезок Примеры решения задач по начертательной геометрии принадлежит горизонтали плоскости, проходящей через Примеры решения задач по начертательной геометрии. Строим проекции этой горизонтали (рис. 25 а). На горизонтальной проекции горизонтали находим горизонтальную проекцию точки Примеры решения задач по начертательной геометрии, учитывая что Примеры решения задач по начертательной геометрии. Находим фронтальную проекцию точки Примеры решения задач по начертательной геометрии (рис. 25 б).

Параллельность прямой и плоскости двух плоскостей. Признаком параллельности плоскости и прямой является-параллельность прямой некоторой прямой плоскости.

  • Признаком параллельности прямой и плоскости частного положения является параллельность вырожденной проекции плоскости соответствующей проекции прямой.

Признаком параллельности двух плоскостей является параллельность двух пересекающихся прямых одной плоскости, соответственно, двум пересекающимся прямым второй плоскости. Признаком параллельности плоскостей частного положения является взаимная параллельность одноименных вырожденных проекций. У параллельных плоскостей одноименные линии уровня взаимно параллельны.

Пример задачи №10.

Построить горизонтальную проекцию прямой Примеры решения задач по начертательной геометриипроходящей через точку Примеры решения задач по начертательной геометрии и параллельной плоскости Примеры решения задач по начертательной геометрии (рис. 26 а).

Примеры решения задач по начертательной геометрии

Решение:

(Рис. 26 6).

  1. В плоскости Примеры решения задач по начертательной геометрии проводим фронтальную проекцию Примеры решения задач по начертательной геометрии, прямой Примеры решения задач по начертательной геометрии параллельной прямой Примеры решения задач по начертательной геометрии.
  2. Строим горизонтальную проекцию Примеры решения задач по начертательной геометрии, учитывая принадлежность прямой Примеры решения задач по начертательной геометрии плоскости Примеры решения задач по начертательной геометрии.
  3. Строим Примеры решения задач по начертательной геометрии.

Перпендикулярность прямой и плоскости, двyx плоскостей. Прямая, перпендикулярная плоскости, изображается на фронтальной проекции перпендикулярной к фронтали плоскости, на горизонтальной — к горизонтали плоскости.

Примеры решения задач по начертательной геометрии

Пример задачи №11.

Опустить перпендикуляр из точки Примеры решения задач по начертательной геометрии на плоскость Примеры решения задач по начертательной геометрии (рис. 27 а).

Решение:

(рис. 27 б).

  1. Проводим произвольные горизонталь и фронталь данной плоскости (рис. 27 б).
  2. Затем проводим проекции перпендикуляра rti эАг А п2-L/2;
Примеры решения задач по начертательной геометрии

Пример задачи №12.

Через прямую Примеры решения задач по начертательной геометрии провести плоскость, перпендикулярную к плоскости Примеры решения задач по начертательной геометрии (рис. 24 а).

Примеры решения задач по начертательной геометрии

Решение:

(рис. 28 б).

  1. Строим произвольные горизонталь и фронталь плоскости Примеры решения задач по начертательной геометрии.
  2. Выбираем на прямой Примеры решения задач по начертательной геометрии произвольную точку Примеры решения задач по начертательной геометрии.
  3. Из точки Примеры решения задач по начертательной геометрии опускаем перпендикуляр Примеры решения задач по начертательной геометрии на плоскость Примеры решения задач по начертательной геометрии. Это перпендикуляр совместно с прямой Примеры решения задач по начертательной геометрииопределяют искомую плоскость Примеры решения задач по начертательной геометрии.

Поверхность: общие сведения

Поверхность — это совокупность последовательных положений непрерывно перемещающейся в пространстве линии в пространстве линии.

Перемещающуюся в пространстве линию называют образующей. Она может быть прямой, кривой, постоянной или переменной. Образующей может быть также поверхность (рис. 29).

Примеры решения задач по начертательной геометрии

Закон перемещения может быть оговорен словесно (вращательное, поступательное, винтовое) и задан направляющей, т.е, неподвижной линией, по которой скользит перемещающаяся образующая.

Поверхность, которая может быть получена перемещением прямой линии, называют линейчатой (рис. 29 а).

Поверхность, образующей которой может быть только кривая, называют кривой (рис. 29 6).

По признаку перемещения образующей поверхности делят на поверхности вращения, поверхности переноса, винтовые поверхности.

Поверхности делят также на развертываемые и нераввертываемые.

Задание поверхности на чертеже. Поверхность считается заданной, если в отношении любой точки пространства на чертеже однозначно решается вопрос о принадлежности ее данной поверхности.

Точка принадлежит поверхности, если она принадлежит линии поверхности!.

Поверхность на чертеже может быть задана ее определителем, очерком, каркасом.

Определитель поверхности — это совокупность условий, однозначно определяющих данную поверхность. Определитель поверхности состоит из двух частей: геометричесхой, задающей форму образующей и направляющей, и алгоритмической, определяющей условия перемещения или же изменения образующей.

На рис. 30 задана поверхность конуса. Ее определителем является направляющая Примеры решения задач по начертательной геометрии и образующая Примеры решения задач по начертательной геометрии, пересекающая кривую Примеры решения задач по начертательной геометрии и проходящая через неподвижную точку Примеры решения задач по начертательной геометрии.

Точка Примеры решения задач по начертательной геометрии принадлежит данной поверхности, так как она принадлежит линии Примеры решения задач по начертательной геометрии этой поверхности.

Очерк поверхности — это линия пересечения плоскости проекций с проецирующей на данную плоскость проекций цилиндрической поверхностью, огибающей заданную поверхность (рис. 31).

Линию касания огибающей проецирующей поверхности с данной поверхностью называют линией контура.

Проекцию линии контура на плоскость, перпендикулярную данной плоскости проекций, называют линией видимости.

Линия контура, так же как и линия видимости, делит поверхность на ее видимую и невидимую части в проекции на данную плоскость,

Каркас поверхности — это совокупность линий, принадлежащих поверхности (рис. 32).

Примеры решения задач по начертательной геометрии
Примеры решения задач по начертательной геометрии

Линейчатые поверхности — что те, у которых образующей может быть прямая, линия (рис. 33).

К ним относят торсы, и как частный случай цилиндрические, конические, призматические и пирамидальные поверхности. Эти поверхности развертываемые.

Неразвертываемые линейчатые поверхности это поверхности с плоскостью параллелизма — цилиндроид, коноид, гиперболический параболоид (косая плоскость).

Поверхностью вращения называют поверхность, образованную вращением некоторой линии (кривой или примой) вокруг неподвижной прямой, называемой осью поверхности (рис. 34).

Примеры решения задач по начертательной геометрии

Окружности, принадлежащие поверхности вращения и лежащие в плоскостих, перпендикулярных оси поверхности, называют параллелями поверхности. Параллель наименьшего радиуса — щрло, наибольшего -экватор.

Любая плоскость, проходящая через ось поверхности вращения, выделяет на поверхности кривую, называемую меридианом поверхности.

Меридианы, проекции которых дают очерки поверхности, называют главными.

Известно, что точка, например, точка Примеры решения задач по начертательной геометрии на рис. 33, 34, принадлежит поверхности, если она принадлежит линии поверхности. В качестве линии на поверхности выбирают графически простые линии — прямые или окружности. Для линейчатых поверхностей — это будут образующие -прямые линии» для поверхностей вращения — параллели — окружности.

На рис. 35, 36 показано решение задач на построение ортогональных проекций точки Примеры решения задач по начертательной геометрии, принадлежащей поверхности.

Примеры решения задач по начертательной геометрии
Примеры решения задач по начертательной геометрии

Решение:

Решение задачи на построение точки, принадлежащей поверхности, проводится в следующей последовательности:

1) одну проекцию точки задаем произвольно в пределах очерка поверхности,

2) через заданную проекцию точки проводим одноименную проекцию вспомогательной линии поверхности;

3) находим другую проекцию проведенной линии исходя из принадлежности ее данной поверхности,

4) на найденной проекции вспомогательной линии отмечаем искомую проекцию точки.

На рис. 35 а, б, в проекции точки Примеры решения задач по начертательной геометрии построены на поверхности наклонной призмы, наклонного конуса, коноида с помощью прямолинейной образующей Примеры решения задач по начертательной геометрии, проходящей через точку, Примеры решения задач по начертательной геометрии.

На рис. 36 а,б,в проекции точки Примеры решения задач по начертательной геометрии, принадлежащей соответственно поверхности вращения общего вида, сфере, тору, построены с помощью вспомогательной окружности-параллели, проходящей через эту точку.

Проекции точки Примеры решения задач по начертательной геометрии, принадлежащей поверхности кругового конуса, могут быть построены как с помощью окружности-параллели, так и с помощью прямолинейной образующей (рис. 36 г,д).

Поверхность может занимать относительно данных плоскостей проекций проецирующее положение (рис. 36 е.ж).

Поверхность является проецирующей относительно той плоскости проекций, которой ее образующие перпендикулярны. Проецирующей может быть только поверхность цилиндра, призмы.

Построение проекций точки, принадлежащей проецирующей поверхности, не требует введения вспомогательных линий поверхности, так как соответствующие ее проекции будут всегда расположены на вырожденной проекции данной поверхности.

Самоконтроль 8. Которая из отмеченных точек принадлежит заданной на рис. 37 поверхности вращения? Ответ:

8 а — точка А (с. 55) 8 б — точка В (с. 56). Построение проекций линии, принадлежащей поверхности, принципиально не отличается от построения проекций точки, принадлежащей поверхности. Различие состоит в том, что определяются проекции не одной, а множества точек, принадлежащих линии.

Примеры решения задач по начертательной геометрии

Если задана одна проекция линии, принадлежащей поверхности, то решение задачи на построение второй проекции этой линии сводится к следующему:

1) на заданной проекции линии задают проекции некоторых точек;

2) через проекции отмеченных точек проводят одноименные проекции вспомогательных линий поверхности;

3) строят вторую проекцию вспомогательных линий поверхности;

4) находят вторую проекцию отмеченных точек на соответствующих проекциях вспомогательных линий;

5) соединяют построенные проекции отмеченных точек с учетом их видимости и получают искомую проекцию заданной на поверхности линии.

Если необходимо определить проекции линии, принадлежащей проецирующей поверхности, то построения значительно упрощаются за счет наличия вырожденной проекции, обладающей собирательным свойством.

Необходимо отметить, что следует внимательно отнестись к выбору точек, с помощью которых будет строиться вторая проекция заданной линии.

Если нужно строить ломаную линию, то обязательно нужно построить точки излома. Обязательному построению подлежат также точки, лежащие на характерных линиях поверхности (очерковых линиях, ребрах многогранной поверхности), Если заданы закономерные кривые, то необходимо строить характерные точки этой кривой (вершины, точки, определяющие оси симметрии, кривой и т.д.).

На рис. 38-42 приведены примеры построения проекций линий, привадлежащих различным поверхностям. Проследите за выполненными на этих рисунках построениями.

Пример задачи №13.

Задана фронталь проекция линий, принадлежащих поверхности данного тела (рис, 38).

Требуется построить их другие проекции.

Решение:

Боковая поверхность тела — горизонтально проецирующая, поэтому горизонтальные проекции отмеченных на фронтальной проекции точек 1-10 находим на вырожденной проекции тела, т.е. на горизонтальном очерке.

Их профильные проекции строим по двум проекциям — фронтальной и горизонтальной.

Точки 3. 5, 7, 9 — случайные, с их помощью определяют кривизну полученных в профильной проекции кривых.

Пример задачи №14.

Задана горизонтальная проекция линии, принадлежащей поверхности кругового конуса (рис. 39).

Требуется построить отсутствующие проекции этой линии.

Примеры решения задач по начертательной геометрии

Решение Конус — поверхности общего вида. Заданная линия гипербола. Ее вершина определяется точкой 4, Точка 5 определяет видимость кривой во фронтальной проекции, точка 3 — в профильной. Их проекции отмечаем на главных меридианах поверхности. Случайные точки 2, 6 и высшую точку 4 строим с помощью окружностей параллелей, проведенных через эти точки,

Пример задачи №15.

Задана фронтальная проекция двух линий, принадлежащих поверхности сферы (рис. 40).

Требуется пост роить их горизонтальную и профильные проекции.

Примеры решения задач по начертательной геометрии

Решение:

Сфера — поверхность общего вида. Каждая из этих линий половина окружности. Полуокружность 3-9 изображается и горизонтальной и профильной проекциях н виде половины эллипсон. Точки 9, 3 определяют одну ось эллипса, точка 6 — другую полуось, В качестве вспомогательных линий при построении проекций отмеченных точек использованы окружности-параллели сферы.

Пример задачи №16.

Задана фронтальная проекция двух линий, принадлежащих поверхности тора (рис. 41).

Требуется построить их горизонтальную и профильные проекции.

Примеры решения задач по начертательной геометрии

Решение:

Каждую из отмеченных во фронтальной проекции точек находим на других проекциях с помощью окружностей-параллелей, проходящих через эти точки,

Точка 8 определяет видимость кривой 5-10 в горизонтальной проекции. Точка 3 характерна для кривой 1 -5.

Пример задачи №17.

Задана фронтальная проекции линии Примеры решения задач по начертательной геометрии, принадлежащей поверхности гиперболического параболоида — косой плоскости (рис. 42). Требуется построить ее горизонтальную проекцию.

Решение:

Каждую из отмеченных во фронтальной проекции точек 1-4 кривой определяем с помощью прямолинейных образующих поверхности.

Видимость кривой Примеры решения задач по начертательной геометрии в горизонтальной проекции не устанавливаем, считая поверхность гиперболического параболоида прозрачной.

Примеры решения задач по начертательной геометрии
Примеры решения задач по начертательной геометрии

Пересечение фигур

Фигурой пересечения прямой и плоскости является точка, двух плоскостей — примам линия, прямой и поверхности — две точки, плоскости и поверхности — крипая или ломаная линия.

Среди множества точек, принадлежащих кривым пересечения, выделяют характерные и случайные точки.

Алгоритм построения точек общих для двух пересекающихся фигур различен в зависимости от того, какое положение этифигуры занимают относительно данных плоскостей проекций, общее или проецирующее.

Если обе пересекающиеся фигуры или одна из них проецирующие, то алгоритм решения упрощается, так как в этом случае одна или две проекции искомой фигуры пересечения совпадают с вырожденными проекциями проецирующих фигур.

Другие проекции искомых точек фигуры пересечения находят по двум отмеченным их проекциям или же, в случае если одна фигура проецирующая, по принадлежности этих точек фигуре общего вида, участвующей в данном пересечении.

В том случае, если пересекаются две геометрические фигуры общего вида, то для получения точек общих для них используют способ посредников, плоскостей или поверхностей.

Рассмотрим три варианта решения задач на пересечение фигур при их различном положении относительно данных плоскостей проекций.

Если пересекаются две фигуры, занимающие относительно данных плоскостей проекций проецирующее положение, то две проекции искомой фигуры пересечения совпадают с вырожденными проекциями проецирующих фигур, третью прсекцию находят по двум отмеченным.

Пример задачи №18.

Построить линию пересечения поверхности цилиндра с плоскостью Примеры решения задач по начертательной геометрии (рис. 44).

Решение:

Анализируя пересекающиеся фигуры, устанавливаем, что боковая поверхность цилиндра горизонтально проецирующая, я плоскость Примеры решения задач по начертательной геометрии фронтально проецирующая. Отсюда следует, что горизонтальная проекция фигуры пересечения совпадает с вырожденной проекцией цилиндра, т.е. с окружностью, фронтальная — со следом Примеры решения задач по начертательной геометрии.

Наметив на фронтальной и горизонтальной проекциях фигуры пересечения ряде точек (точки 1-5), строим их профильные проекции (см. значение Примеры решения задач по начертательной геометрии для точки 4). Кривой пересечения будет эллипс.

Примеры решения задач по начертательной геометрии

Пример задачи №19.

Построить линию пересечения двух цилиндров (рис. 45).

Решение:

Меньший цилиндр горизонтально проецирующий, больший — профильно проецирующий, следовательно горизонтальные и профильные проекции точек, принадлежащих линии пересечения, могут быть отмечены ла соответствующих вырожденных проекциях цилиндров.

Фронтальную проекцию искомой линии находим но двум имеющимся проекциям (см. Примеры решения задач по начертательной геометрии и Примеры решения задач по начертательной геометрии).

Примеры решения задач по начертательной геометрии

Пересекаются две геометрические фигуры из которых одна общего положения, другая — проецирующая

В этом случае одна проекция фигуры пересечения совпадаете вырожденной проекцией проецирующей фигуры, другую ее проекцию находим по принадлежности искомых точек фигуре общего вида, участвующей в пересечении,

Пример задачи №20.

Построить пересечение прямой Примеры решения задач по начертательной геометрии с плоскостью Примеры решения задач по начертательной геометрии (рис. 46 а).

Примеры решения задач по начертательной геометрии

Решение:

Так как прямая Примеры решения задач по начертательной геометрии фронтально проецирующая, то фронтальная проекция искомой точки Примеры решения задач по начертательной геометрии (рис. 46 б) совпадает с вырожденной проекцией прямой Примеры решения задач по начертательной геометрии. Горизонтальную проекцию Примеры решения задач по начертательной геометрии находим по принадлежности точки Примеры решения задач по начертательной геометрии фигуре общего вида, т.е. плоскости Примеры решения задач по начертательной геометрии. Делаем это с помощью вспомогательной прямой 1-2.

Видимость прямой Примеры решения задач по начертательной геометрии относительно безграничной непрозрачной плоскости Примеры решения задач по начертательной геометрии устанавливается по правилу конкурирующих точек (см. Примеры решения задач по начертательной геометрииПримеры решения задач по начертательной геометрии). Проекция Примеры решения задач по начертательной геометрии выше, а Примеры решения задач по начертательной геометрии значит проекция Примеры решения задач по начертательной геометрии в окрестности выбранных конкурирующих точек будет невидима. Видимость проекции прямой меняется после точки пересечения.

Пример задачи №21.

Построить линию пересечения двух плоскостей Примеры решения задач по начертательной геометрии и Примеры решения задач по начертательной геометрии (рис. 47 а).

Решение:

Примеры решения задач по начертательной геометрии — горизонтальная плоскость и в тоже время фронтально проецирующая, следовательно, фронтальная проекция линии пересечения совпадает со следом Примеры решения задач по начертательной геометрии (рис. 47 б Примеры решения задач по начертательной геометрии), горизонтальную проекцию строим по принадлежности этой линии фигуре общего вида, т.е плоскости Примеры решения задач по начертательной геометрии.

Примеры решения задач по начертательной геометрии

Пример задачи №22.

Определить точки пересечения прямой Примеры решения задач по начертательной геометрии с поверхностью конуса (рис. 48).

Примеры решения задач по начертательной геометрии

Решение:

Прямая Примеры решения задач по начертательной геометрии — фронтально проецирующая, значит Примеры решения задач по начертательной геометрии. проекции Примеры решения задач по начертательной геометрии и Примеры решения задач по начертательной геометрии находим по принадлежности искомых точек Примеры решения задач по начертательной геометрии поверхности общего вида, т.е. конусу, для чего используем вспомогательные образующие Примеры решения задач по начертательной геометрии.

Пример задачи №23.

Построить линию пересечения наклонного цилиндра с плоскостью Примеры решения задач по начертательной геометрии (рис. 49).

Решение:

Искомая линия будет кривой. Плоскость Примеры решения задач по начертательной геометрии — горизонтально проецирующая, следовательно, горизонтальная проекция искомой кривой совпадает со следом Примеры решения задач по начертательной геометрии

Отмечаем на следе Примеры решения задач по начертательной геометрии точки, подлежащие определению во фронтальной проекции, выделив при атом обязательно точки, принадлежащие очерковым образующим.

Каждую изотчеченнык точек находим во фронтальной проекции по принадлежности поверхности цилиндра. Делаем это с помощью образующих цилиндра.

Проследите по чертежу за этими построениями. Точки Примеры решения задач по начертательной геометрии принадлежат горизонтальному очерку цилиндра, Примеры решения задач по начертательной геометрии — фронтальному очерку. Точки 1, 2 — случайные.

Заметим, что видимой считаем точку, которая принадлежит видимой на данной проекции образующей. Точки 1, 2 во фронтальной проекции обе невидимы, в горизонтальной точка 2 — видима, Примеры решения задач по начертательной геометрии — невидима.

Пример задачи №24.

Построить линию пересечения тора и цилиндра (рис. 50).

Примеры решения задач по начертательной геометрии

Решение:

Цилиндр — профильно проецирующий, следовательно с его профильной проекцией совпадает профильная проекция искомой линии пересечения.

Намечаем на ней точки, подлежащие определению в других проекциях, и находим каждую ил них по принадлежности фигуре общего вида, т.е. поверхности тора. Делаем это с помощью окружностей — параллелей,

Точки Примеры решения задач по начертательной геометрии — характерные, Точки Примеры решения задач по начертательной геометрии определяют видимость кривой в горизонтальной проекции, Точки 1,2- случайные.

Пример задачи №25.

Построить линию пересечения пирамиды и цилиндра (рис. 51).

Примеры решения задач по начертательной геометрии

Решение:

Цилиндр — горизонтально проецирующий, следовательно его горизонтальной проекцией совпадает горизонтальная проекция искомой линии. Фронтальные проекции точек, отмеченных на этой линии, находим по принадлежности и к поверхности пирамиды. Делаем Это с помощью линий, параллельны основанию пирамиды.

Проследите за этими построениями на примере точек I, 2.

Пример задачи №26.

Построить линию пересечения тора и призмы (рис. 52).

Решение:

Призма — горизонтампроецирующая, следовательно с ее горизонтальной проекцией совпадает горизонтальная проекция искомой линии пересечения.

Намечаем на ней точки 1-4, подлежащие определению но фронтальной и профильной проекциях

Точка 3 — случайная. Ее фронтальная проекция построена с помощью окружности — параллели, проведенной через эту точку. Радиус параллели для точки 3 определяется положением точки Примеры решения задач по начертательной геометрии.

Точка 2 принадлежит фронтальному очерку тора. Радиус параллели для точки 4 определяется положением точки Примеры решения задач по начертательной геометрии.

Самоконтроль 10. Назовите плоскость, которая пересекает поверхность конуса по гиперболе (рис. 53).

Ответ: 10 а — плоскость Примеры решения задач по начертательной геометрии (с. 55). 10 б — плоскость Примеры решения задач по начертательной геометрии (с. 56).

Примеры решения задач по начертательной геометрии

Пересекаются две геометрические фигуры общего положения

Для построения проекций их пересечения используют способ посредников. Посредником может быть плоскость или поверхность*

Сущность способа посредников следующая.

Обе заданные фигуры Примеры решения задач по начертательной геометрии и Примеры решения задач по начертательной геометрии (рис. 54) пересекают посредником Примеры решения задач по начертательной геометрии, находят линии Примеры решения задач по начертательной геометрии и Примеры решения задач по начертательной геометрии пересечения заданных фигур с посредником и в пересечении полученных линий отмечают точки Примеры решения задач по начертательной геометрии, общие для пересекающихся фигур.

Примеры решения задач по начертательной геометрии

При выборе посредника руководствуются тем, чтобы линии, получаемые в пересечении посредника с заданными фигурами, был и графически простыми. Количество посредников зависит от вида пересекающихся фигур,

В случае пересечения прямой с плоскостью или поверхностью плоскость посредник, чаще всего проецирующую, проводят через прямую (рис. 55).

Примеры решения задач по начертательной геометрии

Использование плоскостей посредников

Пример задачи №27.

Определить точку пересечения прямой Примеры решения задач по начертательной геометрии с плоскостью Примеры решения задач по начертательной геометрии (рис. 56 а).

Примеры решения задач по начертательной геометрии

Решение:

Так как прямая Примеры решения задач по начертательной геометрии и плоскость Примеры решения задач по начертательной геометрии — фигуры общего вида, то для решения задачи используют способ посредников.

Посредник, плоскость Примеры решения задач по начертательной геометрии проводим через прямую Примеры решения задач по начертательной геометрии (см. рис. 56 бПримеры решения задач по начертательной геометрии) и строим линию пересечения посредника с заданной плоскостью Примеры решения задач по начертательной геометрии, линию Примеры решения задач по начертательной геометрии. Линию Примеры решения задач по начертательной геометрии определяют точки 1, 2.

В пересечении линии Примеры решения задач по начертательной геометрии с заданной прямой Примеры решения задач по начертательной геометрии отмечаем искомую точку Примеры решения задач по начертательной геометрии.

Видимость прямой Примеры решения задач по начертательной геометрии относительно непрозрачной плоскости Примеры решения задач по начертательной геометрииустанавливаем по правилу конкурирующих точек. Так видимость прямой Примеры решения задач по начертательной геометрии в горизонтальной проекции определяем с помощью горизонтально конкурирующие точек 3, 4 (см, Примеры решения задач по начертательной геометрии).

Так как точка 3, принадлежащая прямой Примеры решения задач по начертательной геометрии, т.е. плоскости Примеры решения задач по начертательной геометрии во фронтальной проекции расположена выше, чем точка 4, принадлежащая прямой Примеры решения задач по начертательной геометрии, то плоскость Примеры решения задач по начертательной геометрии закрывает в горизонтальной проекции прямую Примеры решения задач по начертательной геометрии, следовательно, прямая Примеры решения задач по начертательной геометрии в этой части чертежа невидима.

Во фронтальной проекции видимость прямой Примеры решения задач по начертательной геометрии относительно непрозрачной плоскости Примеры решения задач по начертательной геометрии устанавливаемой по фронтально конкурирующим точкам Примеры решения задач по начертательной геометрии Так как проекция Примеры решения задач по начертательной геометрии ближе к глазу наблюдателя, чем проекция Примеры решения задач по начертательной геометрии то прямая в этой части чертежа видима.

Пример задачи №28.

Определить точки пересечения прямой Примеры решения задач по начертательной геометрии с поверхностью вращения (рис.57).

Примеры решения задач по начертательной геометрии

Решение:

Так как пересекаются геометрические фигуры общего вила, то через прямую, также как и в предыдущем примере, проводим фронтально проецирующую плоскость Примеры решения задач по начертательной геометрии и строим линию пересечения плоскости-посредника с поверхностью вращения, линию Примеры решения задач по начертательной геометрии. В пересечении полученной линии Примеры решения задач по начертательной геометрии с прямой Примеры решения задач по начертательной геометрии отмечаем искомые точки Примеры решения задач по начертательной геометрии.

Проекции Примеры решения задач по начертательной геометрии — видимые, Примеры решения задач по начертательной геометрии — невидимая.

Пример задачи №29.

Определить линию пересечения двух плоскостей Примеры решения задач по начертательной геометрии (рис.58).

Примеры решения задач по начертательной геометрии

Решение:

Обе плоскости общего положения, поэтому дли определении точек Примеры решения задач по начертательной геометрии и Примеры решения задач по начертательной геометрии, общих для них, используем способ посредников. В качестве посредников выбраны плоскости Примеры решения задач по начертательной геометрии и Примеры решения задач по начертательной геометрии.

Пример задачи №30.

Определить линию пересечении сферы и тора (рис. 59).

Примеры решения задач по начертательной геометрии

Решение:

Обе поверхности общею вида, поэтому дли решении задачи используем способ посредников.

Посредники, плоскости Примеры решения задач по начертательной геометрии и Примеры решения задач по начертательной геометрии перпендикулярны плоскости Примеры решения задач по начертательной геометрии и оси тора Примеры решения задач по начертательной геометрии.

Плоскость Примеры решения задач по начертательной геометрии пересекает сферу и тор по окружностям Примеры решения задач по начертательной геометрии и Примеры решения задач по начертательной геометрии, радиусы которых определяют точки Примеры решения задач по начертательной геометрии и Примеры решения задач по начертательной геометрии. В пересечении окружностей Примеры решения задач по начертательной геометрии получаем точки, общие для сферы и тора, точки 1, 2.

С помощью посредника Примеры решения задач по начертательной геометрии получаем точку Примеры решения задач по начертательной геометрии, положение которой в горизонтальной проекции определяет переход кривой от ее видимой части к невидимой.

Использование сфер-посредников

Соосные поверхности пересекаются по окружностям. Сфера соосна с любой поверхностью вращения, если ее центр расположен на оси поверхности вращении.

Использование концентрических сфер в качестве посредников возможно, ели (рис. 60);

пересекаются поверхности вращения; оси поверхностей вращения пересекаются;

плоскость, образованная осями пересекающихся поверхностей, параллельна плоскости проекций.

Примеры решения задач по начертательной геометрии

На рис. 60 а показано определение точек Примеры решения задач по начертательной геометрии общих для конуса Примеры решения задач по начертательной геометрии и цилиндра Примеры решения задач по начертательной геометрии, с помощью введения посредника — сферы Примеры решения задач по начертательной геометрии Сфера Примеры решения задач по начертательной геометрии пересекает конус по окружностям Примеры решения задач по начертательной геометрии и Примеры решения задач по начертательной геометрии, цилиндр по окружностям Примеры решения задач по начертательной геометрии и Примеры решения задач по начертательной геометрии. В их пересечении отмечаем точки Примеры решения задач по начертательной геометрии общие для сферы Примеры решения задач по начертательной геометрии, конуса и цилиндра,

На рис. 60 б построена линия пересечения конуса и цилиндра.

Проведено множество сфер- посредников, среди которых особо нужно выделить сферу с Примеры решения задач по начертательной геометрии, который определяется размером максимальной нормали.

Горизонтальные проекции полученных точек определяем исходя из принадлежности их поверхности конуса.

Кстати готовые на продажу задачи тут, и там же теория из учебников может быть вам поможет она.

Теорема г. монжа

Если две поверхности второго порядка описаны около третьей поверхности, второго порядка или вписаны а нее), то линия их пересечения распадается на две плоские кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки касания.

На рис- 61 построены проекции линии пересечения конуса и цилиндра, описанных вокруг сферы.

Примеры решения задач по начертательной геометрии

Линией их пересечения являются два эллипса, фронтальные проекции которых изображаются на чертеже в виде прямых линий.

На рис. 62, 6J даны примеры пересекающихся поверхностей, когда проекции линии пересечения, согласно теореме Г.Монжа, представляют собой отрезки прямых линий.

Примеры решения задач по начертательной геометрии

Примеры решения задач по всем темам начертательной геометрии

Начертательная геометрия – это раздел геометрии, в котором пространственные фигуры изучаются с помощью их изображений на плоскости (чертежей). Разработка методов построения и чтения чертежей, решения геометрических и технических задач является предметом изучения начертательной геометрии. В начертательной геометрии используются графические методы решения задач, поэтому к чертежам предъявляются особые требования – обратимость, точность, наглядность и другие.

Правила построения изображений фигур основано на методе проецирования. Наиболее распространенными в начертательной геометрии являются чертежи, полученные при проецировании фигур на две плоскости – комплексные чертежи в системе двух плоскостей проекций. Под фигурой будем понимать любое множество точек.

Изображением точки, которая является элементом фигуры, является пара точек – две связанные между собой проекции точки. Каждой точке пространства соответствует единственная пара точек плоскости чертежа и каждой паре точек плоскости чертежа соответствует единственная точка пространства. Пара точек плоскости чертежа является геометрической моделью точки пространства.

Изображения фигур пространства, получаемые методами начертательной геометрии, являются геометрическими моделями этих фигур на плоскости. Между фигурой и ее изображением устанавливается строгая геометрическая связь, что позволяет судить о форме и размерах фигуры по ее изображению.

Задачи в начертательной геометрии обычно делятся на позиционные (задачи на определение общих элементов заданных фигур), метрические (задачи на определение значений геометрических величин – длин отрезков, размеров углов и т.д.) и конструктивные (задачи на построение фигур, удовлетворяющих заданным условиям). Знание элементарной геометрии, методов решения позиционных и метрических задач дает возможность решать и конструктивные задачи.

Метод проекций

Для того чтобы чертеж соответствовал изображаемому предмету и передавал его свойства, он должен быть построен по определенным геометрическим законам. Правила построения изображений в инженерной геометрии основаны на методе проекций.

Метод проекций предполагает наличие плоскости проекций, объекта проецирования и проецирующих лучей.

Проекцией точки Решение задач по начертательной геометрии на плоскость Решение задач по начертательной геометрии называется точка пересечения Решение задач по начертательной геометрии с этой плоскостью проецирующего луча Решение задач по начертательной геометрии, проходящего в пространстве через точку Решение задач по начертательной геометрии (рис. 1.1).

Различают два метода проецирования: центральное и параллельное.

Центральное и параллельное проецирование

При центральном проецировании все проецирующие лучи проходят через точку Решение задач по начертательной геометрии, называемую центром проекций и не лежащую в плоскости проекций. Для построения проекций некоторых точек Решение задач по начертательной геометрии (рис. 1.2) проводим через эти точки и центр проекций Решение задач по начертательной геометрии проецирующие лучи до пересечения с плоскостью Решение задач по начертательной геометрии. На плоскости проекций Решение задач по начертательной геометрии каждой точке будет соответствовать единственная точка — проекции Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Центральное проецирование обладает наглядностью, оно используется при построении изображений архитектурно-строительных объектов, но даст значительное искажение размеров, вследствие чего не применяется для выполнения чертежей.

При параллельном проецировании проецирующие лучи параллельны заданному направлению Решение задач по начертательной геометрии (рис. 1.3). Точки пересечения проецирующих лучей, проходящих через точки Решение задач по начертательной геометрии с плоскостью проекций Решение задач по начертательной геометрии — параллельные проекции Решение задач по начертательной геометрии на плоскости Решение задач по начертательной геометрии.

Параллельное проецирование можно рассматривать как частный случай центрального при бесконечно удаленном центре проекций. В зависимости от направления проецирующих лучей относительно плоскости проекций параллельное проецирование может быть прямоугольным (проецирующие лучи перпендикулярны плоскости проекций) и косоугольным (проецирующие лучи составляют с плоскостью проекций угол, не равный Решение задач по начертательной геометрии).

Прямоугольной (ортогональной) проекцией точки Решение задач по начертательной геометрии (рис. 1.4) является основание перпендикуляра Решение задач по начертательной геометрии, проведенного из точки Решение задач по начертательной геометрии на плоскость Решение задач по начертательной геометрии. Динамический рисунок с перемещением точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии в пространстве относительно плоскости проекций можно посмотреть здесь.

Ортогональное проецирование имеет ряд преимуществ перед центральным и косоугольным параллельным проецированием.

Решение задач по начертательной геометрии

Для разработки чертежей применяется в основном прямоугольное (ортогональное) проецирование. Прямоугольное проецирование включает в себя все свойства центрального и параллельного проецирования.

  1. Каждая точка и прямая в пространстве имеют единственную проекцию на плоскости, так как через любую точку в пространстве можно провести только один проецирующий луч (рис. 1.4).
  2. Каждая точка на плоскости проекций может быть проекцией множества точек, если через них проходит общий проецирующий луч (рис. 1.5).
  3. Если точка принадлежит прямой, то проекция точки принадлежит проекции этой прямой (рис. 1.6).
Решение задач по начертательной геометрии
  1. Отношение отрезков прямой равно отношению их проекций (рис. 1.6):
Решение задач по начертательной геометрии
  1. Проекции параллельных прямых параллельны. Если Решение задач по начертательной геометрии, то Решение задач по начертательной геометрии (рис. 1.7). Если прямая перпендикулярна плоскости проекций, то проекцией этой прямой является точка (прямая Решение задач по начертательной геометрии, рис. 1.8).
Решение задач по начертательной геометрии
  1. Если отрезок прямой параллелен плоскости проекций, то на эту плоскость отрезок проецируется в натуральную величину (прямая Решение задач по начертательной геометрии, рис. 1.8).

Точка в системе двух и трех плоскостей проекций

Возьмем в пространстве две взаимно перпендикулярные плоскости. Одна из них располагается горизонтально — ее называют горизонтальной плоскостью проекций и обозначают буквой Решение задач по начертательной геометрии. Другая плоскость перпендикулярна горизонтальной и называется фронтальной плоскостью проекций. Эта плоскость обозначается буквой Решение задач по начертательной геометрии (рис. 1.9). Линия пересечения плоскостей проекций называется осью проекций. Ось проекций Решение задач по начертательной геометрии разделяет каждую из плоскостей на две полуплоскости.

Решение задач по начертательной геометрии

Спроецируем точку Решение задач по начертательной геометрии на плоскости проекций Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Горизонтальной проекцией точки называют прямоугольную проекцию точки на горизонтальной плоскости проекций. Горизонтальную проекцию находим как точку пересечения перпендикуляра, проведенного из точки Решение задач по начертательной геометрии, с плоскостью Решение задач по начертательной геометрии. Обозначим ее символом Решение задач по начертательной геометрии. Проведем из точки Решение задач по начертательной геометрии в плоскости Решение задач по начертательной геометрии перпендикуляр на ось Решение задач по начертательной геометрии и отметим вспомогательную точку Решение задач по начертательной геометрии.

Фронтальной проекцией точки называют прямоугольную проекцию точки на фронтальной плоскости проекций. Фронтальную проекцию находим как точку пересечения перпендикуляра, проведенного из точки Решение задач по начертательной геометрии, с плоскостью Решение задач по начертательной геометрии. Обозначим ее Решение задач по начертательной геометрии.

Для получения плоского чертежа точки необходимо совместить плоскость Решение задач по начертательной геометрии с плоскостью Решение задач по начертательной геометрии поворотом вокруг оси Решение задач по начертательной геометрии. При этом отрезки Решение задач по начертательной геометрии и Решение задач по начертательной геометрии образуют один отрезок Решение задач по начертательной геометрии, перпендикулярный к оси Решение задач по начертательной геометрии. Отрезок Решение задач по начертательной геометрии называется линией проекционной связи (рис. 1.10). Без обозначения плоскостей Решение задач по начертательной геометрии и Решение задач по начертательной геометрии этот чертеж будет выглядеть так, как показано на рис. 1.11. Полученный чертеж имеет название эпюр Монжа (Epure — чертеж (франц.)), в честь основоположника начертательной геометрии французского ученого Гаспара Монжа.

Решение задач по начертательной геометрии

Иногда двух проекций геометрического элемента бывает недостаточно, чтобы определить его форму и истинные размеры. Тогда выполняют построение изображения на третьей плоскости. Введем в систему Решение задач по начертательной геометрии, Решение задач по начертательной геометрии третью плоскость проекций, перпендикулярную плоскостям Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Ее называют профильной плоскостью проекций и обозначают Решение задач по начертательной геометрии (рис. 1.12).

Решение задач по начертательной геометрии

Три взаимно перпендикулярные плоскости проекций называются координатными плоскостями. Они пересекаются по трем взаимно перпендикулярным прямым Решение задач по начертательной геометрии которые называются осями координат и обозначаются Решение задач по начертательной геометрии. Общая точка Решение задач по начертательной геометрии — начало координат.

Рассмотрим построение трех проекций некоторой точки пространства. Зададимся произвольной точкой Решение задач по начертательной геометрии (рис. 1.12). Проецирование на плоскости Решение задач по начертательной геометрии и Решение задач по начертательной геометрии выполняется аналогично приведенному выше примеру проецирования точки Решение задач по начертательной геометрии на две плоскости проекций. Профильной проекцией точки является прямоугольная проекция точки на профильной плоскости проекций Решение задач по начертательной геометрии. Обозначим ее Решение задач по начертательной геометрии.

Часто с осями проекций совмещают декартову систему координат. Из рис. 1.12 видно, что:

Решение задач по начертательной геометрии (высота Решение задач по начертательной геометрии точки Решение задач по начертательной геометрии — аппликата);

Решение задач по начертательной геометрии (глубина Решение задач по начертательной геометрии точки Решение задач по начертательной геометрии — ордината);

Решение задач по начертательной геометрии (широта Решение задач по начертательной геометрии точки Решение задач по начертательной геометрии — абсцисса).

Чтобы перейти к плоскому изображению, повернем плоскость Решение задач по начертательной геометрии вниз вокруг оси Решение задач по начертательной геометрии и плоскость яз вправо вокруг оси Решение задач по начертательной геометрии до совмещения с плоскостью Решение задач по начертательной геометрии. При развороте плоскостей Решение задач по начертательной геометрии и Решение задач по начертательной геометрии ось Решение задач по начертательной геометрии воспроизводится дважды.

На рис. 1.13 показано расположение проекций Решение задач по начертательной геометрии точки Решение задач по начертательной геометрии после совмещения плоскостей проекций.

Решение задач по начертательной геометрии

Прямые, соединяющие на чертеже две проекции одной и той же точки, являются линиями проекционной связи, между Решение задач по начертательной геометрии и Решение задач по начертательной геометрии — вертикальная линия связи, между Решение задач по начертательной геометрии и Решение задач по начертательной геометрии — горизонтальная линия связи, между проекциями Решение задач по начертательной геометрии и Решение задач по начертательной геометрии — ломаная линия связи. Переход от оси Решение задач по начертательной геометрии плоскости Решение задач по начертательной геометрии к оси Решение задач по начертательной геометрии плоскости Решение задач по начертательной геометрии может осуществляться при помощи дуги или вспомогательной прямой, проведенной под углом Решение задач по начертательной геометрии к оси Решение задач по начертательной геометрии.

На рис. 1.14 выполнено построение профильной проекции Решение задач по начертательной геометрии точки Решение задач по начертательной геометрии по заданной горизонтальной Решение задач по начертательной геометрии и фронтальной Решение задач по начертательной геометрии. Построение выполняется следующим образом.

  1. Проводим через проекцию Решение задач по начертательной геометрии горизонтальную линию связи, на которой находится профильная проекция Решение задач по начертательной геометрии.
  2. Проводим ломаную линию связи через Решение задач по начертательной геометрии до пересечения с горизонтальной линией связи, проведенной через фронтальную проекцию Решение задач по начертательной геометрии.

Профильную проекцию Решение задач по начертательной геометрии можно получить, откладывая на горизонтальной линии связи от точки Решение задач по начертательной геометрии отрезок, равный координате Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Как известно, положение точки в пространстве может быть задано при помощи трех ее координат (абсциссы Решение задач по начертательной геометрии, ординаты Решение задач по начертательной геометрии, аппликаты Решение задач по начертательной геометрии), т. е. трех чисел, выражающих расстояния от этой точки до трех плоскостей проекций. Запись координат точки производится в такой форме: Решение задач по начертательной геометрии. Например, задана точка Решение задач по начертательной геометрии. Эта запись означает, что точка Решение задач по начертательной геометрии определяется координатами Решение задач по начертательной геометрии.

Если масштаб для построения чертежа задан или выбран, то построение проводят так, как показано на рис. 1.13, 1.14 — откладывается на оси Решение задач по начертательной геометрии от точки Решение задач по начертательной геометрии отрезок Решение задач по начертательной геометрии, а на перпендикуляре к этой оси, проведенном из точки Решение задач по начертательной геометрии,откладывают отрезки Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Затем строят профильную проекцию Решение задач по начертательной геометрии, как описано выше.

Проекции отрезка прямой линии

Как известно из элементарной геометрии, прямая линия определяется двумя точками, поэтому чтобы построить проекции этой прямой, необходимо иметь проекции двух точек, принадлежащих этой прямой.

Возьмем на произвольной прямой две точки Решение задач по начертательной геометрии и Решение задач по начертательной геометрии (рис. 1.15). Их проекции Решение задач по начертательной геометрии и Решение задач по начертательной геометрии на плоскости по определяют прямую, которую можно рассматривать как линию пересечения плоскости Решение задач по начертательной геометрии с плоскостью Решение задач по начертательной геометрии, определяемой прямой Решение задач по начертательной геометрии и проецирующими лучами Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Линия пересечения плоскостей Решение задач по начертательной геометрии и Решение задач по начертательной геометрии проходит через проекции Решение задач по начертательной геометрии и Решение задач по начертательной геометрии на плоскости Решение задач по начертательной геометрии. Эта линия и является проекцией прямой на плоскости проекций Решение задач по начертательной геометрии.

Одна проекция прямой не определяет ее положения в пространстве. Для однозначного определения прямой в пространстве необходимы как минимум две проекции.

Решение задач по начертательной геометрии

Прямые общего и частного положения

Прямые в пространстве могут занимать относительно плоскостей проекций различное положение. Прямую, не параллельную ни одной из плоскостей проекций, называют прямой общего положения. На рис. 1.16, а дано пространственное изображение, а на рис. 1.16,6-чертеж прямой Решение задач по начертательной геометрии.

Точки Решение задач по начертательной геометрии и Решение задач по начертательной геометрии находятся на разных расстояниях от каждой из плоскостей проекций, т. е. прямая Решение задач по начертательной геометрии не параллельна ни одной из них. Значит, прямая Решение задач по начертательной геометрии общего положения.

Решение задач по начертательной геометрии

На представленном примере показан перемещающийся в пространстве отрезок Решение задач по начертательной геометрии и его проекции на три плоскости.

По двум известным проекциям отрезка прямой всегда можно построить третью проекцию, так как любая пара проекций содержит все три координаты конечных точек отрезка.

Прямые, параллельные или перпендикулярные к плоскостям проекций, называются прямыми частного положения.

Прямая, параллельная плоскости проекций, называется прямой уровня. Существуют три линии уровня.

Решение задач по начертательной геометрии

Прямая, перпендикулярная к плоскостям проекций, называется проецирующей. Различают три вида проецирующих прямых.

Решение задач по начертательной геометрии

Определение натуральной величины отрезка прямой и углов наклона прямой к плоскостям проекций

Отрезки прямых общего положения не проецируются в натуральную величину ни на одну из плоскостей проекций. Длину (натуральную величину — Решение задач по начертательной геометрии) отрезка можно определить на основании свойства ортогонального проецирования.

Из рисунка 1.17 видно, что натуральная величина отрезка Решение задач по начертательной геометрии общего положения является гипотенузой прямоугольного треугольника Решение задач по начертательной геометрии. В этом треугольнике один катет Решение задач по начертательной геометрии параллелен плоскости Решение задач по начертательной геометрии и равен по длине горизонтальной проекции отрезка Решение задач по начертательной геометрии, а величина второго катета равна разности расстояний точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии до плоскости проекций Решение задач по начертательной геометрии, т. е. Решение задач по начертательной геометрии.

Угол Решение задач по начертательной геометрии — угол наклона отрезка Решение задач по начертательной геометрии к горизонтальной плоскости проекций Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Таким образом, на горизонтальной проекции отрезка Решение задач по начертательной геометрии (рис. 1.18) можно построить прямоугольный треугольник, взяв вторым катетом Решение задач по начертательной геометрии. Гипотенуза этого треугольника Решение задач по начертательной геометрии будет натуральной величиной отрезка Решение задач по начертательной геометрии, а угол Решение задач по начертательной геометрии определяет угол наклона отрезка Решение задач по начертательной геометрии к горизонтальной плоскости проекций Решение задач по начертательной геометрии.

Аналогичное построение можно сделать на фронтальной плоскости проекций, взяв в качестве второго катета разность расстояний концов отрезка (Решение задач по начертательной геометрии) до фронтальной плоскости проекций Решение задач по начертательной геометрии. Отрезок Решение задач по начертательной геометрии -натуральная величина отрезка Решение задач по начертательной геометрии, угол Решение задач по начертательной геометрии — угол наклона Решение задач по начертательной геометрии к плоскости Решение задач по начертательной геометрии.

Относительное положение точки и прямой

Точка и прямая в пространстве могут занимать различное положение относительно друг друга. Если точка принадлежит прямой, то проекции этой точки лежат на одноименных проекциях данной прямой. Точка Решение задач по начертательной геометрии принадлежит прямой Решение задач по начертательной геометрии (рис. 1.19), так как се проекции Решение задач по начертательной геометрии и Решение задач по начертательной геометрии лежат на одноименных проекциях прямой Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Точки Решение задач по начертательной геометрии не принадлежат прямой Решение задач по начертательной геометрии, так как одна из проекций этих точек не лежит на соответствующей проекции прямой.

Решение задач по начертательной геометрии

Задание плоскости на чертеже

Плоскостью называется поверхность, образуемая перемещением прямой линии, которая движется параллельно самой себе по неподвижной направляющей прямой.

На чертеже плоскость можно изобразить только в том случае, если она проецируется в линию. На рис. 1.20 плоскость Решение задач по начертательной геометрии, расположенная перпендикулярно к плоскости Решение задач по начертательной геометрии, проецируется на нее прямой линией Решение задач по начертательной геометрии.

Если плоскость не перпендикулярна к плоскости проекций, то изобразить ее на чертеже невозможно, так как проекции плоскости занимают полностью всю плоскость проекций.

Однако ее можно задать на чертеже, изобразив отдельные геометрические элементы, определяющие ее.

Решение задач по начертательной геометрии
Решение задач по начертательной геометрии

Такими элементами являются:

  • три точки, не лежащие на одной прямой (рис. 1.21, а);
  • прямая и точка, не лежащая на ней (рис. 1.21, б);
  • пересекающиеся прямые (рис. 1.21, в);
  • две параллельные прямые (рис. 1.21, г);
  • плоская фигура (рис. 1.21, <)).

Плоскости общего и частного положения

Плоскость, не перпендикулярную ни к одной из плоскостей проекций, называют плоскостью общего положения (рис. 1.22). Эти плоскости имеют наибольшее распространение. Причем плоскость не ограничивается задающей ее плоской фигурой, а является бесконечной (если иное не оговорено в условии задачи).

Решение задач по начертательной геометрии

К плоскостям частного положения относятся плоскости, перпендикулярные или параллельные плоскостям проекций.

Если плоскости перпендикулярны к одной из плоскостей проекций, то они называются проецирующими.

Различают горизонтально-проецирующую, фронтально-проецирующую и профильно-проецирующую плоскости.

Плоскости, параллельные какой-либо плоскости проекций, называются плоскостями уровня.

К ним относятся:

  1. горизонтальная плоскость уровня — параллельная плоскости проекций Решение задач по начертательной геометрии;
  2. фронтальная плоскость уровня — параллельная плоскости Решение задач по начертательной геометрии;
  3. профильная плоскость уровня — параллельная плоскости Решение задач по начертательной геометрии.

Прямая и точка в плоскости

К числу основных задач, решаемых на плоскости, относятся: построение прямой, принадлежащей заданной плоскости; построение недостающих проекций точки, лежащей в плоскости. Решение указанных задач основано на известных положениях геометрии, перечисленных ниже.

  • Прямая принадлежит плоскости, если две ее точки принадлежат этой плоскости.

Например, плоскость задана параллельными прямыми Решение задач по начертательной геометрии и Решение задач по начертательной геометрии (горизонтальные проекции Решение задач по начертательной геометрии и фронтальные проекции Решение задач по начертательной геометрии на рис. 1.23). Требуется построить горизонтальную проекцию Решение задач по начертательной геометрии прямой Решение задач по начертательной геометрии, лежащей в этой плоскости, если известна ее фронтальная проекция Решение задач по начертательной геометрии.

Прямые Решение задач по начертательной геометрии лежат в одной плоскости, поэтому точки Решение задач по начертательной геометрии и Решение задач по начертательной геометрии являются точками пересечения соответственно прямых Решение задач по начертательной геометрии и Решение задач по начертательной геометрии и Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. По линиям связи определяем горизонтальные проекции точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Через проекции точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии проводим горизонтальную проекцию прямой.

Решение задач по начертательной геометрии
  1. Прямая принадлежит плоскости, если она проходит через точку этой плоскости параллельно какой-либо прямой, лежащей в этой плоскости.

Например, плоскость задана треугольником Решение задач по начертательной геометрии (проекции Решение задач по начертательной геометрии и Решение задач по начертательной геометрии на рис. 1.24). Требуется построить прямую, лежащую в плоскости Решение задач по начертательной геометрии и проходящую через точку Решение задач по начертательной геометрии. Через точку Решение задач по начертательной геометрии проводим прямую Решение задач по начертательной геометрии, параллельную Решение задач по начертательной геометрии.

Следует отметить, что через точку Решение задач по начертательной геометрии в плоскости треугольника можно провести множество прямых.

Точка принадлежит плоскости, если она находится на прямой, лежащей в этой плоскости. Например, необходимо определить фронтальную проекцию точки Решение задач по начертательной геометрии, принадлежащей плоскости, заданной треугольником Решение задач по начертательной геометрии (рис. 1.25). Через точку Решение задач по начертательной геометрии проведем горизонтальную проекцию прямой Решение задач по начертательной геометрии и построим Решение задач по начертательной геометрии. Проекции точки принадлежат одноименным проекциям прямой Решение задач по начертательной геометрии. По линии связи находим фронтальную проекцию Решение задач по начертательной геометрии точки Решение задач по начертательной геометрии.

Прямые особого положения в плоскости

К числу прямых, занимающих особое положение в плоскости, относятся горизонтали, фронтали, профильные линии. Прямая, принадлежащая данной плоскости и параллельная горизонтальной плоскости проекций Решение задач по начертательной геометрии, называется горизонталью плоскости. Фронтальная проекция горизонтали параллельна оси Решение задач по начертательной геометрии. Построение проекций горизонтали треугольника Решение задач по начертательной геометрии, представленного проекциями Решение задач по начертательной геометрии и Решение задач по начертательной геометрии на рис. 1.26, начинается с проведения из вершины Решение задач по начертательной геометрии фронтальной проекции горизонтали Решение задач по начертательной геометрии, затем по линиям проекционной связи строится горизонтальная проекция Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

На рис. 1.27 построение фронтали (линии, параллельной фронтальной плоскости проекций) треугольника Решение задач по начертательной геометрии удобно начать с горизонтальной проекции Решение задач по начертательной геометрии, затем с помощью линий проекционной связи строится фронтальная проекция Решение задач по начертательной геометрии.

Задачи с решением №1

Задача №1.

По заданным координатам точки Решение задач по начертательной геометрииРешение задач по начертательной геометрии построить ее проекции.

Решение:

По оси Решение задач по начертательной геометрии откладываем Решение задач по начертательной геометрии (точка Решение задач по начертательной геометрии на рис. 1.28). В точке Решение задач по начертательной геометрии восстанавливаем перпендикуляр к оси (линия связи) и, отложив на нем Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, получаем Решение задач по начертательной геометрии — горизонтальную и Решение задач по начертательной геометрии — фронтальную проекции точки Решение задач по начертательной геометрии.

Затем из точки Решение задач по начертательной геометрии проведем перпендикуляр к оси Решение задач по начертательной геометрии (точка Решение задач по начертательной геометрии). Радиусом Решение задач по начертательной геометрии переносим точку Решение задач по начертательной геометрии на ось Решение задач по начертательной геометрии на профильной проекции.

Из точки Решение задач по начертательной геометрии проводим горизонтальную линию связи. В пересечении линий связи получим точку Решение задач по начертательной геометрии — профильную проекцию точки Решение задач по начертательной геометрии.

Задача №2.

Через точку Решение задач по начертательной геометрии (проекции Решение задач по начертательной геометрии и Решение задач по начертательной геометрии на рис. 1.29) провести фронтальную прямую Решение задач по начертательной геометрии длиной Решение задач по начертательной геометрии под углом Решение задач по начертательной геометрии к плоскости Решение задач по начертательной геометрии и отложить на ней отрезок Решение задач по начертательной геометрии.

Решение:

Прямая Решение задач по начертательной геометрии параллельна фронтальной плоскости проекций яг и спроецирустся на эту плоскость в натуральную величину.

Из точки Решение задач по начертательной геометрии проводим прямую под углом Решение задач по начертательной геометрии к оси Решение задач по начертательной геометрии и откладываем на ней отрезок Решение задач по начертательной геометрии.

На фронтальной проекции Решение задач по начертательной геометрии откладываем отрезок Решение задач по начертательной геометрии. По линии связи определяем горизонтальную проекцию точки Решение задач по начертательной геометрии.

Вопросы для контроля

  1. Как называются и обозначаются плоскости проекций?
  2. Сформулируйте основные свойства прямоугольного проецирования.
  3. Какие координаты определяют положение фронтальной проекции точки?
  4. Какая прямая называется прямой общего положения?

Относительное положение двух прямых в пространстве

Прямые в пространстве могут занимать различное взаимное положение — они могут быть параллельными, пересекаться и скрещиваться. Из свойств параллельного проецирования следует, что если прямые параллельны (рис. 2.1), то их проекции также параллельны. На рис. 2.2 приведен чертеж параллельных прямых Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Проекции Решение задач по начертательной геометрииРешение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Если прямые в пространстве пересекаются, то их проекции также пересекаются и точка пересечения лежит на одной общей линии связи. Пересекающиеся прямые Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, приведенные на рис. 2.3, а, имеют общую точку Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Поэтому горизонтальная (Решение задач по начертательной геометрии) и фронтальная (К») проекции этой точки лежат на пересечении одноименных проекций данных прямых. На рис. 2.3, б проекции точки Решение задач по начертательной геометрии и Решение задач по начертательной геометрии соединены линией связи (находятся на одном перпендикуляре к оси проекций).

Если две прямые не параллельны и не пересекаются, то они называются скрещивающимися. Как видно из рис. 2.4, а и б, горизонтальные проекции точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии прямых Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, заданных проекциями Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, и фронтальные проекции точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии сливаются в одну, так как расположены на одной проецирующей прямой. Но эти точки пересечения одноименных проекций (Решение задач по начертательной геометрии и Решение задач по начертательной геометрии) не являются общими для двух прямых, и, следовательно, прямые Решение задач по начертательной геометрии и Решение задач по начертательной геометрии скрещиваются.

Решение задач по начертательной геометрии

Пары точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, лежащие на горизонтально-проецирующей прямой, или Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, лежащие на фронтально-проецирующей прямой, называются конкурирующими.

Параллельность прямой и плоскости

Прямая, не лежащая в плоскости, может быть параллельна плоскости или пересекаться с ней. Решение вопроса о параллельности прямой и плоскости основывается на следующем свойстве: прямая параллельна плоскости, если она параллельна одной из прямых, лежащих в этой плоскости.

Задача и решение №2

Через точку Решение задач по начертательной геометрии требуется провести горизонтальную прямую, параллельную плоскости треугольника Решение задач по начертательной геометрии (рис. 2.5).

Построение следует начинать с проведения в плоскости треугольника Решение задач по начертательной геометрии произвольной прямой — горизонтали Решение задач по начертательной геометрии, например через вершину Решение задач по начертательной геометрии.

Затем через заданную точку Решение задач по начертательной геометрии проводим прямую Решение задач по начертательной геометрии, параллельную Решение задач по начертательной геометрии.

Если заданы плоскость и прямая, то для определения их параллельности нужно попытаться построить в плоскости прямую, параллельную заданной.

Решение задач по начертательной геометрии

Параллельность двух плоскостей

Две плоскости параллельны, если две пересекающиеся прямые, принадлежащие одной плоскости, параллельны двум пересекающимся прямым другой плоскости. Так, на рис. 2.6 плоскость треугольника Решение задач по начертательной геометрии параллельна плоскости двух пересекающихся прямых Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, проходящих через точку Решение задач по начертательной геометрии, так как две стороны Решение задач по начертательной геометрии и Решение задач по начертательной геометрии соответственно параллельны прямым Решение задач по начертательной геометрии и Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Задача:

Через точку Решение задач по начертательной геометрии требуется провести плоскость, параллельную плоскости параллельных прямых Решение задач по начертательной геометрии и Решение задач по начертательной геометрии (рис. 2.7, а).

Решение. Через точку Решение задач по начертательной геометрии проводим прямую Решение задач по начертательной геометрии, параллельную прямым Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, задающим плоскость (рис. 2.7, б).

Решение задач по начертательной геометрии

Для того чтобы получить вторую прямую, проводим в заданной плоскости произвольную прямую 1-2. Затем проводим через точку Решение задач по начертательной геометрии прямую Решение задач по начертательной геометрии, параллельную прямой 1-2. Прямые Решение задач по начертательной геометрии и Решение задач по начертательной геометрии пересекаются и параллельны двум пересекающимся прямым заданной плоскости, следовательно, плоскости параллельны.

Пересечение двух плоскостей

Линией пересечения двух плоскостей является прямая, которая строится по двум точкам, общим для обеих плоскостей (рис. 2.8). Линия пересечения, по которой пересекаются между собой две плоскости, проходит через точки Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, в которых прямые Решение задач по начертательной геометрии и Решение задач по начертательной геометрии плоскости треугольника пересекают вторую плоскость, т. е. точки Решение задач по начертательной геометрии и Решение задач по начертательной геометрии принадлежат обеим плоскостям.

Решение задач по начертательной геометрии

Для нахождения точек пересечения приходится выполнять целый ряд вспомогательных построений.

На рис. 2.9 приведен пример построения линии пересечения двух плоскостей: плоскости общего положения, заданной треугольником Решение задач по начертательной геометрии, и фронтально-проецирующей плоскости треугольника Решение задач по начертательной геометрии. В данном случае решение упрощается, так как одна из плоскостей занимает частное положение. Общими точками для этих двух плоскостей будут точки пересечения Решение задач по начертательной геометрии и Решение задач по начертательной геометрии сторон Решение задач по начертательной геометрии и Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии с «вырожденной» проекцией треугольника Решение задач по начертательной геометрии. Фронтальная проекция Решение задач по начертательной геометрии линии пересечения совпадает с проекцией Решение задач по начертательной геометрии. Горизонтальные проекции Решение задач по начертательной геометрии и Решение задач по начертательной геометрии строятся при помощи линий связи.

При рассмотрении фронтальных проекций видно, что часть Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии расположена над проекцией Решение задач по начертательной геометрии и на горизонтальной проекции будет видна («накрывает» плоскость треугольника Решение задач по начертательной геометрии). Часть Решение задач по начертательной геометрии располагается под Решение задач по начертательной геометрии и «накрывается» плоскостью треугольника Решение задач по начертательной геометрии.

Теперь рассмотрим общий случай построения линии пересечения двух плоскостей. Пусть в пространстве (рис. 2.10) заданы две плоскости общего положения Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, плоскость Решение задач по начертательной геометрии — двумя пересекающимися прямыми Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, плоскость Решение задач по начертательной геометрии — двумя параллельными прямыми Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Для построения линии их пересечения необходимо найти две точки, общие для обеих плоскостей.

Для определения этих точек заданные плоскости пересекают двумя вспомогательными плоскостями. В качестве таких плоскостей применяют плоскости частного положения. В данном случае использованы горизонтальные плоскости Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Плоскость Решение задач по начертательной геометрии пересекает плоскости Решение задач по начертательной геометрии и Решение задач по начертательной геометрии по горизонталям 1-2 и 3-4 соответственно. Эти горизонтали, пересекаясь, определяют точку Решение задач по начертательной геометрии, общую для плоскостей Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Вторая вспомогательная плоскость Решение задач по начертательной геометрии пересекает заданные плоскости по горизонталям 5-6 и 7-8, которые, пересекаясь, определяют вторую общую точку Решение задач по начертательной геометрии. Прямая Решение задач по начертательной геометрииРешение задач по начертательной геометрии — искомая линия пересечения плоскостей Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. На рис. 2.11 описанный метод применен для решения этой задачи на проекционном чертеже.

Решение задач по начертательной геометрии
Решение задач по начертательной геометрии

Пересечение прямой линии с плоскостью частного положения

Так как плоскости частного положения проецируются на перпендикулярную к ней плоскость проекций в виде прямой линии, то на этой прямой должна находиться соответствующая проекция точки пересечения прямой с проецирующей плоскостью. Примеры определения точек пересечения прямой с плоскостью частного положения даны на рис. 2.12.

Решение задач по начертательной геометрии

На рис. 2.12, а прямая Решение задач по начертательной геометрии общего положения пересекается с фронтально-проецирующей плоскостью, заданной треугольником Решение задач по начертательной геометрии. Фронтальная проекция Решение задач по начертательной геометрии точки пересечения находится в точке пересечения фронтальной проекции Решение задач по начертательной геометрии прямой с проекцией Решение задач по начертательной геометрии. Горизонтальная проекция Решение задач по начертательной геометрии построена при помощи линий связи.

На рис. 2.12,6 прямая Решение задач по начертательной геометрии общего положения пересекается с горизонтальной плоскостью Решение задач по начертательной геометрии, заданной проекцией Решение задач по начертательной геометрии. В этом случае фронтальная проекция точки пересечения Решение задач по начертательной геометрии определена в пересечении фронтальной проекции прямой Решение задач по начертательной геометрии с проекцией плоскости Решение задач по начертательной геометрии. Горизонтальная проекция Решение задач по начертательной геометрии построена при помощи линии связи.

Во всех случаях плоскость считается «непрозрачной» — та часть прямой, которая закрывается плоскостью, показывается штриховой линией.

Пересечение прямой с плоскостью общего положения

Для определения точки пересечения прямой с плоскостью общего положения следует выполнить следующие построения:

  • провести через прямую вспомогательную плоскость;
  • построить линию пересечения вспомогательной плоскости с заданной;
  • найти точку пересечения заданной прямой и построенной;
  • определить видимые части проекций данной прямой.

На рис. 2.13 приведено построение точки пересечения прямой Решение задач по начертательной геометрии (проекции Решение задач по начертательной геометрии, Решение задач по начертательной геометрии) с плоскостью, заданной треугольником Решение задач по начертательной геометрии (проекции Решение задач по начертательной геометрии).

Через прямую Решение задач по начертательной геометрии проведена вспомогательная горизонтально-проецирующая плоскость Решение задач по начертательной геометрии. По горизонтальным проекциям Решение задач по начертательной геометрии и Решение задач по начертательной геометрии точек 1 и 2 находим фронтальные Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, соединяя которые получаем фронтальную проекцию линии пересечения Решение задач по начертательной геометрии. Проекция Решение задач по начертательной геометрии пересекает фронтальную проекцию Решение задач по начертательной геометрии в точке Решение задач по начертательной геометрии, с помощью линии связи определяем горизонтальную проекцию Решение задач по начертательной геометрии точки Решение задач по начертательной геометрии. Видимость прямой и плоскости на горизонтальной плоскости проекций определяется с помощью горизонтально-конкурирующих точек 2 и 3. Точка 2 лежит на стороне Решение задач по начертательной геометрии а 3 — на прямой Решение задач по начертательной геометрии.

Их фронтальные проекции Решение задач по начертательной геометрии и Решение задач по начертательной геометрии показывают, что точка 2 находится ниже точки 3, поэтому на горизонтальной плоскости проекций горизонтальная проекция Решение задач по начертательной геометрии точки 2 будет закрыта проекцией Решение задач по начертательной геометрии точки 3. Отсюда следует, что проекция Решение задач по начертательной геометрии расположена ниже проекции Решение задач по начертательной геометрии и участок этой прямой с левой стороны до Решение задач по начертательной геометрии будет видимым. Относительную видимость на фронтальной плоскости проекций можно определить с помощью фронтально-конкурирующих точек 4 и 5.

На рис. 2.14 изображена горизонтально-проецирующая прямая Решение задач по начертательной геометрии, пересекающаяся с плоскостью общего положения, заданной треугольником Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Положение горизонтальной проекции Решение задач по начертательной геометрии точки пересечения Решение задач по начертательной геометрии известно Решение задач по начертательной геометрии а положение фронтальной проекции определено при помощи прямой Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии.

Перпендикулярность прямой и плоскости

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости.

На рис. 2.15 показано построение перпендикуляра из точки Решение задач по начертательной геометрии к плоскости треугольника Решение задач по начертательной геометрии. Направление проекций перпендикуляра определяется горизонталью Решение задач по начертательной геометрии (прямая Решение задач по начертательной геометрии) и фронталью Решение задач по начертательной геометрии (прямая Решение задач по начертательной геометрии) плоскости треугольника.

Горизонтальная проекция Решение задач по начертательной геометрии перпендикуляра проведена под прямым углом к проекции Решение задач по начертательной геометрии горизонтали, а фронтальная проекция Решение задач по начертательной геометрии расположена под прямым углом к фронтальной проекции Решение задач по начертательной геометрии фронтали.

Задача и решение №3

Пусть требуется построить плоскость, проходящую через точку Решение задач по начертательной геометрии и перпендикулярную данной прямой Решение задач по начертательной геометрии (рис. 2.16).

Искомую плоскость задаем двумя пересекающимися прямыми (горизонталью Решение задач по начертательной геометрии и фронталью Решение задач по начертательной геометрии), проходящими через точку Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Горизонтальная проекция Решение задач по начертательной геометрии горизонтали Решение задач по начертательной геометрии перпендикулярна горизонтальной проекции Решение задач по начертательной геометрии прямой Решение задач по начертательной геометрии, фронтальная проекция фронтали Решение задач по начертательной геометрии перпендикулярна фронтальной проекции Решение задач по начертательной геометрии.

Если плоскости занимают частное положение, то перпендикуляры к этим плоскостям располагаются параллельно плоскостям проекций. Так, перпендикуляром к горизонтально-проецирующей плоскости Решение задач по начертательной геометрии (проекция Решение задач по начертательной геометрии) является горизонталь Решение задач по начертательной геометрии (рис. 2.17, а). Фронтальная прямая Решение задач по начертательной геометрии перпендикулярна фронтально-проецирующей плоскости Решение задач по начертательной геометрии (проекция Решение задач по начертательной геометрии рис. 2.17, б). Горизонтально-проецирующая прямая Решение задач по начертательной геометрии является перпендикуляром к горизонтальной плоскости Решение задач по начертательной геометрии (проекция Решение задач по начертательной геометрии рис. 2.17, в).

Решение задач по начертательной геометрии
Решение задач по начертательной геометрии

Взаимно перпендикулярные прямые общего положения образуют прямой угол, который проецируется на плоскости проекций с искажением. В общем случае перпендикуляр к прямой можно построить с помощью плоскости, расположенной перпендикулярно к этой прямой.

На рис. 2.18 показано построение перпендикуляра из точки Решение задач по начертательной геометрии к прямой Решение задач по начертательной геометрии. Сначала через точку Решение задач по начертательной геометрии проводим плоскость, перпендикулярную к прямой Решение задач по начертательной геометрии. Эта плоскость задается двумя пересекающимися прямыми: горизонталью Решение задач по начертательной геометрии и фронталью Решение задач по начертательной геометрии (при этом горизонтальная проекция Решение задач по начертательной геометрии перпендикулярна к горизонтальной проекции Решение задач по начертательной геометрии, а фронтальная проекция Решение задач по начертательной геометрии перпендикулярна к фронтальной проекции Решение задач по начертательной геометрии).

Затем определяем точку пересечения Решение задач по начертательной геометрии прямой Решение задач по начертательной геометрии с проведенной плоскостью. Для этого через прямую Решение задач по начертательной геометрии проводим фронтально-проецирующую плоскость Решение задач по начертательной геометрии, которая пересекает плоскость, заданную горизонталью Решение задач по начертательной геометрии и фронталью Решение задач по начертательной геометрии, по линии 1-2 (проекции Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии
Решение задач по начертательной геометрии

В пересечении прямой 1-2 с прямой Решение задач по начертательной геометрии получается точка Решение задач по начертательной геометрии. Прямая Решение задач по начертательной геометрии является искомым перпендикуляром, так как пересекает прямую Решение задач по начертательной геометрии и находится в плоскости, перпендикулярной прямой Решение задач по начертательной геометрии.

При построении проекций перпендикуляра к прямым частного положения задача упрощается, так как одна из сторон прямого угла параллельна плоскости проекции и прямой угол на эту плоскость проекций проецируется без искажения.

Так на рис. 2.19, а показано построение проекций перпендикуляра, проведенного из точки Решение задач по начертательной геометрии к горизонтали Решение задач по начертательной геометрии. Горизонтальная проекция Решение задач по начертательной геометрии перпендикуляра Решение задач по начертательной геометрии располагается под прямым углом к горизонтальной проекции Решение задач по начертательной геометрии прямой Решение задач по начертательной геометрии. Фронтальная проекция Решение задач по начертательной геометрии определяется при помощи линий связи (точка Решение задач по начертательной геометрии принадлежит прямой Решение задач по начертательной геометрии). На рис. 2.19, б показано построение проекций перпендикуляра, проведенного из точки Решение задач по начертательной геометрии к фронтально-проецирующей прямой Решение задач по начертательной геометрии. Построение фронтальной проекции Решение задач по начертательной геометрии перпендикуляра очевидно из рисунка, а его горизонтальная проекция Решение задач по начертательной геометрии перпендикулярна к горизонтальной проекции Решение задач по начертательной геометрии прямой Решение задач по начертательной геометрии.

Перпендикулярность двух плоскостей

Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. На рис. 2.20 показано построение плоскости, перпендикулярной к плоскости, заданной треугольником Решение задач по начертательной геометрии. Дополнительным условием здесь служит то, что искомая плоскость должна проходить через прямую Решение задач по начертательной геометрии. Следовательно, искомая плоскость определяется прямой Решение задач по начертательной геометрии и перпендикуляром к плоскости треугольника. Для проведения этого перпендикуляра в плоскости Решение задач по начертательной геометрии взяты горизонталь Решение задач по начертательной геометрии и фронталь Решение задач по начертательной геометрии(Решение задач по начертательной геометрии). Через точку Решение задач по начертательной геометрии прямой Решение задач по начертательной геометрии проведены проекции перпендикуляра Решение задач по начертательной геометрии к плоскости Решение задач по начертательной геометрии.

Образованная пересекающимися прямыми Решение задач по начертательной геометрии и Решение задач по начертательной геометрии плоскость перпендикулярна к плоскости Решение задач по начертательной геометрии, так как проходит через перпендикуляр к этой плоскости.

Решение задач по начертательной геометрии

Задачи с решением

Задача №1.

Построить фронтальную проекцию отрезка прямой Решение задач по начертательной геометрии, принадлежащую плоскости, заданной двумя параллельными прямыми Решение задач по начертательной геометрии и Решение задач по начертательной геометрии (рис. 2.21).

Решение:

Обозначим горизонтальные проекции точек пересечения прямой Решение задач по начертательной геометрии с прямыми Решение задач по начертательной геометрии и Решение задач по начертательной геометрии соответственно Решение задач по начертательной геометрии и Решение задач по начертательной геометрии.

По линиям связи определяем их фронтальные проекции Решение задач по начертательной геометрии и Решение задач по начертательной геометрии и проводим искомую проекцию Решение задач по начертательной геометрии.

На примере здесь можно проследить ход решения подобной задачи.

Решение задач по начертательной геометрии

Задача №2.

В плоскости, заданной прямой Решение задач по начертательной геометрии и точкой Решение задач по начертательной геометрии, провести горизонталь на расстоянии 15 мм от горизонтальной плоскости проекций Решение задач по начертательной геометрии (рис. 2.22).

Решение:

Зададим исходную плоскость двумя пересекающимися прямыми. Для этого из точки Решение задач по начертательной геометрии проведем прямую Решение задач по начертательной геометрииРешение задач по начертательной геометрии, пересекающую прямую Решение задач по начертательной геометрии в точке Решение задач по начертательной геометрии. Затем на расстоянии 15 мм от оси Решение задач по начертательной геометрии проведем фронтальную проекцию горизонтали Решение задач по начертательной геометрии. По линиям связи определим горизонтальные проекции точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии и через них проведем горизонтальную проекцию Решение задач по начертательной геометрии горизонтали.

Решение задач по начертательной геометрии

Задача №3.

Построить линию пересечения двух плоскостей, заданных треугольниками Решение задач по начертательной геометрии и Решение задач по начертательной геометрии (условие на рис. 2.23).

Решение задач по начертательной геометрии

Решение:

Для построения линии пересечения двух плоскостей общего положения используем вспомогательные плоскости. На рис. 2.24, а приведено построение линии пересечения Решение задач по начертательной геометрии.

Точка Решение задач по начертательной геометрии найдена как точка пересечения прямой Решение задач по начертательной геометрии с плоскостью треугольника Решение задач по начертательной геометрии. Для ее построения через сторону Решение задач по начертательной геометрии проведена фронтально-проецирующая плоскость Решение задач по начертательной геометрии (на рисунке проекция Решение задач по начертательной геометрии совпадает с проекцией Решение задач по начертательной геометрии). Плоскость Решение задач по начертательной геометрии пересекает плоскость треугольника Решение задач по начертательной геометрии по прямой 1-2; точка Решение задач по начертательной геометрии получается как точка пересечения прямых Решение задач по начертательной геометрии и 1-2. Сначала находим горизонтальную проекцию точки Решение задач по начертательной геометрии, затем по линии связи строим фронтальную проекцию Решение задач по начертательной геометрии. Точка Решение задач по начертательной геометрии линии пересечения треугольников получена с помощью второй плоскости Решение задач по начертательной геометрии, которая проведена через прямую Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии.

Фронтальная проекция Решение задач по начертательной геометрии совпадает с проекцией Решение задач по начертательной геометрии. Плоскость Решение задач по начертательной геометрии пересекает треугольник Решение задач по начертательной геометрии по линии 3-4. На пересечении прямых Решение задач по начертательной геометрии и 3-4 получается точка Решение задач по начертательной геометрии, принадлежащая линии пересечения двух треугольников. Сначала находится горизонтальная проекция точки Решение задач по начертательной геометрии, затем по линии связи определяется фронтальная проекция Решение задач по начертательной геометрии.

Для определения видимости сторон треугольников надо сравнить положение двух точек, из которых одна принадлежит стороне треугольника Решение задач по начертательной геометрии, вторая — стороне треугольника Решение задач по начертательной геометрии и у которых совпадают либо горизонтальные, либо фронтальные проекции (конкурирующие точки). В первом случае устанавливается, какая из этих точек «закрывает» другую по отношению к горизонтальной плоскости проекций, во втором — относительно фронтальной плоскости проекций.

На рис. 2.24, б в качестве примера приведены две горизонтально-конкурирующие точки — Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. У этих точек совпадают горизонтальные проекции (Решение задач по начертательной геометрии). Но точка Решение задач по начертательной геометрии принадлежит стороне Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии и расположена выше, чем точка Решение задач по начертательной геометрии, принадлежащая стороне Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии. Следовательно, для наблюдателя, смотрящего на плоскость Решение задач по начертательной геометрии сверху, точка Решение задач по начертательной геометрии «закрывает» точку Решение задач по начертательной геометрии, а это значит, что данная часть треугольника Решение задач по начертательной геометрии, которой принадлежит точка Решение задач по начертательной геометрии, закрывает треугольник Решение задач по начертательной геометрии. Поэтому часть горизонтальной проекции Решение задач по начертательной геометриистороны, закрытой треугольником Решение задач по начертательной геометрии, показывается штриховой линией.

Для определения видимости фронтальных проекций треугольников рассмотрим относительное положение двух фронтально-конкурирующих точек Решение задач по начертательной геометрии и Решение задач по начертательной геометрии (рис. 2.24, б), у которых фронтальные проекции совпадают Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Точка Решение задач по начертательной геометрии, расположенная на стороне Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии, находится ближе к глазу наблюдателя, смотрящего на плоскость Решение задач по начертательной геометрии, чем точка Решение задач по начертательной геометрии, расположенная на стороне Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии. Это значит, что часть треугольника Решение задач по начертательной геометрии, которой принадлежит точка Решение задач по начертательной геометрии, закрывает треугольник Решение задач по начертательной геометрии. Поэтому часть фронтальной проекции стороны Решение задач по начертательной геометрии, закрытой треугольником Решение задач по начертательной геометрии, показывается штриховой линией.

Вопросы для контроля

  1. Какая плоскость называется плоскостью общего положения?
  2. Какая плоскость называется проецирующей?
  3. Как проверить принадлежность точки плоскости?
  4. Какие линии в плоскости называются горизонталями, фронталями?
  5. Каковы признаки параллельности прямой и плоскости, двух плоскостей?
  6. Как построить точку пересечения прямой с плоскостью общего положения?

Способы преобразования проекций геометрических объектов

Решение задач значительно упрощается, если прямые линии и плоскости занимают частное положение относительно плоскостей проекций. В этом случае ответ получается или непосредственно по данному чертежу, или при помощи простейших построений.

Переход от общего положения геометрических элементов к частному выполняется следующими способами:

  • введением дополнительных плоскостей проекций, расположенных либо параллельно, либо перпендикулярно рассматриваемому геометрическому элементу;
  • изменением положения линии или плоской фигуры в пространстве при неизменной системе плоскостей проекций.

Основные задачи преобразования:

  1. прямая линия общего положения становится прямой уровня;
  2. прямая линия общего положения становится проецирующей прямой;
  3. плоскость общего положения становится проецирующей плоскостью;
  4. плоскость общего положения становится плоскостью уровня.

Способ замены плоскостей проекций

Сущность способа заключается в том, что положение заданных элементов (точек, линий, фигур, поверхностей) в пространстве остается неизменным, а система плоскостей проекций Решение задач по начертательной геометрии дополняется новыми плоскостями, по отношению к которым элементы задачи (прямая, плоскость) занимают частное положение.

На рис. 3.1 показана точка Решение задач по начертательной геометрии, заданная в системе плоскостей проекций Решение задач по начертательной геометрии. Заменим Решение задач по начертательной геометрии другой вертикальной плоскостью Решение задач по начертательной геометрии и построим новую фронтальную проекцию Решение задач по начертательной геометрии на эту плоскость. Так как плоскость проекций Решение задач по начертательной геометрии является общей для систем Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, то координата Решение задач по начертательной геометрии точки Решение задач по начертательной геометрии остается неизменной. Следовательно, расстояние от новой фронтальной проекции до новой оси Решение задач по начертательной геометрии равно расстоянию от заменяемой проекции до оси Решение задач по начертательной геометрии. При этом проекция Решение задач по начертательной геометрии определена как основание перпендикуляра, опущенного из Решение задач по начертательной геометрии на Решение задач по начертательной геометрии. Горизонтальная проекция Решение задач по начертательной геометрии остается прежней, а координата Решение задач по начертательной геометрии в системе Решение задач по начертательной геометрии будет теперь иной и определяется расстоянием от точки Решение задач по начертательной геометрии до плоскости Решение задач по начертательной геометрии.

Для получения плоского чертежа плоскость Решение задач по начертательной геометрии вращением совмещается с Решение задач по начертательной геометрии. Также с Решение задач по начертательной геометрии совмещается новая фронтальная проекция Решение задач по начертательной геометрии, которая располагается на общем перпендикуляре с оставшейся без изменения горизонтальной проекцией Решение задач по начертательной геометрии (рис. 3.2).

Решение задач по начертательной геометрии

Аналогично можно заменить горизонтальную плоскость проекций на новую, перпендикулярную Решение задач по начертательной геометрии. В этом случае измеряется величина координаты Решение задач по начертательной геометрии, которая определяет расстояние от точки до общей для двух систем плоскости Решение задач по начертательной геометрии.

Преобразование прямой общего положения в положение прямой уровня

Для преобразования прямой Решение задач по начертательной геометрии в прямую уровня (т. е. параллельную плоскости проекций) (рис. 3.3) вводят новую плоскость проекций Решение задач по начертательной геометрии так, чтобы ось проекций Решение задач по начертательной геометрии была параллельна какой-либо проекции Решение задач по начертательной геометрии (в данном случае — Решение задач по начертательной геометрии). Затем проводятся линии связи перпендикулярно оси Решение задач по начертательной геометрии и откладываются координаты Решение задач по начертательной геометрии для построения проекций Решение задач по начертательной геометрии и Решение задач по начертательной геометрии, равные координатам Решение задач по начертательной геометрии проекций Решение задач по начертательной геометрии и Решение задач по начертательной геометрии. Новая проекция прямой Решение задач по начертательной геометрии даст натуральную величину отрезка Решение задач по начертательной геометрии и позволяет определить угол наклона Решение задач по начертательной геометрии этого отрезка к плоскости проекций Решение задач по начертательной геометрии. Угол наклона отрезка Решение задач по начертательной геометрии к фронтальной плоскости проекций Решение задач по начертательной геометрии можно определить, построив его изображение на дополнительной плоскости проекций Решение задач по начертательной геометрии (рис. 3.4). Ось Решение задач по начертательной геометрии параллельна фронтальной проекции отрезка Решение задач по начертательной геометрии. Проекция Решение задач по начертательной геометрии также будет представлять собой натуральную величину отрезка Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

На примере здесь можно проследить последовательность построений при решении задачи с использованием способа замены плоскостей.

Преобразование прямой общего положения в проецирующую

Преобразование прямой общего положения в проецирующее положение требует двойной замены плоскостей проекций, так как плоскость, перпендикулярная прямой, не будет перпендикулярна ни к Решение задач по начертательной геометрии, и к Решение задач по начертательной геометрии.

На рис. 3.5 выполнено преобразование прямой Решение задач по начертательной геометрии общего положения в проецирующее. В результате первой замены происходит преобразование прямой Решение задач по начертательной геометрии в прямую, параллельную плоскости па- Для этого проводится новая ось проекций Решение задач по начертательной геометрии‘ и находится проекция Решение задач по начертательной геометрии .

Затем выполняется вторая замена плоскостей проекций, переход к системе плоскостей Решение задач по начертательной геометрии. При этом ось проекций Решение задач по начертательной геометрии проводится перпендикулярно к Решение задач по начертательной геометрии. В результате прямая Решение задач по начертательной геометрии располагается перпендикулярно к плоскости проекций Решение задач по начертательной геометрии и проецируется в виде точки.

Решение задач по начертательной геометрии

Преобразование плоскости общего положения в проецирующее положение

Известно, что если одна плоскость перпендикулярна другой, то она должна содержать прямую, перпендикулярную этой плоскости. В качестве такой прямой для преобразований плоскости в проецирующее положение следует взять прямую уровня, например горизонталь Решение задач по начертательной геометрии (рис. 3.6).

Плоскость Решение задач по начертательной геометрии, перпендикулярная к горизонтали Решение задач по начертательной геометрии и плоскости Решение задач по начертательной геометрии, является плоскостью, перпендикулярной к плоскости треугольника Решение задач по начертательной геометрии. Новая ось проекций Решение задач по начертательной геометрии проводится перпендикулярно проекции горизонтали Решение задач по начертательной геометрии. Затем определяются проекции вершин треугольника на плоскость Решение задач по начертательной геометрии. Проекция Решение задач по начертательной геометрии вырождается в прямую, что свидетельствует о том, что плоскость треугольника перпендикулярна плоскости Решение задач по начертательной геометрии. При этом угол Решение задач по начертательной геометрии наклона плоскости треугольника Решение задач по начертательной геометрии к плоскости Решение задач по начертательной геометрии на плоскость Решение задач по начертательной геометрии проецируется без искажения.

Аналогичное преобразование выполнено на рис. 3.7, где плоскость Решение задач по начертательной геометрии заменена плоскостью Решение задач по начертательной геометрии, перпендикулярной Решение задач по начертательной геометрии и плоскости треугольника Решение задач по начертательной геометрии. Для этого в плоскости Решение задач по начертательной геометрии проведена фронталь Решение задач по начертательной геометрии, перпендикулярно к которой располагается плоскость Решение задач по начертательной геометрии. Новая ось Решение задач по начертательной геометрии проведена перпендикулярно Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

На линиях связи, проведенных из вершин треугольника Решение задач по начертательной геометрии перпендикулярно оси Решение задач по начертательной геометрии откладывают отрезки, равные Решение задач по начертательной геометрии Плоскость треугольника относительно Решение задач по начертательной геометрии стала проецирующей. Угол Решение задач по начертательной геометрии наклона плоскости треугольника Решение задач по начертательной геометрии к плоскости Решение задач по начертательной геометрии на плоскости Решение задач по начертательной геометрии проецируется без искажения.

Преобразование плоскости общего положения в плоскость уровня

Преобразование плоскости общего положения в плоскость уровня требует двойной замены плоскостей проекций, так как плоскость, параллельная заданной плоскости, не будет перпендикулярна ни Решение задач по начертательной геометрии ни Решение задач по начертательной геометрии, т. е. она не образует с плоскостью проекций ортогональной системы. На рис. 3.8 показано преобразование плоскости треугольника Решение задач по начертательной геометрии общего положения в положение уровня.

При первой замене (Решение задач по начертательной геометрии па Решение задач по начертательной геометрии) используется горизонталь треугольника Решение задач по начертательной геометрии. Новая ось проекций Решение задач по начертательной геометрии проводится перпендикулярно горизонтальной проекции горизонтали Решение задач по начертательной геометрии. Спроецировав треугольник Решение задач по начертательной геометрии на новую плоскость проекций Решение задач по начертательной геометрии, получим проекцию Решение задач по начертательной геометрии. Эти построения описаны выше.

На втором этапе преобразуем плоскость треугольника Решение задач по начертательной геометрии в плоскость уровня. Для этого перейдем от системы Решение задач по начертательной геометрии к системе Решение задач по начертательной геометрии. Новая плоскость Решение задач по начертательной геометрии устанавливается параллельно треугольнику, а значит, новая ось Решение задач по начертательной геометрии на чертеже проводится параллельно прямой, на которой расположены точки Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Через указанные точки проводят перпендикуляры — линии связи к новой оси Решение задач по начертательной геометрии и откладывают на них в плоскости Решение задач по начертательной геометрии отрезки, равные по длине расстояниям от оси Решение задач по начертательной геометрии до вершин Решение задач по начертательной геометрии и Решение задач по начертательной геометрии соответственно. Полученная проекция Решение задач по начертательной геометрии определяет истинную величину треугольника.

Подобные двойные преобразования используются для решения задач на определение углов при вершинах треугольника, построение высот и биссектрис его углов, центра вписанной (описанной) окружности и т. п., так как эти задачи требуют определения натуральных величин треугольников.

При вращении вокруг неподвижной прямой (оси вращения) каждая точка геометрического элемента перемещается в плоскости, перпендикулярной к оси вращения (плоскости вращения). Точка перемещается по окружности, центр которой находится в точке пересечения оси с плоскостью вращения, а радиус вращения равен расстоянию от вращаемой точки до центра. Если точка находится на оси вращения, то она остается неподвижной.

Вращение точки вокруг проецирующих прямых. На рис. 3.9 точка Решение задач по начертательной геометрии, вращаясь вокруг оси Решение задач по начертательной геометрии, описывает окружность, плоскость а которой перпендикулярна Решение задач по начертательной геометрии. Центр окружности Решение задач по начертательной геометрии (центр вращения) расположен в точке пересечения оси вращения Решение задач по начертательной геометрии с плоскостью Решение задач по начертательной геометрии, а радиус вращения Решение задач по начертательной геометрии равен длине отрезка Решение задач по начертательной геометрии.

Так как плоскость вращения Решение задач по начертательной геометрии параллельна плоскости Решение задач по начертательной геометрии, то проекция траектории вращающейся точки на плоскость представляет собой окружность радиуса Решение задач по начертательной геометрии, а на плоскость Решение задач по начертательной геометрии — отрезок прямой, параллельной оси Решение задач по начертательной геометрии. Через Решение задач по начертательной геометрии обозначено новое положение точки Решение задач по начертательной геометрии, которое она занимает после поворота на угол Решение задач по начертательной геометрии.

На рис. 3.10 приведен ортогональный чертеж точки Решение задач по начертательной геометрии, вращающейся вокруг горизонтально-проецирующей оси Решение задач по начертательной геометрии. После поворота на угол Решение задач по начертательной геометрии точка Решение задач по начертательной геометрии займет новое положение Решение задач по начертательной геометрии (Решение задач по начертательной геометрии — плоскость вращения, Решение задач по начертательной геометрии — центр вращения, Решение задач по начертательной геометрии — радиус вращения).

Если ось вращения Решение задач по начертательной геометрии расположена перпендикулярно плоскости Решение задач по начертательной геометрии (рис. 3.11), то фронтальная проекция точки Решение задач по начертательной геометрии будет перемещаться по окружности, а горизонтальная — по прямой, перпендикулярной линиям связи. Новое положение точки, которое она занимает после поворота на угол Решение задач по начертательной геометрии — точка Решение задач по начертательной геометрии. Плоскость вращения — фронтальная плоскость Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

Для поворота отрезка прямой на заданный угол необходимо повернуть на этот угол две точки, определяющие отрезок. Каждая из этих точек вращается в плоскости, перпендикулярной оси вращения, и будет иметь свой радиус вращения.

Плоскопараллельное перемещение отрезка

При плоскопараллельном перемещении все точки геометрической фигуры движутся в плоскостях, параллельных плоскости проекций, т. е. сохраняется основной принцип вращения вокруг проецирующих осей. На рис. 3.12 приведено наглядное изображение плоскопараллельного перемещения отрезка Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

На рис. 3.12, а дано исходное положение отрезка Решение задач по начертательной геометрии — прямой, занимающей относительно плоскостей проекций общее положение. На рис. 3.12, б отрезок Решение задач по начертательной геометрии перемещен в новое положение, при этом точка Решение задач по начертательной геометрии движется в плоскости Решение задач по начертательной геометрии, точка Решение задач по начертательной геометрии — в плоскости Решение задач по начертательной геометрии. Обе плоскости параллельны горизонтальной плоскости проекций.

При таком перемещении угол наклона Решение задач по начертательной геометрии отрезка к плоскости Решение задач по начертательной геометрии сохраняется неизменным, поэтому не изменяется и длина горизонтальной проекции отрезка, т. е. Решение задач по начертательной геометрии. Последнее свойство имеет важное значение для решения задач.

На рис. 3.13 приведен пример плоскопараллельного перемещения отрезка Решение задач по начертательной геометрии в новое положение, параллельное фронтальной плоскости проекций. На этом чертеже отрезок Решение задач по начертательной геометрии перемещается в новое положение параллельно фронтальной плоскости проекций. При этом сначала перемещается в новое положение, параллельное оси Решение задач по начертательной геометрии, горизонтальная проекция отрезка, причем Решение задач по начертательной геометрии. Затем по линиям связи строится фронтальная проекция Решение задач по начертательной геометрии.

Решение задач по начертательной геометрии

После перемещения отрезка Решение задач по начертательной геометрии в новое положение Решение задач по начертательной геометрии он станет параллельным плоскости Решение задач по начертательной геометрии и его новая фронтальная проекция будет равна натуральной величине. Соответственно, угол Решение задач по начертательной геометрии наклона проекции Решение задач по начертательной геометрии к оси проекций будет равен углу наклона отрезка Решение задач по начертательной геометрии к плоскости Решение задач по начертательной геометрии.

На рис. 3.14 приведено двойное плоскопараллельное перемещение отрезка Решение задач по начертательной геометрии с целью преобразования его в фронтально-проецирующее положение. Вначале произведено перемещение фронтальной проекции в положение, параллельное оси Решение задач по начертательной геометрии, причем Решение задач по начертательной геометрии. Отрезок Решение задач по начертательной геометрии занял положение, параллельное плоскости Решение задач по начертательной геометрии, и его горизонтальная проекция Решение задач по начертательной геометрии равна длине отрезка. Затем горизонтальная проекция перемещается в положение, перпендикулярное оси Решение задач по начертательной геометрии, причем Решение задач по начертательной геометрии.

Отрезок Решение задач по начертательной геометрии занял фронтально-проецирующее положение и его фронтальная проекция Решение задач по начертательной геометрии.

На рис. 3.15 показано перемещение треугольника Решение задач по начертательной геометрии, расположенного в плоскости общего положения, в положение плоскости уровня. При первом движении треугольник Решение задач по начертательной геометрии переводится во фронтально-проецирующее положение. Для этого в плоскости треугольника строится горизонтальная прямая Решение задач по начертательной геометрии, затем горизонтальная проекция Решение задач по начертательной геометрии перемещается в проецирующее положение (на свободном поле чертежа проводится отрезок Решение задач по начертательной геометрии перпендикулярно оси Решение задач по начертательной геометрии).

Решение задач по начертательной геометрии

В процессе перемещения размеры и форма горизонтальной проекции треугольника не изменяются. Построение вершин Решение задач по начертательной геометрии и Решение задач по начертательной геометрии выполняется засечками с помощью циркуля. Все вершины треугольника на фронтальной плоскости проекций перемещаются по горизонтальным линиям связи, пересечение которых с линиями связи, проведенными из соответствующих вершин новой горизонтальной проекции треугольника Решение задач по начертательной геометрии, образует новую фронтальную проекцию Решение задач по начертательной геометрии, перпендикулярную фронтальной плоскости проекций.

При втором движении все точки треугольника перемещаются в плоскостях, параллельных фронтальной плоскости проекций, в результате чего он займет положение горизонтальной плоскости уровня и его вырожденная фронтальная проекция Решение задач по начертательной геометрии расположится перпендикулярно линиям связи, оставаясь неизменной по длине. Новая горизонтальная проекция Решение задач по начертательной геометрии треугольника Решение задач по начертательной геометрии будет равна его натуральной величине.

Задачи с решением №4

Задача №1.

Определить расстояние между скрещивающимися прямыми Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением (рис. 3.16).

Решение:

Расстояние между скрещивающимися прямыми измеряется длиной перпендикуляра, общего к заданным прямым. Для решения задачи используем способ замены плоскостей проекций

Начертательная геометрия задачи с решением

Если в результате преобразования одна из прямых займет положение проецирующей относительно какой-либо плоскости проекций, т. е. будет представлять собой точку, то перпендикуляр, опущенный из этой точки на другую прямую, будет параллелен этой плоскости проекций и спроецируется на нее в натуральную величину. Прямая Начертательная геометрия задачи с решением преобразуется в проецирующую двойной заменой плоскостей проекций.

Сначала построим проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением на плоскости Начертательная геометрия задачи с решением, расположенной параллельно прямой Начертательная геометрия задачи с решением (проводим Начертательная геометрия задачи с решением).

Затем найдем проекции прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением на плоскость Начертательная геометрия задачи с решением, перпендикулярную прямой Начертательная геометрия задачи с решением. На плоскость Начертательная геометрия задачи с решением прямая Начертательная геометрия задачи с решением спроецируется в точку (Начертательная геометрия задачи с решением ), а расстояние между нею и проекцией Начертательная геометрия задачи с решением (отрезок Начертательная геометрия задачи с решением) будет искомой натуральной величинои расстояния между заданными прямыми.

Далее путем обратного проецирования строим проекцию отрезка Начертательная геометрия задачи с решением на плоскость Начертательная геометрия задачи с решением, при этом точку Начертательная геометрия задачи с решением находим, проведя перпендикуляр из точки Начертательная геометрия задачи с решением к проекции Начертательная геометрия задачи с решением. Прямой угол здесь на искажается, так как проекция Начертательная геометрия задачи с решением параллельна плоскости Начертательная геометрия задачи с решением. С помощью линий связи находим проекции отрезка Начертательная геометрия задачи с решением сначала на плоскости Начертательная геометрия задачи с решением а затем на плоскости Начертательная геометрия задачи с решением.

Задача №2.

Повернуть точку Начертательная геометрия задачи с решением вокруг оси Начертательная геометрия задачи с решением до совмещения ее с плоскостью Начертательная геометрия задачи с решением общего положения, заданной пересекающимися прямыми ВС и CD (рис. 3.17).

Начертательная геометрия задачи с решением

Решение:

Точка Начертательная геометрия задачи с решением вращается вокруг оси Начертательная геометрия задачи с решением, перпендикулярной к плоскости проекций Начертательная геометрия задачи с решением. Через точку Начертательная геометрия задачи с решением проведена плоскость Начертательная геометрия задачи с решением, перпендикулярная к оси вращения и, следовательно, параллельная Начертательная геометрия задачи с решением. Горизонтальная плоскость Начертательная геометрия задачи с решением пересекает заданную (Начертательная геометрия задачи с решением) по горизонтали Начертательная геометрия задачи с решением. При вращении точка Начертательная геометрия задачи с решением описывает окружность радиуса Начертательная геометрия задачи с решением, величина которого определяется длиной перпендикуляра, проведенного из точки Начертательная геометрия задачи с решением на ось.

Окружность проецируется на плоскость Начертательная геометрия задачи с решением без искажения и пересекается с проекцией горизонтали Начертательная геометрия задачи с решением в точках Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, которые являются горизонтальными проекциями точки Начертательная геометрия задачи с решением, т. е. задача имеет два решения.

По линиям связи находим фронтальные проекции точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, лежащих на горизонтали Начертательная геометрия задачи с решением.

Вопросы для контроля

  1. Сформулируйте основные задачи преобразования чертежа.
  2. Перечислите способы преобразования чертежа.
  3. В чем заключается способ замены плоскостей проекций?
  4. Как перемещаются проекции точки при вращении ее вокруг проецирующих осей?
  5. В чем заключается способ плоскопараллельного перемещения?

Многогранники

Одним из видов пространственных форм являются многогранники — замкнутые пространственные фигуры, ограниченные плоскими многоугольниками. Эти многоугольники образуют грани. Общие стороны многоугольников называются ребрами’, вершины многогранных углов, образованных его гранями, сходящихся в одной точке, — вершинами многогранника. Наибольший практический интерес представляют собой призмы, пирамиды и правильные многогранники.

Призма — многогранник, две грани которого представляют равные многоугольники с взаимно параллельными сторонами (основаниями) (рис. 4.1). Ребра, не принадлежащие основаниям и параллельные друг другу, называют боковыми. Призму, ребра которой перпендикулярны к основаниям, называют прямой. Прямая призма называется правильной, если ее основаниями являются правильные многоугольники.

Начертательная геометрия задачи с решением

Пирамида — многогранник, одна грань которого — плоский Начертательная геометрия задачи с решением-угольник (основание), а остальные грани — треугольники с общей вершиной (рис. 4.2). Если основанием пирамиды является правильный многоугольник и высота ее проходит через центр этого многоугольника, пирамиду называют правильной.

Многогранник называют правильным, если его грани представляют собой правильные и равные многоугольники.

Точка и прямая линия на поверхности многогранника

Точки на гранях призмы и пирамиды строятся при помощи вспомогательных прямых, принадлежащих соответствующим плоскостям граней. Чтобы определить по заданной фронтальной проекции Начертательная геометрия задачи с решением точки 1, лежащей на грани призмы Начертательная геометрия задачи с решением, горизонтальную проекцию Начертательная геометрия задачи с решением (рис. 4.3), нужно провести через точку Начертательная геометрия задачи с решением фронтальную проекцию вспомогательной прямой Начертательная геометрия задачи с решением, параллельную ребрам призмы.

Фронтальная проекция Начертательная геометрия задачи с решением точки 2, лежащей на грани Начертательная геометрия задачи с решением, построена с помощью вспомогательной прямой Начертательная геометрия задачи с решением, проведенной через проекцию Начертательная геометрия задачи с решением. Недостающую проекцию точки 3, расположенную на ребре Начертательная геометрия задачи с решением определим с помощью линии связи.

На рис. 4.4 показано построение недостающих проекций точек, находящихся на боковой поверхности пирамиды Начертательная геометрия задачи с решением. Фронтальная проекция Начертательная геометрия задачи с решением точки 1, расположенная на грани Начертательная геометрия задачи с решением, представляющей собой профильно-проецирующую плоскость, построена с помощью линий связи.

Начертательная геометрия задачи с решением

Чтобы определить по заданной проекции Начертательная геометрия задачи с решением точки 2, лежащей на грани Начертательная геометрия задачи с решением, проекцию Начертательная геометрия задачи с решением (рис. 4.4), используем горизонталь Начертательная геометрия задачи с решением.

Фронтальная проекция горизонтали Начертательная геометрия задачи с решением проведена через проекцию Начертательная геометрия задачи с решением до пересечения с проекцией Начертательная геометрия задачи с решением ребра Начертательная геометрия задачи с решением в точке Начертательная геометрия задачи с решением.

Горизонтальная проекция Начертательная геометрия задачи с решением горизонтали Начертательная геометрия задачи с решением проходит через точку Начертательная геометрия задачи с решением параллельно проекции Начертательная геометрия задачи с решением стороны Начертательная геометрия задачи с решением.

Чтобы определить по заданной проекции точки Начертательная геометрия задачи с решением, расположенной на грани Начертательная геометрия задачи с решением, проекцию Начертательная геометрия задачи с решением, используем прямую Начертательная геометрия задачи с решением. Фронтальная проекция Начертательная геометрия задачи с решением точки 4, расположенной на ребре Начертательная геометрия задачи с решением, построена с помощью линий связи.

Пересечение многогранников плоскостью

При пересечении многогранника плоскостью в сечении получается многоугольник.

Определение вершин многоугольника сводится к построению точек пересечения прямых (ребер многогранника) с плоскостью — способ ребер. При определении сторон многоугольника решаются задачи на пересечение двух плоскостей — способ граней.

На рис. 4.5 показано построение проекций линии пересечения прямой четырехугольной призмы фронтально-проецирующей плоскостью Начертательная геометрия задачи с решением (проекция Начертательная геометрия задачи с решением).

Пересечение проекции а» с фронтальными проекциями боковых ребер призмы дает проекции Начертательная геометрия задачи с решением вершин многоугольника сечения. Горизонтальные проекции этих вершин совпадают с «вырожденными» проекциями соответствующих ребер, так как призма прямая. Профильные проекции Начертательная геометрия задачи с решением вершин определим при помощи горизонтальных линий связи на соответствующих проекциях ребер призмы.

Начертательная геометрия задачи с решением

Натуральная величина многоугольника еечения найдена способом плоскопараллсльного перемещения. Переместим фронтальную проекцию сечения в горизонтальное положение.

Проекция Начертательная геометрия задачи с решением — натуральная величина многоугольника сечения.

Развертка поверхности призмы

Разверткой называется фигура, полученная при совмещении поверхности геометрического тела с плоскостью (без наложения элементов поверхности друг на друга).

Начертательная геометрия задачи с решением

Развертки необходимы при изготовлении изделий из листового материала. Построение разверток поверхностей многогранников рассмотрим на примерах призмы и пирамиды.

Развертка боковой поверхности призмы, представленной на рис. 4.5, состоит из четырех прямоугольников, у которых одна сторона равна высоте призмы, а другие стороны равны сторонам основания призмы (рис. 4.6).

Для построения развертки боковой поверхности усеченной призмы наносим на развертку точки Начертательная геометрия задачи с решением расположенные на соответствующих ребрах. Чтобы получить полную развертку усеченной части призмы, к одному из участков линии пересечения Начертательная геометрия задачи с решением пристраиваем натуральную величину сечения.

Развертку усеченной части призмы обводим сплошной толстой основной линией, линии сгиба — штрихпунктирной с двумя точками линией. Достроив к сторонам прямоугольника верхнее и нижнее основание призмы, получим полную развертку ее поверхности.

Пересечение пирамиды проецирующей плоскостью

На рис. 4.7 приведено построение проекций линии пересечения четырехугольной пирамиды Начертательная геометрия задачи с решением фронтально-проецирующей плоскостью Начертательная геометрия задачи с решением.

Начертательная геометрия задачи с решением

Фронтальные проекции Начертательная геометрия задачи с решением вершин многоугольника сечения находятся в пересечении следа-проекции Начертательная геометрия задачи с решением плоскости Начертательная геометрия задачи с решением с фронтальными проекциями боковых ребер пирамиды. Проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением точек 2 и 3, лежащих на ребрах Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, совпадают, так как грань Начертательная геометрия задачи с решением является фронтально-проецирующей плоскостью. Горизонтальные и профильные проекции точек 1, 2, 3, 4 определяются по линиям связи на соответствующих ребрах пирамиды. Натуральная величина многоугольника сечения найдена способом перемены плоскостей проекций. Это четырехугольник Начертательная геометрия задачи с решением.

Развертка поверхности пирамиды

Развертка боковой поверхности пирамиды состоит из четырех треугольников — боковых граней пирамиды (рис. 4.8). Для построения развертки необходимо знать натуральную величину всех фигур, составляющих развертку.

В данном случае одна из сторон боковых граней определяется натуральной величиной горизонтальной проекции ребра основания пирамиды, поскольку основание пирамиды занимает горизонтальное положение. На рис. 4.7 видно, что ребро Начертательная геометрия задачи с решением параллельно фронтальной плоскости, следовательно проекция Начертательная геометрия задачи с решением — его истинная величина. Для определения натуральной величины других боковых ребер используем способ вращения вокруг оси, проходящей через вершину Начертательная геометрия задачи с решением перпендикулярно плоскости Начертательная геометрия задачи с решением.

Поворачиваем ребра Начертательная геометрия задачи с решением до положения, параллельного плоскости Начертательная геометрия задачи с решением. Длины проекций Начертательная геометрия задачи с решением являются натуральными длинами соответствующих ребер.

На рис. 4.8 представлено построение полной развертки усеченной пирамиды. Вначале на плоскости чертежа строим треугольники — боковые грани пирамиды — по трем сторонам, последовательно достраивая треугольники друг к другу боковыми ребрами. Пристроив к стороне Начертательная геометрия задачи с решением одного из треугольников четырехугольное основание пирамиды, получим полную развертку ее поверхности.

Начертательная геометрия задачи с решением

Чтобы выделить на развертке усеченную часть пирамиды, находим положение вершины Начертательная геометрия задачи с решением фигуры сечения на ребре Начертательная геометрия задачи с решением. Зная натуральную величину многоугольника сечения Начертательная геометрия задачи с решением, последовательно засекаем на ребрах развертки точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, используя величину сторон многоугольника сечения.

Полученные на развертке точки соединяем отрезками прямых. Пристраиваем затем натуральную величину сечения Начертательная геометрия задачи с решением к одному из участков линии пересечения Начертательная геометрия задачи с решением. Полученную полную развертку поверхности усеченной пирамиды обводим сплошной толстой основной линией, а линии сгиба — штрихпунктирной с двумя точками линией.

Задача с решением №5

Задача №1.

Правильная треугольная пирамида усечена двумя плоскостями: фронтально-проецирующей Начертательная геометрия задачи с решением и профильной Начертательная геометрия задачи с решением (рис. 4.9). Построить недостающие проекции усеченной пирамиды.

Начертательная геометрия задачи с решением

Решение:

Плоскость а пересекает грань Начертательная геометрия задачи с решением по отрезку 1-2, грань Начертательная геометрия задачи с решением по отрезку 2-3, грань Начертательная геометрия задачи с решением по отрезку 1-4.

Плоскость р пересекает грань Начертательная геометрия задачи с решением по отрезку 3-5, а грань Начертательная геометрия задачи с решением по отрезку 4-5. При построении проекций точек, принадлежащих линии пересечения, следует учитывать, что профильные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением‘ совпадают, так как грань SAB пирамиды является профильно-проецирующей плоскостью.

Недостающие проекции точки 1, расположенной на ребре Начертательная геометрия задачи с решением, и точки 5, расположенной на ребре Начертательная геометрия задачи с решением, построены при помощи линий связи. Проекции точки 2, расположенной на ребре Начертательная геометрия задачи с решением, определены при помощи линий связи сначала на профильной проекции ребра, а затем на горизонтальной.

Горизонтальные проекции точек 3 и 4 получены с помощью вспомогательной прямой Начертательная геометрия задачи с решением, принадлежащей грани Начертательная геометрия задачи с решением, и прямой Начертательная геометрия задачи с решением, принадлежащей грани Начертательная геометрия задачи с решением.

Построив горизонтальные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением этих прямых, по линии связи определим горизонтальные проекции точек 3 и 4, а затем их профильные проекции.

Плоскости Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением пересекаются по фронтально-проецирующей прямой 3-4. Соединив построенные проекции точек, получим проекции линии пересечения.

Вопросы для контроля

  1. Какая фигура называется многогранником?
  2. Дайте определение призмы, пирамиды, правильного многогранника.
  3. Как определить недостающую проекцию точки на поверхности многогранника?
  4. Что представляет собой сечение многогранника плоскостью?
  5. В чем различие способов ребер и граней?
  6. Как используется способ перемены плоскостей проекций при построении сечения многогранника плоскостью?

Поверхности вращения

Поверхность вращения (рис. 5.1) получается вращением прямолинейной или криволинейной образующей Начертательная геометрия задачи с решением вокруг неподвижной прямой Начертательная геометрия задачи с решением — оси поверхности. За ось вращения обычно принимается вертикальная прямая. Каждая точка образующей (например, точка Начертательная геометрия задачи с решением) описывает при своем вращении окружность с центром на оси Начертательная геометрия задачи с решением. Эти окружности называются параллелями. Наибольшая из этих параллелей — экватор, наименьшая — горло.

Плоскости, проходящие через ось вращения, пересекают поверхность по меридианам. Меридиан, расположенный в плоскости, параллельной Начертательная геометрия задачи с решением, называется главным.

Поверхность вращения называют закрытой, если криволинейная образующая пересекает ось поверхности в двух точках. Если образующая — прямая линия, то получается линейчатая поверхность вращения, если кривая — нелинейчатая.

Замкнутую область пространства вместе с ее границей (поверхностью) называют геометрическим телом.

Цилиндр вращения (рис. 5.2) образуется вращением прямой Начертательная геометрия задачи с решением вокруг параллельной ей оси Начертательная геометрия задачи с решением. Все точки образующей Начертательная геометрия задачи с решением (например, точка Начертательная геометрия задачи с решением) описывают окружности (параллели), равные окружностям оснований цилиндра.

Начертательная геометрия задачи с решением

Конус вращения (рис. 5.3) образуется вращением прямой Начертательная геометрия задачи с решением вокруг пересекающейся с ней оси Начертательная геометрия задачи с решением. Все точки образующей Начертательная геометрия задачи с решением описывают окружности различных радиусов (для точки Начертательная геометрия задачи с решением — радиус Начертательная геометрия задачи с решением). Величина радиуса изменяется от нуля до радиуса окружности основания конуса.

Начертательная геометрия задачи с решением

Сфера (рис. 5.4) образуется вращением окружности вокруг ее оси Начертательная геометрия задачи с решением. Каждая точка образующей сферы при таком перемещении описывает свою окружность, радиус которой уменьшается при перемещении точки к полюсам. Например, точка Начертательная геометрия задачи с решением описывает параллель наибольшего радиуса (экватор). Для сферы экватор и меридианы — равные между собой окружности.

Построение точек лежащих на поверхности вращения

Точка принадлежит поверхности, если она находится на линии, лежащей на этой поверхности. В качестве таких линий могут быть выбраны образующие, параллели, меридианы и др. На рис. 5.5 показано построение проекций точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, принадлежащих боковой поверхности цилиндра.

Начертательная геометрия задачи с решением

Горизонтальные проекции точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением (Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением) лежат на окружности. Профильные проекции этих точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением находятся при помощи линий связи.

Очерковые (крайние) образующие цилиндра разделяют фронтальную и профильные проекции на видимую и невидимые части. Так, образующие Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением делят цилиндрическую поверхность на видимую спереди и невидимую, образующие Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением — на видимую слева и невидимую. Невидимые проекции точки В указаны в скобках.

На рис. 5.6, а показано построение горизонтальной Начертательная геометрия задачи с решением и профильной Начертательная геометрия задачи с решением проекций точки Начертательная геометрия задачи с решением по заданной фронтальной проекции Начертательная геометрия задачи с решением на поверхности конуса.

Начертательная геометрия задачи с решением

Если задана горизонтальная проекция Начертательная геометрия задачи с решением точки Начертательная геометрия задачи с решением (рис. 5.6, а), то построение начинается с проведения горизонтальной проекции Начертательная геометрия задачи с решением образующей Начертательная геометрия задачи с решением, на которой находится точка Начертательная геометрия задачи с решением. Определив фронтальную проекцию Начертательная геометрия задачи с решениемэтой образующей, по линиям связи находим фронтальную проекцию Начертательная геометрия задачи с решением точки Начертательная геометрия задачи с решением, а затем и профильную Начертательная геометрия задачи с решением.

Образующие Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением разделяют коническую поверхность на видимую спереди и невидимую, а образующие Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением — на видимую слева и невидимую.

Проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением находятся на невидимой части конуса. Горизонтальная проекция поверхности конуса является видимой.

На рис. 5.6, б показано построение недостающих проекций точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением при помощи параллелей. Через заданные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением проводятся проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением параллелей Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Используя точки 1 и 2, лежащие на очерковых образующих, определим положение проекций Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением проведенных параллелей. По линиям связи найдем положение проекций Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением точки Начертательная геометрия задачи с решением и проекций Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением точки Начертательная геометрия задачи с решением.

На рис. 5.7 приведены проекции сферы, которые ограничены экватором Начертательная геометрия задачи с решением, фронтальным меридианом Начертательная геометрия задачи с решением и профильным Начертательная геометрия задачи с решением. Каждый из них проецируется на соответствующую плоскость проекций в виде окружности, на остальные — в виде отрезков прямых длиной, равной диаметру сферы. На этом же рисунке показано построение недостающих проекций точек Начертательная геометрия задачи с решением, Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением по заданным фронтальным проекциям этих точек. Точка Начертательная геометрия задачи с решением находится на экваторе Начертательная геометрия задачи с решением, точка Начертательная геометрия задачи с решением — на фронтальном меридиане Начертательная геометрия задачи с решением, точка Начертательная геометрия задачи с решением — на профильном меридиане Начертательная геометрия задачи с решением. Недостающие проекции определяются по линиям связи. Направление построений указано стрелками.

Начертательная геометрия задачи с решением

Экватор Начертательная геометрия задачи с решением разделяет сферу на видимую (верхняя половина на фронтальной проекции) и невидимую части на горизонтальной проекции. Фронтальный меридиан Начертательная геометрия задачи с решением разделяет сферу на видимую (нижняя половина горизонтальной проекции) и невидимую части на фронтальной проекции.

Профильный меридиан п разделяет сферу на видимую (левая половина на фронтальной проекции) и невидимую части на профильной проекции.

Так, на рис. 5.7 горизонтальная проекция Начертательная геометрия задачи с решением точки Начертательная геометрия задачи с решением невидимая (взята в скобки), так как находится на нижней (невидимой) половине сферы. На поверхности сферы можно провести множество параллелей, соответствующих плоскостям проекций. Эти параллели используются для построения проекций точек на сфере.

По фронтальной проекции Начертательная геометрия задачи с решением точки Начертательная геометрия задачи с решением найдена горизонтальная Начертательная геометрия задачи с решением как принадлежащая горизонтальной параллели Начертательная геометрия задачи с решением. Для построения горизонтальной проекции Начертательная геометрия задачи с решением использована точка 1, принадлежащая фронтальному меридиану. Профильная проекция Начертательная геометрия задачи с решением точки Начертательная геометрия задачи с решением построена при помощи линий связи и находится на невидимой (правой половине) части сферы.

Пересечение поверхностей вращения плоскостью

Линия пересечения кривой поверхности с плоскостью представляет собой плоскую кривую. Для построения этой кривой линии на чертеже находят проекции ее отдельных точек, соединяемых с помощью лекала.

Для нахождения точек линии пересечения применяются вспомогательные секущие плоскости (проецирующие или плоскости уровня). Вспомогательные плоскости выбираются так, чтобы в пересечении с кривой поверхностью получались простейшие линии — прямые и окружности. Задача на построение линии пересечения кривой поверхности плоскостью значительно упрощается, если заданные секущие плоскости являются плоскостями частного положения.

Пересечение цилиндра плоскостью

При пересечении цилиндра вращения плоскостью возможны случаи:

  1. секущая плоскость параллельна оси — в сечении цилиндрической поверхности получаются две прямые (образующие) (рис. 5.8, я);
  2. секущая плоскость перпендикулярна оси — в сечении получается окружность, равная окружностям оснований (рис. 5.8, б);
  3. секущая плоскость наклонна к оси — в сечении получается эллипс, малая ось которого всегда равна диаметру цилиндра, а большая зависит от угла Начертательная геометрия задачи с решением (рис. 5.8, в).
Начертательная геометрия задачи с решением

Пример модели цилиндра, усеченного плоскостями, приведен здесь. На рис. 5.9 показано построение проекций цилиндра вращения, усеченного плоскостями частного положения Начертательная геометрия задачи с решением

Начертательная геометрия задачи с решением

Горизонтальная плоскость Начертательная геометрия задачи с решением пересекает поверхность цилиндра по части окружности, профильная плоскость Начертательная геометрия задачи с решением — по прямым Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением (образующим цилиндра), фронтально-проецирующая плоскость Начертательная геометрия задачи с решением — по части эллипса. Фронтальная проекция линий пересечения совпадает со следами-проекциями секущих плоскостей Начертательная геометрия задачи с решением, а горизонтальная -с окружностью основания цилиндра.

Построение профильной проекции сводится к построению профильных проекций точек по двум заданным (направление линий связи указано стрелками).

Обычно для построения точек линий сечения пользуются образующими, равноотстоящими друг от друга. Поэтому горизонтальная проекция цилиндра (окружность) разделена на 12 частей (точки 1,2, …, 12). Этой равномерной «разметкой» удобно пользоваться для создания не только проекций сечений, но и развертки.

Развертка поверхности цилиндра

Для построения развертки поверхности вращения, усеченной плоскостями, используется соответствующая многогранная фигура, вписанная в эту поверхность. Развертка получается приближенной, погрешность определяется количеством сторон многоугольника, вписанного в основание поверхности.

Построение развертки боковой поверхности цилиндра, приведенного на рис. 5.9, начинают с вычерчивания горизонтальной прямой, на которой откладывают длину окружности основания Начертательная геометрия задачи с решением и делят ее, например, на 12 равных частей. Из точек деления проводят перпендикуляры к отрезку Начертательная геометрия задачи с решением (рис. 5.10) и на них откладывают длины образующих от основания цилиндра до секущих плоскостей Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

Начертательная геометрия задачи с решением

Для построения точек Начертательная геометрия задачи с решением на развертке использовано расположение этих точек на горизонтальной проекции цилиндра (от точек деления откладывают длины дуг Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением). Точки Начертательная геометрия задачи с решением соединены прямыми линиями. Точки Начертательная геометрия задачи с решением соединяют плавной линией. К верхней части боковой развертки достраивают натуральные фигуры сечения плоскостями (часть эллипса, прямоугольник, сегмент окружности).

Пересечение конуса плоскостью

При пересечении конуса получаются различные виды кривых второго порядка.

  1. Эллипс (Начертательная геометрия задачи с решением) — секущая плоскость Начертательная геометрия задачи с решением пересекает весь конус (рис. 5.11).
  2. Окружность — секущая плоскость перпендикулярна оси конуса (рис. 5.12).
  3. Парабола — секущая плоскость Начертательная геометрия задачи с решением параллельна образующей конуса (рис. 5.13).
Начертательная геометрия задачи с решением
Начертательная геометрия задачи с решением
  1. Гипербола — плоскость Начертательная геометрия задачи с решением параллельна двум образующим конуса (рис. 5.14).
  2. Прямые линии — секущая плоскость проходит через вершину конуса (рис. 5.15).

На примере здесь показана последовательность построения линий пересечения конуса плоскостями.

На рис. 5.16 показано построение проекций усеченного конуса вращения плоскостями частного положения Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

Конус пересекают фронтально-проецирующие плоскости Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Фронтальная проекция линий пересечения совпадает с проекциями этих плоскостей.

Для построения точек линий сечения использованы образующие, равноотстоящие друг от друга. Поэтому горизонтальная проекция основания конуса (окружность) разделена на 12 равных частей (точки I, II, …, XII). Это позволяет использовать равноотстоящие образующие для построения развертки конуса.

Фронтальные проекции образующих пересекают проекцию Начертательная геометрия задачи с решением в точках Начертательная геометрия задачи с решениемНачертательная геометрия задачи с решением. Эти точки по линиям связи находятся на горизонтальных проекциях образующих, причем точки 4 и 10 определяются на профильной проекции, а затем на горизонтальной.

Вспомогательная плоскость Начертательная геометрия задачи с решением пересекает плоскость а по фронтально-проецирующей прямой, а конус — по окружности радиуса Начертательная геометрия задачи с решением. В пересечении прямой и дуги радиуса Начертательная геометрия задачи с решением определим горизонтальные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

Построения профильных проекций точек эллипса (Начертательная геометрия задачи с решением) сводится к построению проекций точек по двум заданным (по линиям проекционной связи).

Для построения точек, принадлежащих гиперболе, использованы точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, находящиеся на образующих II и XII, а также точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, принадлежащие вспомогательной горизонтальной плоскости Начертательная геометрия задачи с решением.

Построение развертки конуса

Построение развертки начинают с проведения из точки Начертательная геометрия задачи с решением (рис. 5.17) дуги окружности радиусом, равным длине образующей конуса Начертательная геометрия задачи с решением.

Длина дуги определяется центральным углом Начертательная геометрия задачи с решением:

Начертательная геометрия задачи с решением

где Начертательная геометрия задачи с решением — диаметр окружности основания конуса; Начертательная геометрия задачи с решением — длина образующей.

Дугу делят на 12 частей и полученные точки соединяют с точкой Начертательная геометрия задачи с решением. От вершины Начертательная геометрия задачи с решением на образующих откладывают действительные длины отрезков образующих от вершины конуса до секущих плоскостей. Действительные длины данных отрезков находят способом вращения их вокруг оси конуса. Для этого достаточно из фронтальных проекций точек фигур сечений провести горизонтальную прямую до пересечения с контурной образующей конуса, являющейся действительной ее длиной.

Для построения точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, лежащих на основании конуса, следует отложить от точек III и XI соответствующие дуги (эти дуги на рис. 5.16 и 5.17 отмечены одной черточкой-штрихом).

Для построения точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением на развертке находят положения образующих, на которых есть эти точки, откладывая от точек II и XII соответствующие дуги (эти дуги отмечены двумя черточками-штрихами). Положение точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением на образующих находим, используя действительные длины отрезков Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

Для получения полной развертки пристраивают к развертке боковой поверхности часть основания конуса и натуральные величины сечений.

Начертательная геометрия задачи с решением

Натуральная величина эллипса построена по его осям (использован способ перемены плоскостей проекций), натуральная величина сечения профильной плоскостью Начертательная геометрия задачи с решением находится на профильной проекции (рис. 5.16).

Вопросы для контроля

  1. Какие линии получаются при пересечении цилиндра плоскостью?
  2. Какие линии получаются при пересечении конуса плоскостью?
  3. Какие поверхности вращения являются развертывающимися?
  4. Как построить развертку цилиндра?
  5. Какой метод используется для построения развертки конуса?

Пересечение прямой линии с многогранниками и поверхностями вращения

Точки пересечения прямой линии с геометрическими телами называют также точками встречи, одна из них является точкой входа, другая — точкой выхода.

Частные случаи определения точек пересечения

Частный способ определения указанных точек основывается на том, что пересекаемая грань перпендикулярна плоскости проекций, т. е. ее проекция представлена на этой плоскости в виде прямой и проекция искомой точки пересечения совпадает с проекцией точки пересечения этой прямой и заданной прямой. Другая проекция определяется по линиям связи из условия принадлежности точки прямой.

На рис. 6.1 показано построение точек пересечения прямых линий Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением поверхностью четырехугольной прямой призмы. Боковая поверхность призмы — проецирующая (грани перпендикулярны горизонтальной плоскости проекций). Поэтому горизонтальные проекции Начертательная геометрия задачи с решением точек пересечения находятся на «вырожденных» проекциях боковых граней, представляющих собой прямые линии. Фронтальные проекции этих точек определяются по линиям связи на фронтальных проекциях прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Вторая точка пересечения (точка Начертательная геометрия задачи с решением) прямой Начертательная геометрия задачи с решением находится на пересечении с верхним основанием призмы, которое является горизонтальной плоскостью. Сначала отмечаем фронтальную проекцию Начертательная геометрия задачи с решением, а затем по линии связи находим горизонтальную Начертательная геометрия задачи с решением.

Видимость фронтальных проекций точек пересечения прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением определяется видимостью граней, на которых лежат указанные точки. Так, точка Начертательная геометрия задачи с решением лежит на невидимой грани Начертательная геометрия задачи с решением, и поэтому участок прямой Начертательная геометрия задачи с решением от проекции Начертательная геометрия задачи с решениемдо ребра Начертательная геометрия задачи с решением невидим. Участки прямых, расположенных внутри тел, изображаются невидимыми. Участок горизонтальной прямой Начертательная геометрия задачи с решением от точки Начертательная геометрия задачи с решением видим, так как точка Начертательная геометрия задачи с решением расположена на верхнем основании призмы.

На рис. 6.2 показано построение точек пересечения прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением с поверхностью цилиндра вращения.

Начертательная геометрия задачи с решением

Горизонтальные проекции точек Начертательная геометрия задачи с решением находятся на пересечении окружности (горизонтальной проекции боковой поверхности цилиндра) с проекциями прямых, фронтальная проекция точки Начертательная геометрия задачи с решением — на пересечении горизонтальной плоскости верхнего основания с проекцией прямой.

При определении видимости фронтальных проекций прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением следует учесть, что проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением расположены на невидимой части цилиндра и поэтому участки прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением от проекций Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением до очерковой образующей невидимы.

Горизонтальная проекция точки Начертательная геометрия задачи с решением расположена на верхнем основании цилиндра, поэтому проекция Начертательная геометрия задачи с решением до точки Начертательная геометрия задачи с решением видима.

На рис. 6.3 показано построение точек пересечения проецирующих прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением с поверхностью пирамиды. Фронтальные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением точек пересечения фронтально-проецирующей прямой Начертательная геометрия задачи с решением совпадают с «вырожденной» проекцией прямой, а горизонтальные проекции находятся на прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением граней Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

Горизонтальные проекции точек пересечения Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением горизонтально-проецирующей прямой Начертательная геометрия задачи с решением совпадают с «вырожденной» проекцией прямой, фронтальная проекция точки Начертательная геометрия задачи с решением находится на прямой Начертательная геометрия задачи с решением грани Начертательная геометрия задачи с решением. Точка Начертательная геометрия задачи с решением находится на горизонтальной плоскости основания пирамиды.

На рис. 6.4 показано построение точек пересечения проецирующих прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением с поверхностью конуса вращения. Проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением определяются с помощью параллели (окружности радиуса Начертательная геометрия задачи с решением) конуса, проекция Начертательная геометрия задачи с решением — с помощью образующей Начертательная геометрия задачи с решением. Точка Начертательная геометрия задачи с решением расположена на горизонтальной плоскости основания конуса.

Начертательная геометрия задачи с решением

На рис. 6.5 для нахождения горизонтальных проекций точек пересечения Начертательная геометрия задачи с решением проецирующих прямых Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением с поверхностью сферы использованы параллели (окружности) сферы. Точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением находятся на параллели радиуса Начертательная геометрия задачи с решением, а точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением — на параллели радиуса Начертательная геометрия задачи с решением. Точки пересечения Начертательная геометрия задачи с решением расположены на видимых участках проекций сферы.

Определение точек пересечения прямой с поверхностью

В общем случае точки пересечения прямой линии с поверхностью геометрических тел находятся следующим образом:

  • через данную прямую проводится вспомогательная плоскость;
  • строится линия пересечения геометрического тела вспомогательной плоскостью;
  • определяются точки пересечения построенной линии и заданной прямой. Эти точки являются искомыми;
  • определяется видимость участков прямой линии.

Вспомогательную секущую плоскость выбирают так, чтобы она пересекала поверхность геометрического тела по линии, легко определяемой на чертеже, например состоящей из прямых или окружностей. Обычно в качестве вспомогательной плоскости выбирают проецирующую плоскость, проходящую через заданную прямую.

На рис. 6.6 показано нахождение точек пересечения прямой общего положения Начертательная геометрия задачи с решением с поверхностью пирамиды Начертательная геометрия задачи с решением.

Начертательная геометрия задачи с решением

Через прямую Начертательная геометрия задачи с решением проведена вспомогательная фронтально-проецирующая плоскость Начертательная геометрия задачи с решением, пересекающая поверхность пирамиды по линии 1-2-3. На пересечении этой линии с прямой Начертательная геометрия задачи с решением находятся искомые точки пересечения. Видимость участков прямой линии определяется видимостью граней, на которых лежат точки пересечения Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Так, на горизонтальной проекции (рис. 6.6, б) точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением расположены на видимых проекциях Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением граней Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, а на фронтальной проекции точка Начертательная геометрия задачи с решением лежит на невидимой грани Начертательная геометрия задачи с решением. Поэтому участок фронтальной проекции Начертательная геометрия задачи с решением от Начертательная геометрия задачи с решением до ребра Начертательная геометрия задачи с решением невидим.

Для нахождения точек пересечения конуса вращения с горизонтальной прямой Начертательная геометрия задачи с решением (рис. 6.7) использована вспомогательная горизонтальная плоскость Начертательная геометрия задачи с решением пересекающая конус по окружности. На рис. 6.8 для определения точек пересечения сферы с фронтальной прямой Начертательная геометрия задачи с решением использована фронтальная плоскость Начертательная геометрия задачи с решением. В заключение определяется видимость участков прямых относительно точек пересечения.

Вопросы для контроля

  1. Поясните способ определения точек пересечения прямой с поверхностью геометрических тел.
  2. С помощью каких преобразований можно упростить задачу построения точек пересечения прямой общего положения с конусом?

Взаимное пересечение поверхностей геометрических тел

Линия пересечения поверхностей геометрических тел в общем случае является пространственной и может распадаться на две и более частей. Линию пересечения строят по точкам, которые подразделяются на характерные (опорные) и промежуточные.

Общим способом построения этих точек является способ вспомогательных секущих плоскостей. При пересечении заданных поверхностей вспомогательной плоскостью определяются линии пересечения ее с данными поверхностями, а в пересечении этих линий получаются точки, принадлежащие искомой линии пересечения.

В качестве вспомогательных секущих плоскостей чаще всего используют плоскости, параллельные одной из плоскостей проекций. Положение их выбирают такое, чтобы они пересекали заданные поверхности по простейшим линиям — прямым или окружностям.

Построение линии пересечения многогранников

При решении задач используется один из следующих способов:

  1. способ ребер (пересечение прямой линии с плоскостью);
  2. способ граней (взаимное пересечение плоскостей).

Преимущество отдается тому из способов, который дает более простое решение.

Рассмотрим построение линии пересечения пирамиды с призмой (рис. 7.1).

Грань Начертательная геометрия задачи с решением призмы — горизонтальная плоскость Начертательная геометрия задачи с решением, пересекающая боковую поверхность пирамиды по ломаной линии, звенья которой параллельны сторонам основания Начертательная геометрия задачи с решением пирамиды. По фронтальной проекции точки Начертательная геометрия задачи с решением, расположенной на ребре Начертательная геометрия задачи с решением пирамиды, найдем ее горизонтальную проекцию Начертательная геометрия задачи с решением и, проведя звенья ломаной линии, определим точки Начертательная геометрия задачи с решением Начертательная геометрия задачи с решением

Горизонтальные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением точек пересечения ребер Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением с гранями призмы определяются с помощью линий связи. Горизонтальные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением точек пересечения ребра Начертательная геометрия задачи с решением призмы с поверхностью пирамиды определим с помощью горизонтальной плоскости Начертательная геометрия задачи с решением, проведенной через ребро Начертательная геометрия задачи с решением призмы. Плоскость Начертательная геометрия задачи с решением пересекает поверхность пирамиды по линиям, параллельным сторонам основания пирамиды. Спроецировав точку Начертательная геометрия задачи с решением, лежащую на ребре Начертательная геометрия задачи с решением пирамиды, через проекцию Начертательная геометрия задачи с решением проведем линии, параллельные Начертательная геометрия задачи с решением

Начертательная геометрия задачи с решением

и Начертательная геометрия задачи с решением. Эти линии пересекаются с горизонтальной проекцией ребра Начертательная геометрия задачи с решением призмы в точках Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

На рис. 7.2 показано построение линии пересечения двух призм, боковые поверхности которых являются проецирующими.

Начертательная геометрия задачи с решением

Рассматривая положение горизонтальных и профильных проекций многогранников, отмечаем, что призма Начертательная геометрия задачи с решением пересекает боковую поверхность призмы Начертательная геометрия задачи с решением. При пересечении получаются две замкнутые ломаные линии: одна из них — пространственная (пересекаются две грани призмы Начертательная геометрия задачи с решением), другая — плоская (пересекается одна грань).

Горизонтальная проекция линий пересечения совпадает с горизонтальной проекцией вертикальной призмы, а профильная — с профильной проекцией горизонтальной призмы. Отмечая точки пересечения Начертательная геометрия задачи с решением горизонтальных проекций ребер Начертательная геометрия задачи с решением с горизонтальной проекцией призмы Начертательная геометрия задачи с решением при помощи линий связи находим их фронтальные проекции.

Фронтальные проекции Начертательная геометрия задачи с решением точек пересечения ребра Начертательная геометрия задачи с решением с боковой поверхностью призмы Начертательная геометрия задачи с решением определим по линиям связи, используя их профильные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Последовательно соединяя найденные точки пересечения, принадлежащие одним и тем же граням, построим две ломаные линии 1-3-8-5-7-1 и 2-4-6-2.

Построение линии пересечения поверхностей вращения с многогранниками

Линия пересечения многогранника с телом вращения в общем случае состоит из отдельных участков кривых линий, получающихся при пересечении граней многогранника с поверхностью вращения. Точки перехода от одного участка к другому находятся на пересечении ребер многогранника с телом вращения.

Пример пространственной модели конуса, пересекающегося с треугольной призмой.

Последовательность операций при построении линии пересечения на чертеже следующая:

  • определяются точки пересечения ребер многогранника с поверхностью вращения;
  • находятся точки, принадлежащие линиям пересечения отдельных граней многогранника с телом вращения. Построение начинают с определения характерных (опорных) точек линии — высшие и низшие, ближайшие и наиболее удаленные, крайние слева и справа и т. д. Точки определяются визуально по чертежу;
  • определяется видимость проекций участков линии пересечения.

Рассмотрим построение линии пересечения поверхности прямой трехгранной призмы с поверхностью цилиндра вращения (рис. 7.3). Боковые грани призмы являются горизонтально-проецирующими плоскостями, а ось цилиндра перпендикулярна профильной плоскости проекций.

Начертательная геометрия задачи с решением

При построении точек линии пересечения многогранников с телами вращения используют вспомогательные секущие плоскости. Их располагают так, чтобы они пересекали данные поверхности по простым линиям (прямым или окружностям).

Грань призмы Начертательная геометрия задачи с решением параллельна оси цилиндра и пересекает поверхность цилиндра по прямой 2-3 (образующая цилиндра).

Грани Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением наклонены к оси цилиндра и пересекают его поверхность по кривым (частям эллипсов).

Горизонтальная проекция линии пересечения совпадает с проекцией боковой поверхности призмы, а профильная проекция совпадает с проекцией боковой поверхности цилиндра.

Характерными точками линии пересечения являются точки пересечения 1, 2, 3 ребер призмы с поверхностью цилиндра (фронтальные проекции этих точек определяем с помощью линий связи, проведенных через их профильные проекции). Точки 4 и 5 разделяют фронтальную проекцию линии пересечения на видимую и невидимую части.

Построение промежуточных точек 6, 7, 8, 9 выполняем следующим образом. На одной из имеющихся проекций линии пересечения (горизонтальной или профильной) намечаем проекции точек и с помощью линий связи строим недостающие проекции.

По построенным точкам проводим фронтальную проекцию линии пересечения. Видимой является часть Начертательная геометрия задачи с решением, расположенная на видимой проекции цилиндра. Часть фронтальных проекций ребер Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением закрывается очерком цилиндра.

На рис. 7.4 приведено построение линии пересечения сферы с прямой трехгранной призмой. Боковые ребра призмы перпендикулярны горизонтальной плоскости проекций. Характерными точками линии пересечения являются точки 1 и 2 — точки пересечения ребер призмы со сферой (обозначение точек линии пересечения приведено лишь на одной симметричной части). Для построения этих точек использованы фронтальные плоскости Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, проведенные через ребра призмы и пересекающие сферу по окружностям радиусов Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

Начертательная геометрия задачи с решением

Фронтальную проекцию Начертательная геометрия задачи с решением точки 1 можно определить и по профильной проекции с помощью линий связи. Так как грань призмы Начертательная геометрия задачи с решением является фронтальной плоскостью, то плоскость Начертательная геометрия задачи с решением позволяет определить дугу окружности, по которой она пересекает сферу. Точка 3 — высшая точка этой дуги.

Грани Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением призмы пересекают сферу по дугам окружностей, которые на фронтальную и профильную плоскости проекций проецируются в виде частей эллипсов. Фронтальная проекция линии пересечения этих граней представляет собой две симметричные части, а профильные проекции совпадают.

Характерными точками фронтальной проекции линии пересечения являются также точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Точка 4 разделяет линию на видимую и невидимую части, точка 5 — высшая точка линии пересечения. Проекция Начертательная геометрия задачи с решением находится на очерке сферы — фронтальном меридиане, проекция Начертательная геометрия задачи с решением определена с помощью фронтальной плоскости Начертательная геометрия задачи с решением.

Для построения промежуточных точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением фронтальной проекции использованы фронтальные плоскости Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Каждая из фронтальных плоскостей пересекает сферу по окружности определенного радиуса, а призму — по горизонтально-проецирующим прямым.

Видимой частью фронтальной проекции линии пересечения является часть эллипса Начертательная геометрия задачи с решением, на профильной проекции симметричные части линии пересечения изображаются видимой линией. На фронтальной проекции части ребер Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением закрываются контуром сферы.

Построение линии пересечения поверхностей вращения

Линия пересечения двух поверхностей вращения в общем случае представляет пространственную кривую. Здесь приведен пример модели пересекающихся конуса и цилиндра. Линию пересечения поверхностей на чертеже строят по точкам.Общим способом построения является способ вспомогательных секущих поверхностей. В качестве поверхностей-посредников применяются плоскости или сферы.

Способ вспомогательных секущих плоскостей

Если одна из поверхностей является цилиндрической проецирующей поверхностью, то построение линии пересечения упрощается, так как в этом случае одна проекция линии пересечения совпадает с окружностью — проекцией цилиндра на перпендикулярную плоскость проекций.

На рис. 7.5 показано построение линии пересечения двух цилиндров вращения, оси которых скрещиваются. Ось горизонтального цилиндра — профильно-проецирующая, а ось вертикального — горизонтально-проецирующая.

Линией пересечения цилиндров является пространственная кривая, горизонтальная проекция которой совпадает с окружностью — горизонтальной проекцией вертикального цилиндра. Отмстим на этой окружности точки, принадлежащие линии пересечения: опорные 1, 2, 3, 4, лежащие на крайних образующих цилиндров, и промежуточную 5. Точки обозначены только на одной симметричной части линии пересечения.

Фронтальные проекции точек Начертательная геометрия задачи с решением лежащие на ближней, верхней и нижней образующих горизонтального цилиндра, определяем с помощью линий связи.

Начертательная геометрия задачи с решением

Для построения фронтальных проекций точек Начертательная геометрия задачи с решением использованы вспомогательные фронтальные плоскости Начертательная геометрия задачи с решением пересекающие оба цилиндра по образующим. Положение образующих вертикального цилиндра найдем по их горизонтальным

Начертательная геометрия задачи с решением

проекциям при помощи вертикальных линий связи. Для построения образующих горизонтального цилиндра использована его профильная проекция.

На рис. 7.6 показано построение линии пересечения конуса вращения и цилиндра вращения, у которых оси скрещиваются под прямым углом. Линией пересечения указанных тел является пространственная кривая, фронтальная проекция которой совпадает с окружностью цилиндра. Отметим здесь точки линии пересечения: опорные (1, 2, 3, 4, 5, 6) и промежуточные (7, 8, 9). Горизонтальные проекции точек 1 и 2 определим с помощью линий связи. Для построения горизонтальных проекций точек 3 и 4 использованы вспомогательные плоскости Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

Плоскость Начертательная геометрия задачи с решением пересекает цилиндр по крайней левой образующей, а конус — по окружности (параллели) радиуса Начертательная геометрия задачи с решением, пересечение которых определяет горизонтальную проекцию Начертательная геометрия задачи с решением точки 3.

Плоскость Начертательная геометрия задачи с решением, касающаяся цилиндра по его нижней образующей, позволяет построить горизонтальную проекцию Начертательная геометрия задачи с решением точки 4. Подобным образом с помощью горизонтальных плоскостей Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением находятся горизонтальные проекции точек 5 и 6, расположенных на ближней образующей конуса, а также горизонтальные проекции промежуточных точек 7, 8, 9.

Видимой частью горизонтальной проекции линии пересечения является линия Начертательная геометрия задачи с решением, принадлежащая верхней части цилиндра.

На примере здесь приведена пространственная модель конуса с цилиндрическим отверстием.

На рис. 7.7 показано построение линии пересечения полусферы с цилиндром вращения. Поскольку ось цилиндра перпендикулярна к горизонтальной плоскости проекций, то горизонтальная проекция линии пересечения совпадает с окружностью — горизонтальной проекцией цилиндра. Отметим на этой окружности опорные точки линии пересечения Начертательная геометрия задачи с решением и промежуточные Начертательная геометрия задачи с решением.

Точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением (низшая и высшая точки) расположены в горизонтально-проецирующей плоскости Начертательная геометрия задачи с решением, горизонтальный след-проекция Начертательная геометрия задачи с решением которой пройдет через горизонтальные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением осей тел вращения.

Чтобы определить фронтальные проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением этих точек, повернем плоскость Начертательная геометрия задачи с решением с лежащими на ней линиями сечения сферы и цилиндра вокруг оси сферы до фронтального положения. Новое положение образующих цилиндра и контура сферы на плоскости проекций Начертательная геометрия задачи с решением даст точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, по которым определяем проекции Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

Начертательная геометрия задачи с решением

Фронтальные проекции точек Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, расположенных на фронтальном меридиане сферы, определим с помощью линий связи.

Для построения фронтальных проекций опорных точек Начертательная геометрия задачи с решением размещенных на крайних образующих цилиндра, и точек Начертательная геометрия задачи с решением находящихся на профильном меридиане сферы, использованы вспомогательные фронтальные плоскости Начертательная геометрия задачи с решением. Фронтальные проекции промежуточных точек Начертательная геометрия задачи с решением построены с помощью фронтальных плоскостей Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Эти плоскости пересекают цилиндр по образующим — прямым, а полусферу — по полуокружности. Так, вспомогательная плоскость Начертательная геометрия задачи с решением пересекает цилиндр по образующим, а полусферу — по дуге радиуса Начертательная геометрия задачи с решением.

Пересечение фронтальных проекций указанных линий сечения и даст точки Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Видимой частью фронтальных проекции является линия Начертательная геометрия задачи с решением, принадлежащая видимой (передней) части цилиндра.

Способ вспомогательных сфер

В некоторых случаях для построения линии пересечения двух поверхностей вращения целесообразно применять в качестве секущих поверхностей сферы. Этот способ основан на свойстве сферы пересекаться с любой поверхностью вращения, ось которой проходит через центр сферы, по окружности.

Чтобы сфера одновременно пересекала две поверхности по окружностям, необходимо выполнить следующие условия:

  1. оси поверхностей вращения должны пересекаться (точку пересечения принимают за центр вспомогательных концентрических сфер);
  2. оси поверхностей вращения должны располагаться параллельно какой-либо плоскости проекций.

На рис. 7.8 показано построение линии пересечения двух конусов с пересекающимися осями, параллельными плоскости Начертательная геометрия задачи с решением.

Начертательная геометрия задачи с решением

Линия пересечения — симметричная пространственная кривая. Фронтальные проекции симметричных половин совпадают и образуют кривую 2-го порядка. Точки 1 и 2, находящиеся в пересечении образующих конусов, очевидны. Остальные точки определены с помощью вспомогательных сфер с центром в точке Начертательная геометрия задачи с решением — точке пересечения осей конусов. С помощью сферы Сф. 1 (наименьшей из всех возможных) построена крайняя левая точка фронтальной проекции линии пересечения.

Эта сфера касается поверхности конуса с вертикальной осью по окружности радиуса Начертательная геометрия задачи с решением и пересекает другой конус по окружности радиуса Начертательная геометрия задачи с решением. В пересечении этих окружностей получается фронтальная проекция Начертательная геометрия задачи с решением. Для определения фронтальной проекции точки 4, расположенной на ближайшей образующей конуса с горизонтальной осью, использована сфера Сф. 2.

Радиус Начертательная геометрия задачи с решением этой сферы подобран так, чтобы окружность пересечения ее с поверхностью вертикального конуса лежала в плоскости Начертательная геометрия задачи с решением С помощью сферы Сф. 3 определена фронтальная проекция Начертательная геометрия задачи с решением точки 5.

Применение способа сфер позволяет построить линию пересечения поверхностей вращения, пользуясь только одной проекцией.

Особые случаи пересечения

При пересечении между собой кривых поверхностей линиями пересечения являются пространственные кривые, которые в ряде случаев могут распадаться на более простые линии. Рассмотрим несколько таких примеров.

Начертательная геометрия задачи с решением
  1. Два цилиндра с параллельными осями пересекаются по образующим.

На рис. 7.9 изображены пересекающиеся между собой цилиндры вращения с параллельными осями. Линиями пересечения являются общие образующие Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением.

  1. Если две поверхности второго порядка описаны около третьей или вписаны в нее, то линия их пересечения распадается на две плоские кривые второго порядка. Плоскости этих кривых проходят через прямую, соединяющую точки пересечения линий касания.

На рис. 7.10 изображены пересекающиеся между собой цилиндр и конус, касающиеся сферы радиуса Начертательная геометрия задачи с решением. Линии касания -окружности, плоскости которых параллельны фронтальной и профильной плоскостям проекций.

Плоскости касания пересекаются между собой по фронтально-проецирующей прямой Начертательная геометрия задачи с решением. Фронтальная проекция линии пересечения — два эллипса, плоскости которых проходят через прямую Начертательная геометрия задачи с решением и являются фронтально-проецирующими плоскостями. Большие оси эллипсов — отрезки 1-2 и 3-4, а малые равны диаметру цилиндра. Горизонтальная проекция линии пересечения находится из условия принадлежности ее точек поверхности конуса.

  1. Соосные поверхности вращения (т. е. поверхности с общей осью) пересекаются по окружностям.

Если ось вращения соосных поверхностей перпендикулярна к какой-либо плоскости проекций, то линия их пересечения проецируется на эту плоскость в виде окружности, а на другую плоскость проекций — в прямую линию.

На рис. 7.11 даны примеры пересечения соосных поверхностей вращения (ось вращения перпендикулярна плоскости Начертательная геометрия задачи с решением). На рис. 7.11, а приведены цилиндр и конус, б — конус и сфера, в — две сферы. За ось сферы можно принять любой ее диаметр. Поэтому сфера, центр которой находится на оси поверхности вращения, пересекается с этой поверхностью по окружности.

Начертательная геометрия задачи с решением
Начертательная геометрия задачи с решением

Вопросы для контроля

  1. Поясните общий способ построения линии пересечения двух поверхностей.
  2. Какие точки линии пересечения являются характерными (опорными)?
  3. Как определяется видимость линии пересечения?
  4. Что представляет собой линия пересечения тела вращения с многогранником?
  5. При каком взаимном положении поверхностей вращения возможно применение вспомогательных секущих сфер?
  6. Какие линии образуются при взаимном пересечении: а) цилиндров с параллельными осями; б) конусов с общей вершиной?

Аксонометрические проекции

Теоретические основы построения аксонометрических проекций

Аксонометрическая проекция, или просто аксонометрия, даст наглядное изображение предмета на одной плоскости. Слово аксонометрия означает оссизмерение.

Способ аксонометрического проецирования состоит в том, что данную фигуру вместе с осями прямоугольных координат, к которым она отнесена в пространстве, параллельно проецируют на некоторую плоскость, принятую за плоскость аксонометрических проекций (ее называют также картинной плоскостью). При различном взаимном расположении осей координат в пространстве и плоскости аксонометрической проекции, а также при разном направлении проецирования можно получить множество аксонометрических проекций, отличающихся одна от другой направлением аксонометрических осей и масштабами по ним.

В конструкторской документации аксонометрические проекции стандартизованы в ГОСТ 2.317-69. Он предусматривает три вида аксонометрических проекций:

  • прямоугольная изометрия;
  • прямоугольная диметрия;
  • фронтальная косоугольная диметрия.

Рассмотрим, как будут направлены аксонометрические оси, а также как будет осуществляться масштабирование по ним в случае направления проецирования, перпендикулярного аксонометрической плоскости проекций, т. е. для прямоугольной аксонометрической проекции. На рис. 8.1 изображена пространственная система прямоугольных координат Начертательная геометрия задачи с решением а также единичные отрезки Начертательная геометрия задачи с решением на осях координат и их проекции в направлении Начертательная геометрия задачи с решением на некоторую (картинную) плоскость Начертательная геометрия задачи с решением, являющуюся аксонометрической плоскостью проекций.

Проекции Начертательная геометрия задачи с решением: отрезка Начертательная геометрия задачи с решением на соответствующих аксонометрических осях Начертательная геометрия задачи с решением в общем случае не равны отрезку в и не равны между собой.

Эти проекции являются единицами измерения по аксонометрическим осям — аксонометрическими масштабами.

Отношения: Начертательная геометрия задачи с решением называют коэффициентами искажения по аксонометрическим осям.

В частном случае положение картинной плоскости можно выбрать таким, что аксонометрические единицы — отрезки Начертательная геометрия задачи с решением — будут равны между собой или будет равна между собой пара этих отрезков.

При Начертательная геометрия задачи с решением аксонометрическую проекцию называют изометрической, искажения по всем осям в ней одинаковы. При равенстве аксонометрических единиц по двум осям, обычно при Начертательная геометрия задачи с решением, имеем диметрическую проекцию.

Отрезки Начертательная геометрия задачи с решением являются аксонометрическими проекциями отрезков Начертательная геометрия задачи с решением. Обозначим углы между осями координат и их проекциями на плоскости Начертательная геометрия задачи с решением через Начертательная геометрия задачи с решением. Тогда Начертательная геометрия задачи с решением. Эти отношения являются коэффициентами искажения, т. е. Начертательная геометрия задачи с решением Поскольку треугольники Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением прямоугольные, то сумма квадратов направляющих косинусов равна единице:

Начертательная геометрия задачи с решением

Отсюда Начертательная геометрия задачи с решением или Начертательная геометрия задачи с решением следовательно, Начертательная геометрия задачи с решением Таким образом: Начертательная геометрия задачи с решением т. е. сумма квадратов коэффициентов искажения равна 2.

Прямоугольная изометрическая проекция

Прямоугольная (ортогональная) изометрическая проекция образуется при прямоугольном проецировании предмета и его координатных осей на плоскость аксонометрических проекций, одинаково наклоненную к каждой координатной оси.

При таком проецировании все три коэффициента искажений будут равны между собой: Начертательная геометрия задачи с решением тогда Начертательная геометрия задачи с решением откуда Начертательная геометрия задачи с решением. Углы между аксонометрическими осями будут равны Начертательная геометрия задачи с решением.

При построении изометрической проекции размеры предмета, откладываемые по аксонометрическим осям, необходимо умножать на 0,82. ГОСТ 2.317-69 допускает для упрощения построений принимать коэффициенты искажений равными единице. При этом увеличение изображения предмета составляет Начертательная геометрия задачи с решением. Каждый отрезок, направленный по осям Начертательная геометрия задачи с решением или параллельно им, сохраняет свою величину.

Расположение осей изометрической проекции показано на рис. 8.2, а.

Начертательная геометрия задачи с решением

Все отрезки прямых, которые были параллельны осям Начертательная геометрия задачи с решением на комплексном чертеже, останутся параллельными соответствующим осям в изометрической проекции. На рис. 8.2, б приведена изометрическая проекция отрезка Начертательная геометрия задачи с решением, расположенного перпендикулярно профильной плоскости проекций.

На рис 8.3 показано построение эллипсов, в которые проецируются окружности, лежащие в плоскостях проекций или в плоскостях, параллельных им. Размер большой оси эллипса равен Начертательная геометрия задачи с решением малой — Начертательная геометрия задачи с решением где Начертательная геометрия задачи с решением — диаметр исходной окружности.

В учебных чертежах рекомендуется вместо эллипсов применять овалы, очерченные дугами окружностей. На этом же рисунке показано расположение осей овалов и один из способов построения овалов в прямоугольной изометрической проекции.

На рис. 8.4, а приведен чертеж цилиндра, усеченного несколькими плоскостями, и его изометрическая проекция (рис. 8.4, б), на которой показано построение точки Начертательная геометрия задачи с решением, принадлежащей одной из линий сечения.

Начертательная геометрия задачи с решением

Здесь используются все три оси координат. Сначала по оси Начертательная геометрия задачи с решением откладывается значение Начертательная геометрия задачи с решением, измеренное на горизонтальной проекции цилиндра, далее из этой точки проводится линия, параллельная оси Начертательная геометрия задачи с решением, на которой откладывается величина Начертательная геометрия задачи с решением, измеренная также на горизонтальной проекции. В конечной точке этого отрезка проводится вертикальная линия длиной Начертательная геометрия задачи с решением, измеренной на фронтальной проекции цилиндра. Аналогично находятся остальные точки сечения цилиндра в количестве, необходимом для получения качественной линии пересечения.

Начертательная геометрия задачи с решением

Прямоугольная диметрическая проекция

Прямоугольная (ортогональная) диметрическая проекция образуется при прямоугольном проецировании предмета и связанных с ним координатных осей на плоскость аксонометрических проекций, одинаково наклоненную к двум координатным осям.

Коэффициенты искажений в диметрической проекции имеют следующие значения: Начертательная геометрия задачи с решением Начертательная геометрия задачи с решением Тогда Начертательная геометрия задачи с решением

В целях упрощения построений в соответствии с ГОСТ 2.317 приведенные коэффициенты искажений по осям Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением принимают равными единице; а по оси Начертательная геометрия задачи с решением коэффициент искажения равен 0,5. Следовательно, по осям Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением или параллельно им все размеры откладывают в натуральную величину, а по оси Начертательная геометрия задачи с решением размеры уменьшают вдвое. Увеличение в этом случае составляет Начертательная геометрия задачи с решением (выражается числом 1,06 = 1 / 0,94).

Расположение осей в диметрической проекции показано на рис. 8.5. Ось Начертательная геометрия задачи с решением наклонена по отношению к горизонтальной линии под углом Начертательная геометрия задачи с решением, а ось Начертательная геометрия задачи с решением — под углом Начертательная геометрия задачи с решением.

Начертательная геометрия задачи с решением

В диметрической проекции изображения геометрических тел строят так же, как в изометрической, с учетом коэффициента искажений по оси у, вдоль которой размеры уменьшаются вдвое. Все отрезки прямых, которые были параллельны осям Начертательная геометрия задачи с решением на комплексном чертеже, останутся параллельными соответствующим осям в диметрической проекции.

На рис. 8.6 приведены окружности в диметрической проекции с указанием соответствующих значений величин осей эллипсов.

Большая ось Начертательная геометрия задачи с решением эллипсов во всех случаях равна Начертательная геометрия задачи с решением, где Начертательная геометрия задачи с решением — диаметр окружности. Малые оси Начертательная геометрия задачи с решением эллипсов, расположенных на плоскостях, параллельных плоскостям проекций Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, равны Начертательная геометрия задачи с решением, а на плоскости, параллельной фронтальной плоскости Начертательная геометрия задачи с решением.

Косоугольная фронтальная диметрия

Если аксонометрическая проекция параллельна одной из координатных плоскостей, то изображения, лежащие в этой плоскости, на аксонометрической проекции не искажаются. При этом ортогональное проецирование недопустимо, так как координатная ось, перпендикулярная указанной координатной плоскости, изобразится точкой и изображение будет лишено наглядности. Поэтому пользуются косоугольным проецированием, при котором направление оси у выбирают так, чтобы углы между ней и осями Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением равнялись бы Начертательная геометрия задачи с решением (рис. 8.7), а показатель искажения — 0,5. Такая косоугольная аксонометрия называется фронтальной диметрией.

Начертательная геометрия задачи с решением

На рис. 8.8 показаны проекции окружностей, расположенных в плоскостях, параллельных координатным. Окружность, расположенная в плоскости Начертательная геометрия задачи с решением, проецируется на плоскость проекций без искажения, а окружности, расположенные в плоскостях, параллельных координатным плоскостям Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением, спроецируются в виде эллипсов. Эти эллипсы обычно строят по сопряженным диаметрам. Большая ось эллипсов равна Начертательная геометрия задачи с решением, а малая ось — Начертательная геометрия задачи с решением (Начертательная геометрия задачи с решением — диаметр окружности).

Задачи с решением №6

Задача №1.

Построить изометрическую проекцию точки Начертательная геометрия задачи с решением, представленной проекциями Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением (рис. 8.9, а).

Решение:

Если даны прямоугольные проекции точки, то это значит, что известны все три координаты Начертательная геометрия задачи с решением, позволяющие построить изометрическую проекцию. Построение

начинаем с изометрических осей, которые проводим под углом Начертательная геометрия задачи с решением друг к другу (рис. 8.9, б). Далее от начала координат 0 по оси Начертательная геометрия задачи с решением откладываем отрезок Начертательная геометрия задачи с решением. Из полученной точки Начертательная геометрия задачи с решением проводим прямую, параллельную оси Начертательная геометрия задачи с решением, и на ней откладываем отрезок Начертательная геометрия задачи с решением. Из точки Начертательная геометрия задачи с решением проводим прямую, параллельную оси Начертательная геометрия задачи с решением, на которой откладываем отрезок, равный координате Начертательная геометрия задачи с решением точки Начертательная геометрия задачи с решением, —Начертательная геометрия задачи с решением. Полученная точка Начертательная геометрия задачи с решением — искомая изометрическая проекция точки Начертательная геометрия задачи с решением.

Задача №2.

Построить изометрическую проекцию куба.

Решение:

Центр нижнего основания куба размещается в точке 0 пересечения изометрических осей (рис. 8.10). В направлении осей Начертательная геометрия задачи с решением откладываем расстояния, равные половине длины стороны куба Начертательная геометрия задачи с решением. Из полученных точек проводим стороны основания куба, равные полной длине Начертательная геометрия задачи с решением. Линии проводим параллельно осям. Затем из точки 0 вдоль оси Начертательная геометрия задачи с решением откладываем расстояние а и строим верхнее основание куба.

Задача №3.

По заданным проекциям построить изометрическую проекцию цилиндра и точки Начертательная геометрия задачи с решением, лежащей на его боковой поверхности (рис. 8.11).

Начертательная геометрия задачи с решением

Решение:

Проводим изометрические оси Начертательная геометрия задачи с решением и строим эллипс нижнего основания. Затем определяем центр верхнего основания цилиндра и строим второй эллипс. Оба эллипса соединяем вертикальными образующими. Для построения точки Начертательная геометрия задачи с решением отмечаем точку Начертательная геометрия задачи с решением на нижнем основании цилиндра (откладывая координаты Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением точки Начертательная геометрия задачи с решением). Затем на вертикальной образующей, проходящей из точки Начертательная геометрия задачи с решением на высоте Начертательная геометрия задачи с решением отмечаем точку Начертательная геометрия задачи с решением.

Задача №4.

Построить прямоугольную диметрическую проекцию куба со стороной, равной Начертательная геометрия задачи с решением.

Решение:

Начало координат разместим на пересечении граней куба. Нижнее основание куба размещаем в плоскости Начертательная геометрия задачи с решением (рис. 8.12). В направлении оси Начертательная геометрия задачи с решением откладываем расстояние, равное полной длине куба Начертательная геометрия задачи с решением. В направлении оси Начертательная геометрия задачи с решением откладываем расстояние, равное половине длины стороны куба Начертательная геометрия задачи с решением. Из полученных точек проводим стороны основания куба параллельно осям Начертательная геометрия задачи с решением и Начертательная геометрия задачи с решением. Затем из точки 0 вдоль оси Начертательная геометрия задачи с решением вверх откладываем расстояние а и строим верхнее основание куба аналогично нижнему. Вершины нижнего и верхнего оснований соединяем вертикальными линиями.

Начертательная геометрия задачи с решением
Начертательная геометрия задачи с решением

Задача №5.

Построить фронтальную косоугольную диметрическую проекцию шестигранника.

Решение:

Разместим основание шестиугольной призмы Начертательная геометрия задачи с решением параллельно плоскости Начертательная геометрия задачи с решением (рис. 8.13). В этом случае шестиугольник проецируется на аксонометрическую плоскость проекций без искажений. Затем из вершин шестиугольника Начертательная геометрия задачи с решением проводим прямые, параллельные оси Начертательная геометрия задачи с решением. На этих прямых откладываем отрезки, равные половине длине боковых ребер призмы. Соединив полученные точки, получаем второе основание призмы. В заключение определяем видимые и невидимые линии призмы.

Вопросы для контроля

  1. Дайте определение аксонометрической проекции.
  2. Что называется коэффициентом искажения?
  3. Какие виды аксонометрии вы знаете?
  4. Как располагаются оси прямоугольной изометрии?

Интерактивные графические системы проектирования. Основы компьютерных геометрических построений

Этапы развития систем проектирования. Зд-моделирование

Современный инженер должен быть знаком и уметь применять в своей деятельности новые технологии. В условиях динамично развивающихся систем автоматизированного проектирования знание основ трехмерного моделирования, параметризации, технологии создания чертежей в CAD-системе является необходимым для студентов, получающих высшее техническое образование.

В основе ЗЭ-моделирования заложен математический аппарат, реализованный в ядре графической системы и производящий трехмерные изображения. Математические зависимости, описывающие формирование цифровой модели реальных объектов, а также алгоритмы для расчета виртуального пространства, были разработаны еще в 1960-х годах. Со временем геометрические формы создаваемых на экране моделей усложнялись: наряду с простыми геометрическими примитивами и их комбинациями (куб, сфера, тор, различные тела, описываемые несложными алгебраическими уравнениями) появилась возможность поверхностного моделирования. При этом формируемая модель представляет собой поверхность, которая может состоять из множества полигонов (чаще всего треугольников). Развитие поверхностного моделирования стало большим шагом вперед и позволило создавать модели практически любой формы.

Стабильный рост производительности персональных компьютеров в 90-х годах прошлого века дал толчок развитию относительно недорогих приложений для трехмерного моделирования. Появление таких программных пакетов сделало 3D доступным для простых пользователей. Легкость в освоении, относительно небольшие требования к аппаратному обеспечению и широкие возможности таких систем обеспечили им быстрое распространение.

Следом за дизайном трехмерная графика проникла и в инженерное проектирование. Исторически сложилось так, что сфера промышленного проектирования жестко ограничена требованиями стандартов, которые касаются лишь плоского черчения. По этой причине переход на трехмерное моделирование в машиностроительном проектировании не был безболезненным. Однако большие возможности по созданию моделей сложных форм, легкость в проектировании и планировке, намного лучшие возможности для выявления ошибок на этапе проектирования и, самое главное, более наглядное представление объекта проектирования сделали свое дело. С середины 1990-х годов трехмерная графика стала широко применяться в инженерии.

Чертежи, выполняемые вручную карандашом на кульмане, ушли в прошлое. Точность таких чертежей невысока, времени на их изготовление затрачивается много, а редактирование невозможно. По мере совершенствования компьютерных технологий развивалась и сфера конструирования. В графических редакторах появилась возможность создавать библиотеки типовых элементов, оформлять чертежи и другую документацию в соответствии со стандартами ЕСКД.

Постепенно в промышленном проектировании стало применяться трехмерное моделирование. Кроме лучшего визуального представления проектируемых изделий, ЗD-графика на порядок повышает точность проектирования составных объектов, позволяет легко редактировать трехмерную модель. Ассоциативная связь, устанавливаемая в инженерных ЗD-системах между моделью изделия, его чертежами, а также документацией на изделие (например, спецификацией), позволяет при внесении изменений в ЗD-модель автоматически отобразить все эти изменения в других документах, связанных с моделью.

В данной лекции в рамках курса «Инженерная геометрия и графика» рассматривается применение ЗD-модслирования только для решения геометрических задач.

Материал лекции рассчитан на студентов, прошедших ознакомительные лабораторные работы в объеме 10 часов и освоивших графический редактор и приемы плоского черчения в системе КОМПАС.

В связи с ограниченностью объема данного издания рассматривается порядок построения моделей лишь простых геометрических фигур — призмы, пирамиды, цилиндра, конуса, сферы, а также моделей взаимно пересекающихся фигур. Конечной целью построений является создание чертежа, содержащего 3 проекции смоделированного объекта со всеми линиями пересечений.

Основные команды построения трехмерных моделей

Система KOMПAC-3D является наиболее приближенной к требованиям стандартов ЕСКД, изучаемых в курсе «Инженерная геометрия и графика», поэтому вопросы трехмерного моделирования далее рассматриваются на основе этой системы. Все операции по созданию и редактированию трехмерных моделей системы КОМПАС-ЗО предназначены для работы с твердыми телами.

Твердое тело — область трехмерного пространства, состоящая из однородного материала и ограниченная замкнутой поверхностью, которая сформирована из одной или нескольких граней. Любое твердое тело состоит из базовых трехмерных элементов: граней, ребер и вершин (рис. 9.1).

Контур формы тела определяется плоской фигурой, называемой эскизом, а сама форма создается путем перемещения этого эскиза в пространстве (вращение вокруг оси, выдавливание перпендикулярно плоскости эскиза, перемещение по траектории и пр.).

Начертательная геометрия задачи с решением

Эскиз — это обычное двухмерное изображение, размещенное на плоскости в трехмерном пространстве. В эскизе могут присутствовать любые графические элементы.

Последовательность построения эскиза для формообразующей операции такова:

  1. Выделяется в дереве построения плоскость, на которой планируется разместить эскиз (плоскость может быть стандартной или вспомогательной).
  2. Открывается эскиз (кнопка Начертательная геометрия задачи с решением) на панели инструментов Текущее состояние. Модель изменит ориентацию таким образом, чтобы выбранная плоскость разместилась параллельно экрану (т. е. по нормали к линии взгляда).
  3. После запуска процесса создания эскиза компактная панель инструментов изменит свой вид. На ней будут доступны панели инструментов с командами для двухмерных построений. В этом режиме создается эскиз изображения. Для завершения еще раз нажимается кнопка Эскиз.

Все команды для построения и редактирования объемной детали расположены на панели инструментов Редактирование детали (рис. 9.2).

Начертательная геометрия задачи с решением

Все трехмерные операции в КОМПАС-ЗЭ делятся на основные (формообразующие) и дополнительные. Основные операции включают команды для добавления и удаления материала детали, булевы операции. Дополнительные операции представляют собой команды для реализации конструкторских элементов на детали (фаски, скруглсния, отверстия, ребра жесткости и т. д.).

Существует три основных способа формирования трехмерных элементов:

  1. Выдавливание. Форма трехмерного элемента образуется путем смещения эскиза операции (рис. 9.3) строго по нормали к его плоскости. Эскизом может быть один замкнутый контур;
  2. Вращение. Формообразующий элемент является результатом вращения эскиза (рис. 9.4) в пространстве вокруг произвольной оси. Вращение может происходить на угол 360° или меньше. Ось вращения не должна пересекать изображение эскиза!
  3. Кинематическая операция. Поверхность элемента формируется в результате перемещения эскиза операции вдоль произвольной трехмерной кривой (рис. 9.5). Эскиз должен содержать обязательно замкнутый контур, а траектория перемещения начинаться в плоскости эскиза.
Начертательная геометрия задачи с решением

В контекстном меню (правая клавиша мыши) для каждой операции с трехмерными элементами есть несколько полезных команд:

  • Удалить — удаляет трехмерный элемент из модели и дерева построения. При удалении определенного элемента из детали его эскиз не удаляется, но удаляются все зависящие от него трехмерные элементы (операции);
  • Скрыть — управляет отображением элемента детали, выбранного в дереве построения. После выполнения данной команды элемент будет скрыт в модели;
  • Исключить из расчета — исключает из расчета выбранную операцию, вследствие чего модель перестраивается так, как будто исключенной операции вообще нет в модели.

При редактировании эскиза трехмерная операция, в которую он входит, а также все операции в модели, следующие за этой операцией в дереве построения, блокируются (становятся недоступными). Данные операции нельзя выделить, изменить до тех пор, пока не будет завершено редактирование эскиза. После выхода из режима редактирования эскиза все эти операции будут перестроены с учетом изменений в эскизе.

Построение модели призмы

Рассмотрим построение трехмерной модели призмы, часть которой отсечена несколькими плоскостями частного положения. На рис. 9.6 в качестве исходных данных приведены две проекции призмы с необходимыми размерами.

Сразу после запуска программы КОМПАС появляется окно Выбор типа создаваемого документа (рис. 9.7).
В диалоговом окне Новый документ выбирается тип файла Деталь Начертательная геометрия задачи с решением Этот документ содержит трехмерное изображение (ЗD-модель) объекта, сформированного при помощи формообразующих операций (выдавливание, вырезание, булевы операции).

Начертательная геометрия задачи с решением

Система создаст новый документ, при этом главное меню и панели инструментов будут иметь вид, представленный на рис. 9.8.

Команды, необходимые для моделирования, можно выбирать в главном меню (Системное меню — Операции на рис. 9.8) или на компактной панели инструментов под кнопкой Начертательная геометрия задачи с решением.

Расположение инструментальных панелей на рис. 9.8 дано для режима настройки «по умолчанию», т. е. как предлагают разработчики системы. Пользователь может перемещать панели в любое удобное для него место экрана, но в этом случае расположение кнопок выполняемых в дальнейшем команд не будет совпадать с приведенными в лекции примерами.

Начертательная геометрия задачи с решением

Кратко рассмотрим этапы построения модели призмы.

  1. Открыть в дереве модели Начало координат.
  2. Выбрать плоскость Начертательная геометрия задачи с решением.
  3. Перейти в режим Эскиза Начертательная геометрия задачи с решением
  4. Построить тонкой линией окружность диаметром 120 мм. Ориентацию эскиза не трогать и не менять!
  5. Построить основной линией равносторонний треугольник, вписанный в эту окружность. Окружность удалить.
  6. Выйти из режима Эскиза (повторно нажать на знак Начертательная геометрия задачи с решением).
  7. В дереве модели указать этот эскиз, выбрать команду Редактирование детали Начертательная геометрия задачи с решением и операцию Выдавливание Начертательная геометрия задачи с решением
  8. В строке Свойства задать Направление Прямое и размеры призмы: Расстояние 1 (высота): 120 мм.
  9. Завершить операцию, нажав на кнопку Начертательная геометрия задачи с решением в строке Свойства.
  10. Указать команду Ориентация Начертательная геометрия задачи с решением и установить Вид Спереди. Закрыть окно, нажав Выход.
  11. В дереве модели выбрать Плоскость Начертательная геометрия задачи с решением.
  12. Перейти в режим Эскиз Начертательная геометрия задачи с решением
  13. Открыть инструментальную панель Геометрия Начертательная геометрия задачи с решением Непрерывную линию и построить на призме контур сечения, соблюдая размеры, указанные в задании (рис. 9.9). В этом режиме деталь можно уменьшать (увеличивать) колесиком мыши, а для перемещения дополнительно нажимать клавишу Shift. Контур обязательно должен быть замкнутым.
Начертательная геометрия задачи с решением
  1. Выйти из режима Эскиз (повторно нажать на знак Начертательная геометрия задачи с решением).
  2. В дереве модели указать этот эскиз, а на панели Редактирование детали выбрать Вырезать выдавливанием (кнопка Начертательная геометрия задачи с решением).
  3. В строке Свойства указать Направление Два направления и размеры: Расстояние 1: 60 мм, Расстояние 2: 60 мм. Модель можно повернуть, наблюдая за изменениями секущих плоскостей.
  4. Завершить операцию, нажав на кнопку Начертательная геометрия задачи с решением в строке Свойства.
  5. На призме должен сформироваться вырез, соответствующий построенному контуру (рис. 9.10). Проверить правильность полученных видов, выбрав в команде Ориентация Вид Спереди (установить), Сверху (установить), Слева (установить). Выйти из команды (Выход) и сохранить модель. После того как получена модель призмы, можно перейти к автоматизированному построению чертежа, содержащему три стандартных вида призмы — спереди, сверху и слева. Для получения этого чертежа необходимо выполнить следующие команды.
  1. Выбрать в основном меню: Файл — Создать — Чертеж.
  2. Изменить формат чертежа с А4 на A3 с помощью менеджера Начертательная геометрия задачи с решением
  3. Открыть окно Виды или выбрать в меню Вставка модели — Стандартные.
  4. В открывшемся окне выбрать файл с моделью призмы и открыть его.
Начертательная геометрия задачи с решением
  1. В строке Свойства выбрать схему видов и изменить расстояние между видами с 15 мм (по умолчанию) на 50 мм по горизонтали и 25 мм по вертикали (рис. 9.11).
  2. В этой же строке Свойства нажать кнопку Линии и включить Невидимые линии и Линии переходов.
  3. Разместить виды в центре чертежа (рис. 9.12) и нажать Начертательная геометрия задачи с решением
  4. Достроить оси на всех видах. Номер вида выбирается в строке Текущее состояние Начертательная геометрия задачи с решением(обычно находится в верхней части экрана). Виды являются ассоциативно связанными и никакие изменения на них не допускаются. Можно редактировать только модель
  5. Обозначить точки на линиях пересечения на всех проекциях, подписать вершины основания призмы. Заполнить основную надпись.
Начертательная геометрия задачи с решением
Начертательная геометрия задачи с решением

Построение развертки боковой поверхности призмы

Компьютерные системы проектирования позволяют строить развертки различными способами. Здесь рассмотрим один из возможных вариантов.

  1. Построить модель призмы.
  2. Создать новый чертеж. Для этого выбрать команды Файл — Создать — Чертеж.
  3. Изменить формат чертежа с А4 на A3 с помощью менеджера документа Начертательная геометрия задачи с решением
  4. Вернуться к модели призмы.
  5. Выбрать боковую грань и построить относительно ее смещенную плоскость: Операции — Плоскости — Смещенная плоскость — Расстояние 1 мм.
  6. Завершить операцию, нажав на кнопку в строке Свойства.
  7. Указать в дереве построений эту плоскость и перейти в режим Эскиз Начертательная геометрия задачи с решением.
  8. Построить основной линией контур этой грани со всеми вырезами (рис. 9.13).
  9. Обвести контур рамкой и скопировать его в буфер, указав точку привязки на этой грани (в любом месте, потом эта точка будет использоваться для вставки на чертеже развертки).
  10. Выйти из режима Эскиз (повторно нажать на кнопку Начертательная геометрия задачи с решением).
  11. Перейти в окно с чертежом развертки и выполнить вставку скопированной грани на поле чертежа.
  12. Вернуться к модели призмы.
  13. Выбрать следующую боковую грань и построить относительно ее еще одну смещенную плоскость: Операции — Плоскости — Смещенная плоскость — Расстояние 1 мм.
  14. Завершить операцию, нажав на Начертательная геометрия задачи с решением в строке Свойства.
  15. Указать в дереве построений эту плоскость и перейти в режим Эскиз Начертательная геометрия задачи с решением
  16. Открыть инструментальную панель Геометрия Начертательная геометрия задачи с решением , выбрать Непрерывную линию и построить основной линией контур грани. В этом режиме деталь можно уменьшать или увеличивать колесиком мыши, а для перемещения необходимо дополнительно нажимать клавишу Shift.
  17. Обвести контур рамкой и скопировать его в буфер, указав точку привязки на этой грани (в любом месте).
  18. Выйти из режима Эскиз (повторно нажать на кнопку Начертательная геометрия задачи с решением).
  19. Перейти в окно с чертежом развертки и выполнить вставку скопированной грани на поле чертежа.
  20. Повторить приведенные выше операции столько раз, сколько граней на призме.
  21. На чертеже должна сформироваться развертка, содержащая столько прямоугольников, сколько боковых граней в призме (рис. 9.14).

Линии, разделяющие внутренние сгибы развертки должны иметь специальную форму — штрихпунктирные с двумя точками, как показано на рис. 9.14.

В завершении необходимо обозначить точки на линии пересечения граней плоскостями и подписать вершины основания призмы.

Построение развертки боковой поверхности любой фигуры в системах КОМПАС-ЗD версий 15 и выше возможно с помощью команд библиотеки Машиностроение (Механика) -Оборудование — Развертки Начертательная геометрия задачи с решением Эта библиотека входит в отдельный пакет MCAD, устанавливаемый вместе с системой КОМПАС.

Начертательная геометрия задачи с решением
Начертательная геометрия задачи с решением

Построение модели пирамиды, усеченной плоскостями

На рис. 9.15 представлен чертеж-задание пирамиды, усеченной плоскостями. Порядок построения модели пирамиды следующий.

  1. Выбрать Файл — Создать — Деталь.
  2. Открыть в дереве модели Начало координат и выбрать Плоскость Начертательная геометрия задачи с решением.
  3. Создать эскиз на этой плоскости, для этого нажать кнопку Начертательная геометрия задачи с решением , построить треугольник основания, вписанный в окружность диаметром 120 мм.
  4. Выйти из эскиза Начертательная геометрия задачи с решением .
  5. Выделить этот эскиз в дереве построений, включить Выдавливание Начертательная геометрия задачи с решением и выдавить треугольник на высоту 120 мм. Направление Прямое. Расстояние 1: 120 мм. Угол внутрь: 14-15°. Угол может быть другой, надо следить за вершиной, чтобы получить одну точку (рис. 9.16).
  6. В верхнем меню Ориентация выбрать Вид Спереди (нажать Установить и Выход).
  7. В дереве модели выбрать плоскость Начертательная геометрия задачи с решением.
  8. Включить Эскиз Начертательная геометрия задачи с решением и на этой плоскости построить контур сечения пирамиды плоскостями (по заданным размерам). Контур строить Непрерывной линией. Линия контура должна быть замкнутой (рис. 9.17).
  9. Выйти из эскиза Начертательная геометрия задачи с решением
  10. Выбрать этот эскиз в дереве модели и указать операцию. Вырезать выдавливанием Начертательная геометрия задачи с решением
  11. Для выдавливания выбрать Два направления, расстояния примерно 30 мм. Завершить операцию, нажав Начертательная геометрия задачи с решением на строке Свойства.
  12. Проверить соответствие видов: в меню Ориентация выбрать Вид Сверху (установить), Слева (установить).
  13. Сохранить модель.

Теперь создадим чертеж построенной модели. Для этого следует выполнить следующие действия.

  1. Выбрать в основном меню: Файл — Создать — Чертеж. Установить формат чертежа A3.
  2. Выбрать Вставка — Вид — Вид с модели — Стандартные. В открывшемся окне выбрать файл модели пирамиды и открыть его.
  3. Графический редактор КОМПАС-ЗD предложит стандартную схему построения чертежа из 3 видов: Спереди, Сверху и Слева. Изменять схему не нужно, надо только расширить расстояние между проекциями: в строке Свойства (в нижней части экрана) выбрать кнопку Схема и задать расстояния по горизонтали 50 мм, а по вертикали 25 мм.
  4. Выбрать отрисовку невидимых линий: для этого на панели свойств открыть вкладку Линии и включить Невидимые. Завершить построение, нажав Начертательная геометрия задачи с решением. Начертить оси.
  5. Обозначить вершины пирамиды, точки на линии сечения на всех проекциях.
  6. Заполнить основную надпись и сохранить чертеж.
  7. Распечатать чертеж, используя масштаб 99 (режим Обрезать по размеру страницы).
Начертательная геометрия задачи с решением

Построение модели цилиндра, пересеченного плоскостями

На рис. 9.18 приведен чертеж-задание для построения модели цилиндра. Процедура построения модели цилиндра состоит из следующих этапов.

Начертательная геометрия задачи с решением
  1. Выбрать в основном меню: Файл — Создать — Деталь.
  2. Открыть в дереве модели Начало координат.
  3. Выбрать плоскость Начертательная геометрия задачи с решением.
  4. Перейти в режим Эскиз Начертательная геометрия задачи с решением
  5. Построить окружность диаметром 120 мм. Ориентацию не трогать и не менять!
  6. Выйти из режима Эскиз (нажать на кнопку Начертательная геометрия задачи с решением).
  7. В дереве модели указать этот эскиз, затем выбрать команду Редактирование детали Начертательная геометрия задачи с решением и Выдавливание Начертательная геометрия задачи с решением.
  8. В строке Свойства задать Направление Прямое и размеры цилиндра: Расстояние 1 (высота): 120 мм.
  9. Завершить операцию, нажав на Начертательная геометрия задачи с решением в строке Свойства.
  10. Указать команду Ориентация Начертательная геометрия задачи с решением и установить Вид Спереди. Закрыть окно, нажав Выход.
  11. В дереве модели выбрать плоскость Начертательная геометрия задачи с решением.
  12. Перейти в режим Эскиз Начертательная геометрия задачи с решением
  13. Открыть инструментальную панель Геометрия Начертательная геометрия задачи с решением и построить на цилиндре контур сечения, соблюдая размеры, указанные в задании (рис. 9.19). В этом режиме деталь можно уменьшать или увеличивать колесиком мыши, а для перемещения дополнительно нажимать клавишу Shift. Контур обязательно должен быть замкнутым.
  14. Выйти из режима Эскиз (нажать на знакНачертательная геометрия задачи с решением).
  15. На панели Редактирование детали выбрать команду Вырезать выдавливанием (кнопка 1Mb). В дереве модели указать последний эскиз.
  16. В строке свойств указать Направление Два направления, Расстояние 1: 60 мм и Расстояние 2: 60 мм. Модель можно повернуть, рассматривая вырез со всех сторон. Рис. 9.19
  17. Завершить операцию, нажав Начертательная геометрия задачи с решением.
  18. На цилиндре должен сформироваться вырез, соответствующий заданному контуру (рис. 9.20). Проверить правильность полученных видов, выбрав в команде Ориентация Вид Спереди (установить), Сверху (установить), Слева (установить). Выйти из команды (Выход) и сохранить модель.
Начертательная геометрия задачи с решением
Начертательная геометрия задачи с решением

После того как построена модель цилиндра, можно приступить к формированию чертежа, содержащего 3 стандартных вида объекта.

  1. Выбрать в основном меню: Файл — Создать — Чертеж. Изменить формат чертежа с А4 на A3 с помощью менеджера документа Начертательная геометрия задачи с решением
  2. Открыть окно Виды или выбрать в меню Вставка — Вид — Вид с мо-дели — Стандартные.
  3. В открывшемся окне выбрать файл с моделью цилиндра и открыть его.
  4. В строке свойств выбрать схему видов и изменить расстояние между видами с 15 мм (по умолчанию) на 50 мм по горизонтали и 25 мм по вертикали.
  5. В этой же строке свойств нажать кнопку Линии и включить Невидимые линии и Линии переходов.
  6. Расставить виды на поле чертежа и нажать Начертательная геометрия задачи с решением.
  7. Достроить оси на каждом виде и обозначить точки на линиях пересечения на всех проекциях. Номер вида выбирается из строки Текущее состояние. Виды являются ассоциативно связанными и никакие изменения на видах не допускаются. Можно редактировать только модель.

Построение трехмерной модели конуса с горизонтальным и вертикальным отверстиями

Большинство реальных технических деталей имеет форму в виде взаимно пересекающихся геометрических тел — конических, призматических, цилиндрических и др. Построению таких тел посвящено много задач дисциплины «Инженерная геометрия и графика». Здесь рассмотрим один из способов построения подобных тел на примере модели усеченного конуса с двумя взаимно перпендикулярными сквозными отверстиями (рис. 9.21).

Процедура построений следующая.

  1. Выбрать в основном меню: Файл — Создать — Деталь.
  2. Открыть в дереве модели Начало координат и выбрать плоскость Начертательная геометрия задачи с решением.
  3. Перейти в режим Эскиз Начертательная геометрия задачи с решением
  4. Построить окружность диаметром 110 мм. Ориентацию не трогать и не менять!
  5. Выйти из режима Эскиз (повторно нажать кнопку Начертательная геометрия задачи с решением).
  6. В дереве модели указать этот эскиз, выбрать команду Редактирование детали Начертательная геометрия задачи с решением и Выдавливание Начертательная геометрия задачи с решением
  7. В строке Свойства задать Направление Прямое и размеры конуса: Расстояние 1 (высота): 120 мм, Уклон внутрь: 12°. Рис. 9.21
  8. Завершить операцию, нажав на Начертательная геометрия задачи с решением в строке свойств.

9-1. Проверить полученное верхнее основание конуса (оно должно иметь диаметр 60 мм). Для этого построить смещенную плоскость относительно плоскости Начертательная геометрия задачи с решением на расстоянии 120 мм. На этой плоскости построить эскиз Начертательная геометрия задачи с решением, содержащий окружность диаметром 60 мм.

9-2. Выйти из эскиза, нажав Начертательная геометрия задачи с решением

9-3. При необходимости изменить диаметр верхнего основания конуса, подвести курсор в дереве модели к ранее выполненной операции выдавливания — Операция выдавливания: 1, нажать правую кнопку мыши, выбрать в контексном меню команду Редактировать и изменить угол выдаваливания, чтобы диаметр основания соответствовал диаметру окружности на смещенной плоскости.

9-4. Завершить операцию, нажав на Начертательная геометрия задачи с решением в строке свойств.

  1. Указать команду Ориентация Начертательная геометрия задачи с решением и установить Вид Спереди. Закрыть окно, нажав Выход.
  2. В дереве модели выбрать плоскость Начертательная геометрия задачи с решением.
    содержащий окружность диаметром 60 мм.
  3. Перейти в режим Эскиз (нажать кнопку Начертательная геометрия задачи с решением).
  4. Открыть инструментальную панель Геометрия Начертательная геометрия задачи с решением построить на этой плоскости окружность диаметром 70 мм (рис. 9.22).
  5. Выйти из режима Эскиза (нажать кнопку Начертательная геометрия задачи с решением).
  6. На панели Редактирование детали выбрать Вырезать выдавливанием (кнопка Начертательная геометрия задачи с решением).
  7. В строке свойств указать Направление Два направления, Расстояние 1: 70 мм и Расстояние 2: 70 мм. Модель можно повернуть, наблюдая за линией пересечения.
  8. Завершить операцию, нажав на Начертательная геометрия задачи с решением в строке свойств.
Начертательная геометрия задачи с решением
Начертательная геометрия задачи с решением
Начертательная геометрия задачи с решением
  1. На конусе образуется сквозное горизонтальное отверстие.
  2. Осталось построить сквозное вертикальное отверстие. Для этого выбрать построенную ранее смещенную плоскость относительно основания на 120 мм. На этой плоскости в режиме эскиза построить окружность диаметром 50 мм (рис. 9.23).
  3. Выйти из эскиза и вырезать выдавливанием Начертательная геометрия задачи с решением сквозное вертикальное отверстие в конусе.
  4. Завершить операцию, нажав на Начертательная геометрия задачи с решением в строке свойств.
  5. Проверить правильность полученных видов, выбрав команду Ориентация и Вид Спереди (установить), Сверху (установить), Слева (установить).
  6. Выйти из команды (Выход) и сохранить модель.

Создание чертежа из модели конуса

  1. Выбрать в основном меню: Файл — Создать — Чертеж.
  2. Изменить формат чертежа с А4 на A3 с помощью менеджера документа.
  3. Открыть окно Виды или выбрать в меню Вставка — Вид — Вид с модели — Стандартные.
  4. В открывшемся окне выбрать файл с моделью конуса и открыть его.
  5. В строке свойств выбрать Схему видов и изменить расстояние между видами с 15 мм (по умолчанию) на 50 мм по горизонтали и 25 мм по вертикали.
  6. В этой же строке свойств нажать кнопку Линии и включить Невидимые линии и Линии переходов.
  7. Расставить виды на поле чертежа и нажать Начертательная геометрия задачи с решением.
  8. Достроить оси на каждом виде и обозначить точки на линиях пересечения на всех проекциях. Виды являются ассоциативно связанными и никакие изменения на видах не допускаются. Можно редактировать только трехмерную модель.
  9. Заполнить основную надпись.

Вопросы для контроля

  1. Какую роль выполняет эскиз при построении трехмерных моделей?
  2. На какой плоскости располагается эскиз?
  3. Перечислите основные команды создания объемных моделей и их свойства.
  4. Из каких геометрических элементов можно построить сферу? Какие операции используются для построения сферы?

Готовые задачи с решением по начертательной геометрии

Начертательная геометрия представляет собой раздел геометрии, занимающийся изучением форм предметов реального мира и абстрактных закономерностей с использованием «плоских эквивалентов многомерного пространства»- чертежей.

Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу!

Начертательная геометрия является одной из базовых учебных дисциплин в вузах и колледжах России. Однако методы ее преподавания и изучения до сих пор практически не претерпели изменений: те же лекции с традиционной линейкой, те же практические занятия с заготовками для задач в рабочих тетрадях, все те же ветшающие в библиотеках старые учебники, которых все более и более не хватает.

В этой связи содержание начертательной геометрии можно свести к следующим двум основным вопросам:

  • разработке способов построения изображений (чертежей) пространственных фигур на двумерной плоскости;
  • изучению способов решения и исследования пространственных задач при помощи «плоских эквивалентов» (чертежей).

Начертательная геометрия является одной из базовых учебных дисциплин в вузах и колледжах России. Однако методы ее преподавания и изучения до сих пор практически не претерпели изменений: те же лекции с традиционной линейкой, те же практические занятия с заготовками для задач в рабочих тетрадях, все те же ветшающие в библиотеках старые учебники, которых все более и более не хватает.

Построение проекции плоского контура по заданному условию

  • Метод проекции и свойства
  • Точка в системе плоскостей проекций h v и w
  • Прямые общего и частных положений относительно плоскостей проекций
  • Деление отрезка в заданном отношении на чертеже
  • Взаимное положение двух прямых
  • Теорема о проекции прямого угла

Задача №1.

Построить проекции плоского контура по заданному условию. Задача имеет два варианта условий.

Варианты 1-15: построить фронтальную и горизонтальную проекции ромба Задачи по начертательной геометрии с диагоналями Задачи по начертательной геометрии и Задачи по начертательной геометрии по заданному условию: вершина ромба, точка Задачи по начертательной геометрии, дана, а диагональ Задачи по начертательной геометрии лежит на заданной прямой уровня Задачи по начертательной геометрии вторая диагональ ромба Задачи по начертательной геометрии равна 130 мм и проходит через заданную точку Задачи по начертательной геометрии. Диагональ ромба Задачи по начертательной геометрии определяется построениями. Определить углы наклона диагонали ромба Задачи по начертательной геометрии к плоскостям проекций Задачи по начертательной геометрии и Задачи по начертательной геометрии.

Варианты 16-30: построить проекции квадрата Задачи по начертательной геометрии с диагоналями Задачи по начертательной геометрии и Задачи по начертательной геометрии но заданному условию: вершина квадрата, точка Задачи по начертательной геометрии, дана, а диагональ Задачи по начертательной геометрии лежит на заданной прямой Задачи по начертательной геометрии; вторая диагональ квадрата проходит через заданную точку Задачи по начертательной геометрии. Диагонали квадрата определяются построениями. Определить углы наклона диагонали квадрата Задачи по начертательной геометрии к плоскостям проекций Задачи по начертательной геометрии и Задачи по начертательной геометрии.

Данные всех вариантов представлены координатами Задачи по начертательной геометрии и Задачи по начертательной геометрии точек Задачи по начертательной геометрии и Задачи по начертательной геометрии в табл. 4.1.

На образце показан пример решения задачи 1 по условию вариантов 1-15, т.е. построены проекции ромба Задачи по начертательной геометрии.

Для решения задачи рассмотрим ромб как геометрическую фигуру: диагонали ромба перпендикулярны и точкой пересечения (точка Задачи по начертательной геометрии) делятся пополам.

Задачи по начертательной геометрии

По заданным в табл. 4.1 координатам точек построить на левой половине листа 1 графическое условие задачи: проекции фронтальной прямой уровня Задачи по начертательной геометрии и проекции точки Задачи по начертательной геометрии. В левом верхнем углу выполнить таблицу с координатами точек своего варианта.

План графических действий для решения задачи 1 :

1-е действие. Построить фронтальную и горизонтальную проекции прямой общего положения Задачи по начертательной геометрии, проходящей через точку Задачи по начертательной геометрии, на которой будет лежать диагональ ромба Задачи по начертательной геометрии:

-фронтальная проекция Задачи по начертательной геометрии точки пересечения диагоналей ромба определяется на пересечении фронтальных проекций заданной прямой уровня Задачи по начертательной геометрии и построенной прямой Задачи по начертательной геометрии, а ее горизонтальная Задачи по начертательной геометрии проекция построена по линии связи на проекции Задачи по начертательной геометрии прямой Задачи по начертательной геометрии;

горизонтальная проекция прямой Задачи по начертательной геометрии проходит через горизонтальные проекции точек Задачи по начертательной геометрии и Задачи по начертательной геометрии.

2-е действие. Построить на прямой общего положения Задачи по начертательной геометрии проекции отрезка Задачи по начертательной геометрии (половина второй диагонали ромба Задачи по начертательной геометрии, построение см. на рис. 4.11 и 4.12), т.е. построить проекции вершины Задачи по начертательной геометрии ромба.

3-е действие. Построить проекции вершин ромба Задачи по начертательной геометрии и Задачи по начертательной геометрии. отложив на диагоналях от точки Задачи по начертательной геометрии отрезки, равные построенным проекциям половин диагоналей Задачи по начертательной геометрии и Задачи по начертательной геометрии.

4-е действие. Достроить проекции ромба Задачи по начертательной геометрии, соединив прямыми линиями построенные проекции его вершин.

5-е действие. Определить углы наклона половины диагонали ромба — отрезка Задачи по начертательной геометрии к плоскостям проекций Задачи по начертательной геометрии и Задачи по начертательной геометрии: построить натуральную величину отрезка Задачи по начертательной геометрии способом прямоугольного треугольника относительно горизонтальной Задачи по начертательной геометрии проекции этого отрезка и определить искомые углы:

-угол Задачи по начертательной геометрии наклона отрезка Задачи по начертательной геометрии к плоскости проекций Задачи по начертательной геометрии определяется между проекцией Задачи по начертательной геометрии половины диагонали и гипотенузой Задачи по начертательной геометрии построенного прямоугольного треугольника Задачи по начертательной геометрии;

Построение фронтальной и горизонтальной проекции линии пересечения двух плоскостей общего положения

  • Различные способы задания плоскости на чертеже
  • Прямые особого положения в плоскости
  • Положение плоскости относительно плоскостей проекций
  • Проведение плоскости частного положения через прямую общего положения
  • Взаимное положение двух плоскостей, примой линии и плоскости

Задача №2.

Построить фронтальную и горизонтальную проекции линии пересечения двух плоскостей общего положения. Задача имеет два варианта графических условий.

Варианты 1-15: построить проекции линии пересечения двух плоскостей общего положения Задачи по начертательной геометрии и Задачи по начертательной геометрии, заданных треугольными отсеками.

Варианты 16-30: построить проекции линии пересечения треугольника Задачи по начертательной геометрии и параллелограмма Задачи по начертательной геометрии, предварительно достроив проекции вершины Задачи по начертательной геометрии параллелограмма.

Данные всех вариантов представлены координатами Задачи по начертательной геометрии, точек Задачи по начертательной геометрии Задачи по начертательной геометрии и Задачи по начертательной геометрии в табл. 4.2.

На образце дан пример решении задачи 2 но графическому условию вариантов 1-15.

Поскольку проекции заданных плоскостей общего положения Задачи по начертательной геометрии и Задачи по начертательной геометрии на чертеже накладываются, то для построения линии их пересечения используем графический алгоритм построения точки пересечения прямой общего положения с плоскостью общею положения, изложенный выше (см. описания к рис. 4.37 и 4.38). Графические действия алгоритма следует выполнить дважды, гак как прямая пересечения плоскостей проходит через две общие точки.

План графических действий для решения задачи 2:

Построить точку Задачи по начертательной геометрии пересечения прямой Задачи по начертательной геометрии с плоскостью Задачи по начертательной геометрии:

1-е действие. Заключить прямую Задачи по начертательной геометрии (сторону треугольника Задачи по начертательной геометрии) во вспомогательную фронтально-проецирующую плоскость Задачи по начертательной геометрии и обозначить ее фронтальный след Задачи по начертательной геометрии.

2-е действие. Построить проекции линии пересечения Задачи по начертательной геометрии вспомогательной плоскости Задачи по начертательной геометрии с другим треугольником Задачи по начертательной геометрии.

3-е действие. Определить проекции точки пересечения Задачи по начертательной геометрии стороны Задачи по начертательной геометрии с плоскостью Задачи по начертательной геометрии, продлив горизонтальную проекцию построенной вспомогательной линии Задачи по начертательной геометрии до пересечения с горизонтальной Задачи по начертательной геометрии проекцией стороны Задачи по начертательной геометрии.

II. Повторить графические действия алгоритма и построить проекции второй точки Задачи по начертательной геометрии пересечения прямой Задачи по начертательной геометрии с плоскостью Задачи по начертательной геометрии, заключив ее во вспомогательную горизонтально-проецирующую плоскость Задачи по начертательной геометрии. и обозначить ее горизонтальный след Задачи по начертательной геометрии; соединить прямыми одноименные проекции построенных точек (в пределах треугольников можно рассматривать линию Задачи по начертательной геометрии).

4-е действие. Определить относительную видимость плоскостей Задачи по начертательной геометрии и Задачи по начертательной геометрии. рассмотрев две пары конкурирующих точек: точки 1-5 для определения видимости на фронтальной проекции и точки 3-6 для определения видимости на горизонтальной проекции.

!!! Внимание! К листу 1 выполнить приложение, изложив на листах писчей бумаги планы решения задач 1 и 2.

Для решения задач 3 и 4 следует усвоить материал начертательной геометрии по теме.

Тема 2:

  • перпендикулярность прямой и плоскости;
  • теорема о проекции прямого угла (см. рис. 4.17, 4.18. 4.19 — повторить);
  • перпендикулярность плоскостей.

Перпендикулярности прямой и плоскости

Решение задач на тему перпендикулярности прямой и плоскости основано на двух теоремах геометрии:

1-я теорема: если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

2-я теорема: о проекции прямого угла (изложена выше — см. рис. 4.17, 4.18 и 4.19 к листу 1) — если одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то на эту плоскость проекций угол проецируется прямым.

Из этих двух теорем следует, что на чертеже проекции перпендикуляра к плоскости можно провести только к проекциям фронтали и горизонтали, то есть к двум пересекающимся прямым уровня, которые можно провести в плоскости.

!!! Запомните:

Задачи на тему перпендикулярности прямой и плоскости можно разделить натри группы:

1-я группа. Провести от точки, лежащей в плоскости, перпендикуляр в пространство.

2-я группа. Провести из точки, не лежащей в плоскости, перпендикуляр к этой плоскости.

3-я группа. Построить плоскость, перпендикулярную к прямой общего положения (построить геометрическое место точек — ГМТ).

Задачи по начертательной геометрии

Первая группа задач требует по условию проведения перпендикуляра от плоскости (восстановить перпендикуляр) в пространство (рис. 4.39).

В этой группе задач требуется, как правило, построить на проведенном перпендикуляре проекции отрезка заданной величины Графические действия по построению проекций отрезка заданной величины на проекциях прямой общего положения изложены ранее (см. рис. 4.12 к листу 1).

На рис. 4.39 показано решение примерной задачи первой группы: построить плоскость Задачи по начертательной геометрии параллельную заданной плоскости Задачи по начертательной геометрии, на расстоянии 15 мм.

Эта задача относится к первой группе, поскольку для построения параллельной плоскости Задачи по начертательной геометрии нужно предварительно построить произвольную точку на расстоянии 15 мм от заданной плоскости Задачи по начертательной геометрии, то есть из произвольной точки плоскости провести перпендикуляр в пространство.

Для решения задачи требуется выполнить следующий графический алгоритм :

1-е действие. Провести в заданной плоскости общего положения Задачи по начертательной геометрии проекции фронтали Задачи по начертательной геометрии и горизонтали Задачи по начертательной геометрии:

2-е действие. Провести от точки плоскости, например, от вершины Задачи по начертательной геометрии в пространство проекции перпендикуляра Задачи по начертательной геометрии:

3-е действие. На проекциях перпендикуляра Задачи по начертательной геометрии построить проекции отрезка заданной величины 15 мм. для чего выполнить следующие графические действия:

  1. Ограничить построенную прямую Задачи по начертательной геометрии произвольным отрезком Задачи по начертательной геометрии.
  2. Построить натуральную величину этого отрезка (см. рис. 4.11) способом прямоугольного треугольника — это гипотенуза Задачи по начертательной геометрии.
  3. На построенной гипотенузе отложить заданную величину Задачи по начертательной геометрии и построить проекции отрезка Задачи по начертательной геометрии заданной величины (см. построения), т.е. проекции точки Задачи по начертательной геометрии, находящейся на расстоянии 15 мм от плоскости Задачи по начертательной геометрии.

4-е действие. Построить плоскость Задачи по начертательной геометрии, параллельную заданной плоскости Задачи по начертательной геометрии, проведя через проекции точку Задачи по начертательной геометрии две пересекающиеся прямые Задачи по начертательной геометрии и Задачи по начертательной геометрии, соответственно параллельные двум пересекающимся прямым Задачи по начертательной геометрии и Задачи по начертательной геометрии плоскости Задачи по начертательной геометрии:

К первой группе относится задача 3 графической работы № 2.

Вторая группа задач требует по условию проведения перпендикуляра из точки в пространстве к плоскости (опустить перпендикуляр). В этой группе задач, как правило, требуется построить точку пересечения построенного перпендикуляра с заданной плоскостью.

Построение точки пересечения прямой общего положения с плоскостью общего положения было рассмотрено выше (см. рис. 4.37).

На рис. 4.40 показано решение примерной задачи второй группы: определить расстояние от точки Задачи по начертательной геометрии до заданной плоскости Задачи по начертательной геометрии.

Эта задача относится ко второй группе, так как расстояние от точки Задачи по начертательной геометрии до заданной плоскости Задачи по начертательной геометрии определяется величиной перпендикуляра, проведенного из точки к плоскости.

Для решения задачи требуется выполнить следующий графический алгоритм:

1-е действие. Провести в плоскости фронталь Задачи по начертательной геометрии и горизонталь Задачи по начертательной геометрии.

2-е действие. Провести через заданную точку Задачи по начертательной геометрии проекции перпендикуляра Задачи по начертательной геометрии к плоскости Задачи по начертательной геометрии:

Задачи по начертательной геометрии перпендикулярноЗадачи по начертательной геометрии;

Задачи по начертательной геометрии перпендикулярно Задачи по начертательной геометрии.

Задачи по начертательной геометрии

3-е действие. Построить точку пересечения Задачи по начертательной геометрии перпендикуляра Задачи по начертательной геометрии с заданной плоскостью общего положения Задачи по начертательной геометрии. выполнив промежуточный графический алгоритм:

  1. Заключить прямую Задачи по начертательной геометрии во вспомогательную горизонтально-проецирующую плоскость Задачи по начертательной геометрии
  2. Построить вспомогательную линию пересечения 3-4 заданной плоскости Задачи по начертательной геометрии со вспомогательной плоскостью Задачи по начертательной геометрии:
  1. Определить проекции искомой точки пересечения Задачи по начертательной геометрии на пересечении проекций построенной вспомогательной линии пересечения 3-4 с проекциями перпендикуляра Задачи по начертательной геометрии.

4-е действие. Построить натуральную величину отрезка Задачи по начертательной геометрии способом прямоугольного треугольника, то есть определить расстояние от точки Задачи по начертательной геометрии до плоскости Задачи по начертательной геометрии.

Ко второй группе относится задача 4 графической работы № 2.

Третья группа задач требует по условию построения некоторой вспомогательной плоскости (геометрического места точек), перпендикулярной к прямой общего положения. Эту перпендикулярную плоскость можно задать двумя пересекающимися прямыми, каждая из которых должна быть перпендикулярна прямой общего положения (теорема о перпендикулярности прямой и плоскости, т.е. признак перпендикулярности прямой и плоскости). На чертеже плоскость, перпендикулярную к прямой общего положения, можно задать только проекциями пересекающихся прямых уровня — фронтальной (параллельной плоскости проекций Задачи по начертательной геометрии и горизонтальной (параллельной плоскости Задачи по начертательной геометрии), что соответствует теореме о проекции прямого угла. В задачах этой группы, как правило, требуется по условию определить точку пересечения заданной прямой со вспомогательной перпендикулярной плоскостью.

Па рис. 4.41 показано решение примерной задачи третьей группы: определить расстояние от точки Задачи по начертательной геометрии до прямой общего положения Задачи по начертательной геометрии.

Эта задача относится к третьей группе, поскольку на чертеже провести перпендикуляр к прямой общего положения, но которому определяется расстояние от точки Задачи по начертательной геометрии до заданной прямой Задачи по начертательной геометрии. нельзя (прямой угол в этом случае не проецируется

Задачи по начертательной геометрии

прямым). Следовательно, для решения нужно построить вспомогательную плоскость Задачи по начертательной геометрии, перпендикулярную к заданной прямой, которая будет геометрическим местом всех перпендикуляров к этой прямой.

Для решения задачи требуется выполнить следующий графический алгоритм:

1-е действие. Построить вспомогательную плоскость Задачи по начертательной геометрии, перпендикулярную заданной прямой Задачи по начертательной геометрии, задав ее двумя пересекающимися прямыми уровня Задачи по начертательной геометрии и Задачи по начертательной геометрии:

2-е действие. Построить точкуЗадачи по начертательной геометриипересечения заданной прямой Задачи по начертательной геометрии со вспомогательной плоскостью Задачи по начертательной геометрии по алгоритму построения точки пересечения прямой общего положения с плоскостью общего положения (см. рис. 4.40).

3-е действие. Соединить одноименные проекции точек Задачи по начертательной геометрии и Задачи по начертательной геометрии: полученный отрезок общего положения Задачи по начертательной геометрии и есть расстояние от точки до прямой, искаженное на проекциях по величине.

4-е действие. Построить натуральную величину построенного отрезка Задачи по начертательной геометрии способом прямоугольного треугольника (см. рис. 4.40).

Образец выполнения листа 2 с задачами 3 и 4 показан на рис. 4 42, а и б. Задачи выполнить на формате A3 чертежной бумаги

Задача №3. выполняется на левой половине поля чертежа.

По заданному условию своего варианта построить графическое условие задачи: фронтальную и горизонтальную проекции плоскости общего положения Задачи по начертательной геометрии — основания прямой призмы (рассматривается решение задачи по условию вариантов 1-15).

Рассмотрим прямую правильную призму. Из геометрии известно: ребра и основания у любой призмы равны и параллельны, ау прямой призмы -ребра перпендикулярны основанию.

План графических действий решения задачи:

1-е действие. Провести в плоскости Задачи по начертательной геометрии проекции фронтали Задачи по начертательной геометрии и горизонтали Задачи по начертательной геометрии.

2-е действие. Провести проекции перпендикуляраЗадачи по начертательной геометрии из вершины Задачи по начертательной геометрии плоскости основания в пространство, т.е. построить направление ребер призмы.

3-е действие. Построить на перпендикуляре Задачи по начертательной геометрии проекции отрезка Задачи по начертательной геометрии заданной величины 65 мм, т.е. проекции ребра призмы.

4-е действие. Провести из вершин основания Задачи по начертательной геометрии и Задачи по начертательной геометрии прямые, параллельные и равные построенному отрезку Задачи по начертательной геометрии. и достроить второе основание призмы.

5-е действие. Определить относительную видимость граней призмы на ее проекциях по конкурирующим точкам.

Задача №4. выполняется на правой половине поля чертежа.

По заданному условию своего варианта построить графическое условие задачи: фронтальные и горизонтальные проекции плоскости общего положения Задачи по начертательной геометрии и отрезка общего положения Задачи по начертательной геометрии (рассматривается решение задачи по условию вариантов 16-30).

Задачи по начертательной геометрии

Заданная плоскость общего положения Задачи по начертательной геометрии по условию задачи является плоскостью проекций, и проецирующие лучи из концов отрезка Задачи по начертательной геометрии должны быть перпендикулярны этой плоскости.

План графических действий для решения задачи:

1-е действие. Провести в заданной плоскости Задачи по начертательной геометрии фронталь Задачи по начертательной геометрии и горизонталь Задачи по начертательной геометрии.

2-е действие. Провести проекции перпендикуляров (проецирующих лучей) из конечных точек Задачи по начертательной геометрии и Задачи по начертательной геометрии отрезка к плоскости Задачи по начертательной геометрии.

3-е действие. Построить точки Задачи по начертательной геометрии и Задачи по начертательной геометрии пересечения перпендикуляров-лучей с плоскостью проекций Задачи по начертательной геометрии, полученные проекции отрезка Задачи по начертательной геометрии, лежащего в плоскости проекций Задачи по начертательной геометрии, и есть прямоугольная проекция отрезка Задачи по начертательной геометрии на эту его плоскость.

!!! Внимание. К листу 2 выполнить приложение, изложив на листах писчей бумаги планы решения задач 3 и 4.

Задача №5. Задача имеет два варианта графических условий.

Варианты 1-15. Построить проекции центра окружности, описанной вокруг плоскости общего положения, заданной треугольником Задачи по начертательной геометрии, способом замены плоскостей проекций.

Варианты 16-30. Построить проекции центра сферы, вписанной в плоский угол Задачи по начертательной геометрии, способом -замены плоскостей проекций.

Задача №6. Задача имеет два варианта графических условий.

Варианты 1-15. Построить натуральную величину заданного треугольника Задачи по начертательной геометрии (из задачи 5) способом вращения вокруг линии уровня — фронтали или горизонтали (линия уровня указана для каждого варианта в табл. 4.4).

Варианты 16-30. Построить натуральную величину заданного угла Задачи по начертательной геометрии (из задачи 5) способом вращения вокруг линии уровня (указана для каждого варианта в табл. 4.4).

Данные всех вариантов представлены координатами Задачи по начертательной геометрии и Задачи по начертательной геометрии точек Задачи по начертательной геометрии и Задачи по начертательной геометрии в табл. 4.4.

Задачи по начертательной геометрии
Задачи по начертательной геометрии

Задание прямых линий и плоскостей в частных положениях относительно плоскостей проекций

Задание прямых линии и плоскостей в частных положениях относительно плоскостей проекций значительно упрощает построения и решение различных задач. Существует несколько способов преобразования чертежа, которые позволяют переходить от общих положений геометрических элементов в условиях задач к частным. Рассмотрим эти способы.

I. Способ замены (перемены) плоскостей проекции:

Способ замены плоскостей проекций даст возможность изменить общие положения прямых и плоскостей относительно плоскостей проекций Н или V на частные положения введением дополнительных плоскостей проекций.

Сущность способа:

  • положение предмета в пространстве не меняется, а изменяется положение плоскостей проекций относительно этого предмета так. чтобы в дополнительной системе плоскостей проекций предмет занял частное положение (проецирующее или положение уровня), удобное для решения задачи;
  • проецирование предмета на дополнительные плоскости проекций выполняется по методу Г. Монжа — методу параллельного прямоугольного проецирования на взаимно перпендикулярные плоскости, то есть сохраняется взаимная перпендикулярность основных и дополнительных плоскостей проекций.

На рис. 4.43 изображена наглядная картина построения фронтальной проекции отрезка Задачи по начертательной геометрии на дополнительную плоскость проекций Задачи по начертательной геометрии.

Образована дополнительная система перпендикулярных плоскостей проекций Задачи по начертательной геометрии с новой осью проекции Задачи по начертательной геометрии. Обратите внимание, что координаты Задачи по начертательной геометрии фронтальных проекций Задачи по начертательной геометрии и Задачи по начертательной геометрии конечных точек отрезка на дополнительной плоскости Задачи по начертательной геометрии равны координатам Задачи по начертательной геометрии фронтальных проекций Задачи по начертательной геометрии и Задачи по начертательной геометрии точек в заданной системе Задачи по начертательной геометрии. Для получения чертежа дополнительную плоскость Задачи по начертательной геометрии поворачивают вокруг новой оси проекций Задачи по начертательной геометрии до совмещения с плоскостью проекций Задачи по начертательной геометрии.

Задачи по начертательной геометрии

На рис. 4.44 показан чертеж (эпюр) произвольного преобразования отрезка Задачи по начертательной геометрии общего положения двумя последовательными заменами плоскостей проекций, для чего выполнены следующие графические действия:

I замена.

1-е действие. Введена первая дополнительная система Задачи по начертательной геометрии, ось проекций Задачи по начертательной геометрии которой расположена произвольно на поле чертежа.

2-е действие. Построена в дополнительной плоскости проекций Задачи по начертательной геометрии фронтальная проекция Задачи по начертательной геометрии отрезка Задачи по начертательной геометрии:

II замена.

3-е действие. Введена вторая дополнительная система Задачи по начертательной геометрии, ось проекций Задачи по начертательной геометрии которой расположена произвольно на поле чертежа.

4-е действие. В дополнительной плоскости проекций Задачи по начертательной геометрии построена горизонтальная проекция Задачи по начертательной геометрии отрезка Задачи по начертательной геометрии:

Поскольку на рис. 4.44 рассмотрен пример произвольного, без всяких условий, двойного преобразования прямой общего положения, то и в первой, и во второй дополнительных системах этот отрезок преобразовался также в прямую общего положения.

Для преобразования прямой или плоскости общего положения в прямую или плоскость частного положения рассмотрим четыре основные задачи преобразования способом замены плоскостей проекций, применяемые как отдельные графические действия для решения различных задач.

Задачи по начертательной геометрии

Задача №1. Преобразовать прямую общего положения в прямую уровня.

На рис. 4.45 показано преобразование прямой общего положения Задачи по начертательной геометрии во фронтальную прямую уровня. Для решения задачи выполнен следующий графический алгоритм:

1-е действие. Ввести дополнительную систему плоскостей проекций Задачи по начертательной геометрии расположив ось проекций Задачи по начертательной геометрии параллельно горизонтальной проекции Задачи по начертательной геометрииЗадачи по начертательной геометрии отрезка Задачи по начертательной геометрии.

2-е действие. Построить фронтальную проекцию Задачи по начертательной геометрии отрезка в дополнительной плоскости Задачи по начертательной геометрии по координатам Задачи по начертательной геометрии, взятым из предыдущей системы Задачи по начертательной геометрии.

В результате преобразования отрезок Задачи по начертательной геометрии в дополнительной системе занял положение, параллельное дополнительной плоскости проекций Задачи по начертательной геометрии, т.е. преобразовался во фронтальную прямую уровня. Следовательно, построены также натуральная величина отрезка и угол его наклона Задачи по начертательной геометрии к плоскости проекций Задачи по начертательной геометрии.

Задачи по начертательной геометрии

Па рис 4.46 показано преобразование прямой общего положения Задачи по начертательной геометрии в горизонтальную прямую уровня. Для решения задачи введена дополнительная система плоскостей проекций Задачи по начертательной геометрии Задачи по начертательной геометрииЗадачи по начертательной геометрии и выполнены аналогичные графические действия.

Задача №2. Преобразовать прямую уровня в проецирующую прямую.

На рис. 4.47 показано преобразование фронтальной прямой Задачи по начертательной геометрии в горизонтально-проецирующую прямую. Для решения задачи выполнен следующий графический алгоритм:

1-е действие. Ввести дополнительную систему плоскостей проекций Задачи по начертательной геометрии расположив ось проекций Задачи по начертательной геометрии перпендикулярно фронтальной проекции Задачи по начертательной геометрии отрезка Задачи по начертательной геометрии.

2-е действие. Построить горизонтальные совпадающие проекции Задачи по начертательной геометрии и Задачи по начертательной геометрии точек Задачи по начертательной геометрии и Задачи по начертательной геометрии отрезка в дополнительной плоскости проекций Задачи по начертательной геометрии по координатам Задачи по начертательной геометрии взятым из предыдущей системы Задачи по начертательной геометрии.

В результате преобразования горизонтальный отрезок Задачи по начертательной геометрии в дополнительной системе занял положение, перпендикулярное

дополнительной плоскости проекций Задачи по начертательной геометрии, т.е. преобразовался в горизонтально-проецирующую прямую.

На рис. 4 48 показано преобразование горизонтальной прямой уровня Задачи по начертательной геометрии во фронтально-проецирующую прямую. Для решения задачи введена дополнительная система плоскостей проекций Задачи по начертательной геометрии и выполнены аналогичные графические действия.

Задачи по начертательной геометрии

Задачи №3. Преобразование плоскости общею положения в проецирующую плоскость.

Чтобы понять сущность графических действий этого преобразования, напомним, что у проецирующих плоскостей, перпендикулярных Задачи по начертательной геометрии или Задачи по начертательной геометрии, одна из линий уровня -или фронталь, или горизонталь — является проецирующей прямой.

На рис. 4.49 показано, что у горизонтально-проецирующей плоскости Задачи по начертательной геометрии, горизонтальная проекция которой вырождается в линию, фронталь плоскости Задачи по начертательной геометрии занимает положение горизонтально-проецирующей прямой, т.е. она перпендикулярна плоскости проекций Задачи по начертательной геометрии (горизонтальная проекция Задачи по начертательной геометрии вырождается в точку).

На рис 4.50 показано, что у фронтально-проецирующей плоскости Задачи по начертательной геометрии, фронтальная проекция которой вырождается в линию, горизонталь плоскости Задачи по начертательной геометрии занимает положение фронтально-проецирующей прямой, т.е. она перпендикулярна фронтальной плоскости проекций Задачи по начертательной геометрии (ее фронтальная проекция Задачи по начертательной геометрии вырождается в точку).

Задачи по начертательной геометрии
Задачи по начертательной геометрии
Задачи по начертательной геометрии

На рис. 4.51 преобразование плоскости положения во фронтально-проецирующую плоскость Для решения задачи выполнен следующий графический алгоритм:

1-е действие. Провести в плоскости Задачи по начертательной геометрии проекции горизонтали Задачи по начертательной геометрии.

2-е действие. Ввести дополнительную систему плоскостей Задачи по начертательной геометрии расположив ось проекций Задачи по начертательной геометрии перпендикулярно горизонтальной проекции Задачи по начертательной геометрии горизонтали плоскости.

3-е действие. Построить в дополнительной плоскости проекций Задачи по начертательной геометрии фронтальную проекцию Задачи по начертательной геометрии плоскости Задачи по начертательной геометрии по координатам Задачи по начертательной геометрии, взятым (проекция плоскости выродилась в прямую).

В результате преобразования плоскость общего положения Задачи по начертательной геометрии в дополнительной системе заняла положение, перпендикулярное дополнительной плоскости проекций Задачи по начертательной геометрии, т.е. преобразовалась во фронтально-проецирующую. Следовательно, построен также угол наклона Задачи по начертательной геометрии плоскости Задачи по начертательной геометрии к плоскости проекций Задачи по начертательной геометрии.

На рис. 4.52 показано преобразование плоскости общего положения Задачи по начертательной геометрии в горизонтально-проецирующую плоскость. Для решения задачи в плоскости проведены проекции фронтали Задачи по начертательной геометрии. Введена дополнительная система плоскостей Задачи по начертательной геометрии ось Задачи по начертательной геометрии которой перпендикулярна фронтальной проекции Задачи по начертательной геометрии фронтали плоскости, и выполнены аналогичные графические действия.

Задача №4. Преобразовать проецирующую плоскость в плоскость уровня.

На рис. 4.53 показано преобразование фронтально-проецирующей плоскости Задачи по начертательной геометрии в горизонтальную плоскость уровня. Для решения задачи выполнен следующий графический алгоритм.

Задачи по начертательной геометрии

1-е действие. Ввести дополнительную систему плоскостей проекций Задачи по начертательной геометрии расположив ось проекций Задачи по начертательной геометрии параллельно вырожденной фронтальной проекции Задачи по начертательной геометрии плоскости Задачи по начертательной геометрии.

2-е. действие. Построить горизонтальную проекцию Задачи по начертательной геометрии в дополнительной плоскости Задачи по начертательной геометрии по координатам Задачи по начертательной геометрии, взятым из предыдущей системы Задачи по начертательной геометрии.

В результате преобразования фронтально-проецирующая плоскость Задачи по начертательной геометрии в дополнительной системе заняла положение, параллельное дополнительной плоскости проекций Задачи по начертательной геометрии т.е. преобразовалась в горизонтальную плоскостью уровня. Следовательно, построена натуральная величина этой плоскости.

На рис. 4.54 показано преобразование горизонтально-проецирующей плоскости Задачи по начертательной геометрии во фронтальную плоскость уровня. Для решения задачи введена дополнительная система Задачи по начертательной геометрии и выполнены аналогичные графические действия.

II. Способ вращения вокруг проецирующей оси (фронтально-проецирующей или горизонтально-проецирующей прямой):

Сущность способа в том, что предмет, занимающий общее положение относительно плоскостей проекций, вращают вокруг проецирующей оси, изменяя его положение в пространстве так, чтобы предмет занял частное положение относительно тех же плоскостей проекций, т.е. стал перпендикулярным (проецирующим) либо параллельным (уровня) плоскости проекций Задачи по начертательной геометрии или Задачи по начертательной геометрии.

На рис. 4.55 показана наглядная картина способа на примере вращения точки Задачи по начертательной геометрии вокруг фронтально-проецирующей оси Задачи по начертательной геометрии.

Точка Задачи по начертательной геометрии перемещается в положение вращаясь по окружности Задачи по начертательной геометрии вокруг фронтально-проецирующей оси Задачи по начертательной геометрии в некоторой плоскости Задачи по начертательной геометрии, перпендикулярной плоскости проекций Задачи по начертательной геометрии.

На плоскость проекций Задачи по начертательной геометрии эта окружность проецируется в прямую вращения Задачи по начертательной геометрии.

Па плоскость проекций Задачи по начертательной геометрии окружность Задачи по начертательной геометрии вращения точки Задачи по начертательной геометрии проецируется в окружность Задачи по начертательной геометрии с центром в точке Задачи по начертательной геометрии, которая является вырожденной проекцией фронтально-проецирующей оси вращения Задачи по начертательной геометрии.

Задачи по начертательной геометрии

Па рис. 4.56 и 4.57 показаны примеры применения способа вращения вокруг проецирующей оси для построения натуральной величины отрезка Задачи по начертательной геометрии общего положения

На чертеже натуральную величину имеют прямые уровня, параллельные плоскости проекций Задачи по начертательной геометрии или Задачи по начертательной геометрии (профильную прямую не рассматриваем). Характерный признак прямых уровня на чертеже — одна из проекций параллельна оси проекций Задачи по начертательной геометрии: горизонтальная проекция для фронтальной прямой и фронтальная проекция для горизонтальной прямой.

Следовательно, для решения задачи отрезок Задачи по начертательной геометрии общего положения нужно повернуть (вращать) вокруг проецирующей оси так. чтобы он занял положение, параллельное плоскости проекций Задачи по начертательной геометрии или Задачи по начертательной геометрии.

Для решения задачи выполнен следующий графический алгоритм:

1-е действие. Выбрать ось вращения Задачи по начертательной геометрии, проходящую через любую конечную точку отрезка (на рис 4.56 фронтально-проецирующая ось вращения проведена через точку Задачи по начертательной геометрии, и обозначить се проекции Задачи по начертательной геометрии на чертеже.

2-е действие. Повернуть фронтальную проекцию точки Задачи по начертательной геометрии вокруг оси Задачи по начертательной геометрии по часовой стрелке (можно против) так, чтобы фронтальная проекция отрезка Задачи по начертательной геометрии заняла горизонтальное положение Задачи по начертательной геометрии параллельное оси проекций Задачи по начертательной геометрии.

3-е действие. Построить натуральную проекцию Задачи по начертательной геометрии отрезка Задачи по начертательной геометрии, переместив горизонтальную проекцию точки Задачи по начертательной геометрии перпендикулярно горизонтальной проекции оси вращения Задачи по начертательной геометрии (параллельно оси проекций Задачи по начертательной геометрии) до пересечения с вертикальной линией связи от точки Задачи по начертательной геометрии.

Задачи по начертательной геометрии

В результате преобразования отрезок Задачи по начертательной геометрии занял положение горизонтальной прямой уровня.

!!! Конечная точка отрезка Задачи по начертательной геометрии при вращении остается неподвижной, так как лежит на оси вращения Задачи по начертательной геометрии.

Задачи по начертательной геометрии

На рис. 4.57 показано построение натуральной величины отрезка общего положения Задачи по начертательной геометрии вращением вокруг горизонтально-проецирующей оси аналогичными графическими действиями (отрезок Задачи по начертательной геометрии занял положение фронтальной прямой уровня).

Плоскопараллельное перемещение

Частный случай способа крашения вокруг проецирующей оси — вращение предмета без указания на чертеже осей вращения, который называют способом плоскопараллельного перемещения. Способ удобен тем, что повернутые вокруг предполагаемой проецирующей оси проекции предмета перемещают и располагают на свободном поле чертежа без взаимного их наложения.

На рис. 4.58 показано построение натуральной величины плоскости общего положения, заданной треугольником ABC, способом плоскопараллельного перемещения.

Для решения задачи плоскость Задачи по начертательной геометрии должна занять положение плоскости уровня — или фронтальной Задачи по начертательной геометрии, или горизонтальной Задачи по начертательной геометрии. Следовательно, плоскость нужно вращать и одновременно перемешать по полю чертежа, чтобы она последовательно заняла сначала проецирующее положение, а затем положение плоскости уровня.

Для двух последовательных преобразований нужно выполнить следующий графический алгоритм.

Задачи по начертательной геометрии

Первое перемещение. Плоскость общего положения Задачи по начертательной геометрии вращением вокруг предполагаемой, например, горизонтально-проецирующей, оси преобразовать во фронтально-проецирующую плоскость, выполнив следующие графические действия:

1-е действие. Провести в плоскости горизонталь Задачи по начертательной геометрии.

2-е действие. Повернуть горизонтальную проекцию Задачи по начертательной геометрии треугольника, вращая вокруг предполагаемой горизонтально-проецирующей оси (например, проходящей через точку Задачи по начертательной геометрии) и одновременно перемещая вправо на свободное поле чертежа так, чтобы горизонталь Задачи по начертательной геометрии плоскости заняла положение фронтально-проецирующей прямой, т.е. Задачи по начертательной геометрии должна расположиться перпендикулярно оси Задачи по начертательной геометрии. Повернутую проекцию треугольника Задачи по начертательной геометрии относительно проекции горизонтали /Задачи по начертательной геометрии построить с помощью дуговых засечек, на пересечении которых определяются вершины.

3-е действие. Построить фронтальную проекцию Задачи по начертательной геометрии треугольника, переместив заданные фронтальные Задачи по начертательной геометрии проекции вершин треугольника параллельно оси проекций Задачи по начертательной геометрии до пересечения с вертикальными линиями связи от точек Задачи по начертательной геометрии и Задачи по начертательной геометрии повернутой проекции: фронтальная проекция выродилась в линию, т.е. треугольник преобразовался во фронтально-проецирующую плоскость.

Второе перемещение. Плоскость фронтально-проецирующую вращением вокруг предполагаемой фронтально-проецирующей оси преобразовать в горизонтальную плоскость уровня, продолжая графические действия.

4-е действие. Повернуть построенную вырожденную проекцию Задачи по начертательной геометрии треугольника, вращая вокруг предполагаемой фронтально-проецирующей оси, проходящей через точку Задачи по начертательной геометрии, и одновременно перемещая вправо на свободное ноле чертежа так, чтобы эта проекция расположилась параллельно оси проекций Задачи по начертательной геометрии: проекция Задачи по начертательной геометрии оси Задачи по начертательной геометрии.

5-е Действие. Построить новую горизонтальную проекцию Задачи по начертательной геометрии треугольника, переместив горизонтальные проекции Задачи по начертательной геометрии и Задачи по начертательной геометрии вершин треугольника параллельно оси проекций Задачи по начертательной геометрии до пересечения вертикальными линиями связи от фронтальных проекций Задачи по начертательной геометрии и Задачи по начертательной геометрии вершин; построенная горизонтальная проекция Задачи по начертательной геометрии треугольника и есть его натуральная величина, так как после второго перемещения треугольник преобразовался в горизонтальную плоскость уровня.

III. Способ вращения вокруг прямой уровня — горизонтальной или фронтальной прямой.

Сущность способа в том, что плоскость общего положения изменяет свое положение в пространстве относительно плоскостей проекций вращением вокруг линии уровня до положения, параллельного плоскости проекций Задачи по начертательной геометрии (или Задачи по начертательной геометрии).

На рис. 4.59 показана наглядная картина вращения плоскости общего положения Задачи по начертательной геометрии вокруг горизонтальной прямой. Пусть сторона Задачи по начертательной геометрии, треугольника Задачи по начертательной геометрии, лежит в плоскости Задачи по начертательной геометрии, параллельной плоскости проекций Задачи по начертательной геометрии. и является горизонтальной прямой Задачи по начертательной геометрии, вокруг которой и будет повернута плоскость Задачи по начертательной геометрии.

Задачи по начертательной геометрии

Поскольку вершины Задачи по начертательной геометрии и Задачи по начертательной геометрии треугольника лежат на оси вращения Задачи по начертательной геометрии и, следовательно, неподвижны, то требуется повернуть вокруг прямой уровня Задачи по начертательной геометрии только вершину Задачи по начертательной геометрии так, чтобы она совместилась с плоскостью Задачи по начертательной геометрии. Вершина Задачи по начертательной геометрии вращается вокруг горизонтальной прямой Задачи по начертательной геометрии (стороны Задачи по начертательной геометрии) в плоскости Задачи по начертательной геометрии перпендикулярной оси вращения Задачи по начертательной геометрии.

После поворота треугольник Задачи по начертательной геометрии лежит в плоскости Задачи по начертательной геометрии и, следовательно. параллелен плоскости Задачи по начертательной геометрии. Точка Задачи по начертательной геометрии имеет радиус вращения Задачи по начертательной геометрии и на плоскость у этот радиус проецируется в натуральную величину.

Рассмотрим проекцию этой картины на плоскость проекций Задачи по начертательной геометрии. На горизонтальной проекции видно, что натуральную величину Задачи по начертательной геометрии треугольника Задачи по начертательной геометрии определяет натуральная величина радиуса вращения Задачи по начертательной геометрии точки Задачи по начертательной геометрии.

На рис. 4.60 показано построение на чертеже натуральной величины плоскости Задачи по начертательной геометрии способом вращения вокруг-горизонтальной прямой уровня Задачи по начертательной геометрии. В ком случае выполняется вращение горизонтальной проекции Задачи по начертательной геометрии треугольника, т.е. вращение выполняется относительно плоскости проекций, которой параллельна ось вращения.

Для решения задачи выполнен следующий графический алгоритм:

1-е действие. К заданной плоскости Задачи по начертательной геометрии провести проекции горизонтали Задачи по начертательной геометрии, которая является осью вращения.

2-е действие. Провести следы плоскостей Задачи по начертательной геометрии и Задачи по начертательной геометрии перпендикулярно Задачи по начертательной геометрии в которых будут вращаться вершины Задачи по начертательной геометрии и Задачи по начертательной геометрии вокруг оси вращения Задачи по начертательной геометрии точка Задачи по начертательной геометрии будет неподвижна, так как лежит на оси вращения.

3-е действие. Определить проекции отрезка Задачи по начертательной геометрии, т.е. радиуса Задачи по начертательной геометрии вращения точки Задачи по начертательной геометрии вокруг горизонтали Задачи по начертательной геометрии, и построить любым рассмотренным графическим способом натуральную величину радиуса вращения Задачи по начертательной геометрии. В примере натуральная величина Задачи по начертательной геометрии построена способом вращения отрезка общего положения Задачи по начертательной геометрии вокруг фронтально-проецирующей оси, вырожденная проекция которой совпадает с проекцией точки Задачи по начертательной геометрии (см. рис. 4.56).

Задачи по начертательной геометрии

4-е действие. Построенную натуральную величину радиуса вращения Задачи по начертательной геометрии повернуть и расположить на следе плоскости Задачи по начертательной геометрии в которой вращается точка Задачи по начертательной геометрии треугольника, построив вершину Задачи по начертательной геометрии в повернутом положении.

5-е действие. Достроить повернутую проекцию треугольника Задачи по начертательной геометрии, определив повернутую проекцию Задачи по начертательной геометрии вершины Задачи по начертательной геометрии на пересечении следа плоскости вращения Задачи по начертательной геометрии с прямой, проходящей через точки Задачи по начертательной геометрии и Задачи по начертательной геометрии, т.е. натуральную величину радиуса вращения для точки Задачи по начертательной геометрии определять нет необходимости: ее повернутое положение Задачи по начертательной геометрии определяется графическим построением.

В результате преобразования проекция Задачи по начертательной геометрии треугольника заняла положение, параллельное горизонтальной плоскости проекций Задачи по начертательной геометрии, и, следовательно, определяет его натуральную величину

!!! Построение на чертеже натуральной величины плоскости Задачи по начертательной геометрии вращением вокруг фронтальной прямой уровня Задачи по начертательной геометрии выполняется аналогичными графическими действиями, только вращать следует фронтальную проекцию Задачи по начертательной геометрии треугольника, так как ось вращения Задачи по начертательной геометрии параллельна фронтальной плоскости проекций. Треугольник после вращения занимает положение фронтальной плоскости уровня, которая определяет его натуральную величину.

Образец выполнения листа 3 с задачами 5 и 6 показан на рис. 4 61, а и Г). Задачи выполнить на одном листе формата A3 чертежной бумаги

Задача №5 имеет два варианта графических условий:

Варианты 1-15. Построить проекции центра окружное!и, описанной вокруг плоскости общего положения Задачи по начертательной геометрии, способом замены плоскостей проекций.

Bарианты 16-30. Построить проекции центра сферы радиусом 20 мм, вписанной в плоский угол Задачи по начертательной геометрии, способом замены плоскостей проекций.

Задача №6 имеет два варианта графических условий:

Варианты 1-15. Построить натуральную величину заданной плоскости общего положения Задачи по начертательной геометрии , способом вращения вокруг линии уровня — фронтали или горизонтали (линия уровня указана для каждого варианта в табл. 4.4).

Варианты 1 6-30. Построить натуральную величину заданного угла Задачи по начертательной геометрии способом вращения вокруг линии уровня (указана для каждого варианта в табл. 4.4).

Данные для своего варианта взять из табл. 4.4. Условия всех вариантов представлены координатами Задачи по начертательной геометрии и Задачи по начертательной геометрии точек Задачи по начертательной геометрии и Задачи по начертательной геометрии.

По заданным координатам точек построить на левой и правой половине поля чертежа графическое условие задач — проекции плоскости общего положения, заданной треугольником Задачи по начертательной геометрии. В таблице для каждого варианта указаны линии, относительно которых нужно выполнять преобразование чертежа для 5-й и 6-й задач.

План графических действий для решения задачи 5 (по вариантам 1-15).

Для определения центра окружности, описанной вокруг заданного треугольника Задачи по начертательной геометрии, плоскость треугольника должна занять положение плоскости уровня -горизонтальной или фронтальной. Преобразовать плоскость общего положения в плоскость уровня можно двумя последовательными заменами плоскостей проекций (см. задачи 3 и 4 преобразования способом замены, рис. 4.51-4.54). Для решения задачи выполнены следующие графические действия:

Задачи по начертательной геометрии

Вторая замена.

2-е действие Ввести первую дополнительную систему плоскостей проекций Задачи по начертательной геометрии, расположив ось проекций Задачи по начертательной геометрии перпендикулярно фронтальной проекции фронтали Задачи по начертательной геометрии.

3-е действие. Построить горизонтальную проекцию Задачи по начертательной геометрии на дополнительной плоскости Задачи по начертательной геометрии по координатам у из системы Задачи по начертательной геометрии. Плоскость Задачи по начертательной геометрии спроецировалась в прямую (выродилась в линию), т.е. преобразовалась в горизонтально-проецирующую плоскость, перпендикулярную дополнительной плоскости проекций Задачи по начертательной геометрии.

4-е действие. Ввести вторую дополнительную систему плоскостей проекций Задачи по начертательной геометрии и расположив ось проекций Задачи по начертательной геометриипараллельно построенной (вырожденной) проекции треугольника Задачи по начертательной геометрии.

5-е действие. Построить фронтальную проекцию плоскости Задачи по начертательной геометрии на дополнительной плоскости проекций Задачи по начертательной геометрии по координатам Задачи по начертательной геометрии из предыдущей системы Задачи по начертательной геометрии: построенная проекция Задачи по начертательной геометрии является натуральной величиной треугольника Задачи по начертательной геометрии, так как плоскость преобразовалась во фронтальную плоскость уровня, параллельную дополнительной плоскости проекций Задачи по начертательной геометрии.

6-е действие. Определить центр окружности (точку Задачи по начертательной геометрии), описанной вокруг треугольника Задачи по начертательной геометрии, который находится на пересечении перпендикуляров, проведенных через середины сторон треугольника,

7-е действие. Обратным проецированием определить проекции построенного центра описанной окружности Задачи по начертательной геометрии на заданных проекциях треугольника, используя вспомогательную линию Задачи по начертательной геометрии, на которой лежит точка Задачи по начертательной геометрии.

План графических действий для решения задачи 6 (по вариантам I 15).

Натуральную величину определяет только плоскость уровня. Следовательно, заданную плоскость общего положения Задачи по начертательной геометрии нужно преобразовать вращением вокруг линии уровня в плоскость уровня, например, в горизонтальную. Для решения задачи на чертеже выполнены следующие графические действия

1-е действие. Провести в заданной плоскости Задачи по начертательной геометрии проекции горизонтали Задачи по начертательной геометрии следовательно, вращать следует горизонтальную проекцию Задачи по начертательной геометрии треугольника.

2-е действие. Провести следы плоскостей Задачи по начертательной геометрии и Задачи по начертательной геометрии, в которых будут вращаться точки Задачи по начертательной геометрии и Задачи по начертательной геометрии перпендикулярно горизонтальной проекции горизонтали Задачи по начертательной геометрии.

3-е действие. Определить проекции отрезка Задачи по начертательной геометрии, т.е. проекции радиуса вращения Задачи по начертательной геометрии точки Задачи по начертательной геометрии вокруг горизонтали Задачи по начертательной геометрии, и построить способом вращения вокруг фронтально проецирующей оси Задачи по начертательной геометрии натуральную величину отрезка Задачи по начертательной геометрии.

4-е действие. Построенную натуральную величину радиуса Задачи по начертательной геометрии повернуть и расположить на следе плоскости Задачи по начертательной геометрии, в которой вращается точка Задачи по начертательной геометрии построив вершину Задачи по начертательной геометрии.

5-е действие. Достроить повернутую проекцию Задачи по начертательной геометрии треугольника Задачи по начертательной геометрии, которая определяет его натуральную величину. Вершина Задачи по начертательной геометрии определяется на пересечении следа плоскости Задачи по начертательной геометрии и прямой, проходящей через точки Задачи по начертательной геометрии и Задачи по начертательной геометрии (без построения натуральной величины Задачи по начертательной геометрии).

!!! Внимание. К листу 3 выполнить приложение, изложив на листах писчей бумаги планы решения задач 5 и 6.

Многогранники, призма и пирамиды

Многогранником называют геометрическое тело, поверхность которого ограничена плоскостями (гранями). Многогранник называют четырех-, пяти-, шестигранником и т.д. по количеству граней (включая основания), образующих его поверхность На чертеже многогранник задают проекциями его граней и ребер (ребро — линия пересечения граней).

Рассмотрим призму и пирамиду — геометрические многогранники (тела), которые часто применяются при формообразовании различных деталей. Основанием призмы и пирамиды может быть любой многоугольник, по количеству сторон которого призму и пирамиду называют треугольной, четыреч-угольной и т.д. Такое название более соответствует изображению этих много-гранников на чертеже, по которому определяется многоугольник основания, что позволяет создать в воображении соответствующий пространственный образ.

Призма как геометрическое тело имеет два параллельных основания, боко-вые грани и параллельные ребра. Призму называют правильной, если ее основаниями являются правильные многоугольники, вписанные в окружность. Призму называю! прямой, если ее ребра перпендикулярны основанию, и наклонной, если ребра не перпендикулярны основанию

Пирамида как геометрическое тело имеет одно основание и вершину, обьединяющую все ее ребра. Пирамиду называю! правильной, если ее основанием является правильный многоугольник, вписанный в окружность, а высота пирамиды проходит через центр этой окружности (т.е. пирамида прямая).

Пирамида может быть наклонной, если основание высоты не лежит в центре окружности, в которую вписан многоугольник основания пирамиды. Пирамида со срезанной вершиной имеет два основания и называется усеченной.

  • Построение проекций прямой правильной призмы
  • Построение проекции правильной пирамиды
  • Построение проекции точек, лежащих на поверхности пирамиды
  • Построение проекций пирамиды со срезами плоскостями частного положения

Задача №7.

Построить фронтальную, горизонтальную и профильную проекции прямой правильной призмы со срезами плоскостями частного положения по заданному условию.

Задача №8.

Построить фронтальную, горизонтальную и профильную проекции правильной пирамиды со срезами плоскостями частного положения по заданному условию.

Задачи 7 и 8 выполнить на одном листе формата A3 чертежной бумаги.

Графические условия вариантов задач 7 и 8 взять из табл. 4.5.

План графических действий для решения задачи 7 (рис. 4.66, а) соответствует предложенному графическому алгоритму (к рис. 4.64).

1-е действие. На левой половине чертежа построить тонкими сплошными линиями фронтальную, горизонтальную и профильную проекции прямой правильной призмы без срезов по графическому условию и размерам шестиугольную призму заданной высоты Задачи по начертательной геометрии. Затем выполнить на ее фронтальной проекции заданные срезы плоскостями частного положения: срезы фронтально-проецирующей плоскостью Задачи по начертательной геометрии и профильной плоскостью Задачи по начертательной геометрии и сквозной паз. образованный двумя симметричными фронтально-проецирующими плоскостями Задачи по начертательной геометрии.

Задачи по начертательной геометрии

Базовую ось (б.о.) на горизонтальной проекции и базовую ось Задачи по начертательной геометрии для профильной проекции взять на осях симметрии горизонтальной и профильной проекций. Обозначить ребра буквами Задачи по начертательной геометрии и Задачи по начертательной геометрии (на нижнем основании призмы).

2-е действие. Обозначить на фронтальной проекции характерные точки пересечения плоскостей срезов с ребрами и гранями призмы:

совпадающие точки Задачи по начертательной геометрии и Задачи по начертательной геометрии лежат па сторонах нижнего основания призмы и определяют вырожденные в точки проекции фронтально-проецирующих линий пересечения боковых плоскостей паза Задачи по начертательной геометриич с плоскостью нижнего основания призмы;

совпадающие точки Задачи по начертательной геометрии лежат на ребрах Задачи по начертательной геометрии и Задачи по начертательной геометрии и определяют вырожденную в точку проекцию фронтально-проецирующей линии пересечения плоскостей паза Задачи по начертательной геометрии.

3-е действие. Достроить горизонтальную проекцию призмы со срезами, построив проекции плоскостей срезов по горизонтальным проекциям обозначенных точек, и определить видимость плоскостей срезов:

  1. Плоскость среза Задачи по начертательной геометрии определяет шестиугольник Задачи по начертательной геометрии — искаженная по величине видимая проекция фронтально-проецирующей плоскости среза Задачи по начертательной геометрии, обозначенные точки которой лежат на рёбрах и гранях призмы:
  • отрезок Задачи по начертательной геометрии — видимая проекция линии пересечения плоскостей срезов, обозначенные точки которой лежат на гранях призмы.
  1. Плоскость среза Задачи по начертательной геометрии определяет видимый отрезок Задачи по начертательной геометрии — вырожденная в линию проекция профильной плоскости среза Задачи по начертательной геометрии обозначенные точки которой лежат на гранях призмы.
  2. Плоскости паза Задачи по начертательной геометрии определяют искаженные но величине невидимые четырехугольники Задачи по начертательной геометрии и Задачи по начертательной геометрии, обозначенные точки которых лежат на ребрах и сторонах нижнего основания призмы.

!!! Поскольку горизонтальная проекция призмы относительно базовой линии (б.о.) имеет вертикальную симметрию, указанные точки обозначены на одной ее половине (верхней).

4-е действие. Выполнить графический анализ построенной горизонтальной проекции для определения се очерка и внутреннего контура:

1. Горизонтальный очерк определяет шестиугольник основания Задачи по начертательной геометрии

  1. Внутренний контур определяют видимый Задачи по начертательной геометрии и невидимые отрезки Задачи по начертательной геометрии и Задачи по начертательной геометрии.

5-е действие. Достроить профильную проекцию призмы со срезами, построив проекции плоскостей срезов по профильным проекциям обозначенных точек, и определить видимость плоскостей срезов:

  1. Плоскость среза Задачи по начертательной геометрии определяет шестиугольник Задачи по начертательной геометрии — искаженная по величине видимая проекция фронтально-проецирующей плоскости среза Задачи по начертательной геометрии:
  1. Плоскость среза Задачи по начертательной геометрии определяет прямоугольник Задачи по начертательной геометрии — видимая натуральная величина профильной плоскости среза Задачи по начертательной геометрии.
  1. Плоскости паза Задачи по начертательной геометрии определяют невидимые совпадающие четырехугольники Задачи по начертательной геометрии и Задачи по начертательной геометрии — искаженные по величине проекции двух фронтально-проецирующих плоскостей паза Задачи по начертательной геометрии:

6-е действие. Выполнить графический анализ построенной профильной проекции призмы для определения ее очерка и внутреннего контура:

  1. Профильный очерк определяют:
  1. Внутренний контур определяю!;

7-е действие. Оформить чертеж призмы, выполнив сплошными толстыми линиями очерки и видимые линии внутреннего контура каждой ее проекции (оставить тонкими сплошными линиями контуры проекций призмы без срезов и линии построения).

План графических действий решения задачи 8 (рис. 4.66, Г)) соответствует предложенному алгоритму (к рис. 4.65).

1-е действие. Построить на правой половине чертежа тонкими линиями фронтальную, горизонтальную и профильную проекции правильной пирамиды без срезов по заданному графическому условию — треугольную пирамиду заданной высоты. Затем выполнить на ее фронтальной проекции заданный срез фронтально-проецирующей плоскостью Задачи по начертательной геометрии и сквозной паз, образованный горизонтальной плоскостью Задачи по начертательной геометрии, фронтально-проецирующей плоскостью Задачи по начертательной геометрии и профильной плоскостью Задачи по начертательной геометрии.

Базовую ось (6.0.) на горизонтальной и базовую ось Задачи по начертательной геометрии на профильной проекции взять на осях симметрии горизонтальной и профильной проекции пирамиды. Обозначить буквами Задачи по начертательной геометрии и Задачи по начертательной геометрии вершины основания пирамида.

2-е действие. Обозначить на фронтальной проекции точки пересечения плоскостей срезов с ребрами, гранями пирамиды и основанием:

!!! Поскольку горизонтальная проекция пирамиды имеет вертикальную симметрию, точки обозначены на одной сс верхней половине.

3-е действие. Достроить горизонтальную проекцию пирамиды со срезами, построив проекции плоскостей срезов по горизонтальным проекциям обозначенных точек, и определить видимость плоскостей срезов:

  1. Плоскость среза Задачи по начертательной геометрии определяет треугольник Задачи по начертательной геометрии — искаженная по величине видимая проекция фронтально-проецирующей плоскости Задачи по начертательной геометрии.

точки Задачи по начертательной геометрии и Задачи по начертательной геометрии лежат соответственно на ребрах Задачи по начертательной геометрии и Задачи по начертательной геометрии.

  1. Плоскость паза Задачи по начертательной геометрии определяет четырехугольник Задачи по начертательной геометрии — натуральная величина невидимой горизонтальной плоскости Задачи по начертательной геометрии.
  1. Плоскость паза Задачи по начертательной геометрии определяет четырехугольник Задачи по начертательной геометрии — искаженная по величине невидимая проекция фронтально-проецирующей плоскости Задачи по начертательной геометрии:
  1. Плоскость паза Задачи по начертательной геометрии определяют совпадающие невидимые отрезки Задачи по начертательной геометрии и Задачи по начертательной геометрии — вырожденная в прямую невидимая проекция профильной плоскости Задачи по начертательной геометрии (участки 6-5′- видимые):

4-е действие. Выполнить графический анализ построенной горизонтальной проекции пирамиды со срезами для определения ее очерка и внутреннего контура:

  1. Горизонтальный очерк определяют:
  1. Внутренний контур определяют:

5-е действие. Достроить профильную проекцию пирамиды, построив проекции плоскостей срезов по профильным проекциям обозначенных точек, и определить видимость плоскостей срезов:

  1. Плоскость среза Задачи по начертательной геометрии определяет треугольник Задачи по начертательной геометрии искаженная по величине видимая проекция плоскости среза Задачи по начертательной геометрии:

-точки Задачи по начертательной геометрии и Задачи по начертательной геометрии лежат на соответствующих профильных проекциях ребер Задачи по начертательной геометрии и Задачи по начертательной геометрии

  1. Плоскость среза Задачи по начертательной геометрии определяет частично невидимый горизонтальный отрезок Задачи по начертательной геометрии точки которой построены по координатам Задачи по начертательной геометрии и Задачи по начертательной геометрии и который является вырожденной проекцией профильной плоскости паза Задачи по начертательной геометрии (участки Задачи по начертательной геометрии — видимые).
  2. Плоскость среза Задачи по начертательной геометрии определяет четырехугольник Задачи по начертательной геометрии — искаженная по величине невидимая проекция фронтально-проецирующей плоскости Задачи по начертательной геометрии:
  1. Плоскость среза Задачи по начертательной геометрии определяет четырехугольник Задачи по начертательной геометрии — натуральная величина частично невидимой проекции профильной плоскости паза Задачи по начертательной геометрии (участки Задачи по начертательной геометрии видимые):

-точки Задачи по начертательной геометрии и Задачи по начертательной геометрии построены;

6-е действие. Выполнить графический анализ построенной профильной проекции пирамиды со срезами для определения ее очерка и внутреннего контура:

Профильный очерк определяют:

  1. Внутренний контур определяют:

7-е действие. Оформить чертеж пирамиды, выполнив толстыми линиями очерки и видимые линии внутреннего контура каждой проекции (тонкими линиями оставить на чертеже полные контуры проекций пирамиды без срезов и вспомогательные линии построения).

Поверхности вращения

Поверхностью вращения называют поверхность, образованную вращением некоторой линии (образующей поверхности) вокруг неподвижной прямой, называемой осью вращения. При этом образующая, вращаясь вокруг оси вращения, может пересекать окружность, называемую направляющей поверхности Образующей поверхности вращения может быть кривая или прямая линия. Поверхность вращения называют линейчатой, если ее образующей является прямая линия, и криволинейной, если образующая — кривая линия.

На рис. 4.67 показана поверхность вращения общего вида, образующая которой (кривая линия) вращается вокруг горизонтально-проецирующей оси Задачи по начертательной геометрии. Все точки образующей вращаются вокруг оси Задачи по начертательной геометрии по окружностям соответствующего радиуса, которые называют параллелями поверхности. На фронтальную и профильную проекции поверхности эти параллели проецируются в прямые линии, перпендикулярные оси вращения. На горизонтальную проекцию параллели проецируются в виде окружностей. Некоторые параллели имеют определенные общепринятые наименования:

горло поверхности — параллель наименьшею (минимального) радиуса; -экватор — параллель наибольшего (максимального) радиуса.

Задачи по начертательной геометрии
Задачи по начертательной геометрии
Задачи по начертательной геометрии

Проекции поверхности вращения:

Построение проекций точек но поверхности вращения

Принадлежность точки поверхности вращения определяется ее принадлежностью параллели, по которой точка вращается вокруг оси вращения.

Проекции точек, лежащих на экваторе или на главных фронтальном и профильном меридианах поверхности, строятся по их принадлежности этим характерным линиям.

На рис. 4.67 показан пример построения невидимой фронтальной проекции характерной точки Задачи по начертательной геометрии, лежащей на экваторе Задачи по начертательной геометрии, по ее заданной горизонтальной проекции Задачи по начертательной геометрии и построение профильной проекции характерной точки Задачи по начертательной геометрии, лежащей на главном профильном меридиане Задачи по начертательной геометрии, по ее заданной фронтальной проекции.

Для построения проекций точки Задачи по начертательной геометрии, заданной своей фронтальной проекцией и не лежащей на характерных линиях поверхности, требуется выполнить следующий графический алгоритм:

1-е действие. Провести через заданную фронтальную проекцию точки Задачи по начертательной геометрии параллель, которая имеет радиус Задачи по начертательной геометрии.

2-е действие. Провести на горизонтальной проекции поверхности окружность-параллель радиусом Задачи по начертательной геометрии.

3-е действие. Построить по вертикальной линии связи горизонтальную видимую проекцию точки Задачи по начертательной геометрии по ее принадлежности построенной параллели радиусом Задачи по начертательной геометрии.

4-е действие. Построить профильную проекцию точки Задачи по начертательной геометрии на горизонтальной линии связи по координате Задачи по начертательной геометрии (лежит на невидимой части поверхности, проекция взята в скобки).

Видимость точек на проекциях поверхности вращения

На рис. 4.67 показаны границы видимое!и поверхности для каждой проекции по направлению взгляда на плоскости проекций Задачи по начертательной геометрии и Задачи по начертательной геометрии

Видимость точек на проекциях поверхности определяется этими границами, т.е. видимостью части поверхности на каждой проекции: если часть поверхности является по направлению взгляда на соответствующую плоскость проекций видимой, то точка на этой проекции будет также видимой.

На рис 4.67 видно, что горизонтальная проекция Задачи по начертательной геометрии заданной точки Задачи по начертательной геометрии, лежащей на экваторе, расположена на невидимой части поверхности при взгляде на фронтальную плоскость проекций Задачи по начертательной геометрии Следовательно, ее фронтальная проекция Задачи по начертательной геометрии лежит на экваторе, но будет невидимой (проекция взята в скобки). Профильная проекция Задачи по начертательной геометрии точки будет видимой, так как точка лежит на видимой для профильной проекции части поверхности (см. взгляд по стрелке на плоскость Задачи по начертательной геометрии). Поскольку заданная фронтальная проекция точки Задачи по начертательной геометрии, лежащей на фронтальной проекции Задачи по начертательной геометрии главною профильною меридиана, не взята в скобки, значит, она лежит на видимой для фронтальной проекции части поверхности и профильная проекция точки Задачи по начертательной геометрии должна лежать на профильной проекции главного меридиана Задачи по начертательной геометрии справа от оси вращения. Горизонтальная же проекция точки Задачи по начертательной геометрии (на рисунке не построена) по направлению взгляда на горизонтальную плоскость проекций Задачи по начертательной геометрии будет невидима, так как расположена под экватором. Соответственно, профильная проекция точки Задачи по начертательной геометрии будет невидимой, так как лежит на невидимой для профильной проекции части поверхности.

!!! К поверхностям вращения относятся две линейчатые поверхности с прямолинейными образующими цилиндр и конус, а также поверхности с криволинейными образующими — сфера (образующая — окружность), эллипсоид (образующая — эллипс), одно- и двуполостные гиперболоиды (гипербола), параболоид (парабола), торовыс (окружность) Все перечисленные виды поверхностей вращения, кроме торовых, являются поверхностями второго порядка (по порядку образующей или направляющей).

Торовыс поверхности вращения относятся к поверхностям четвертого порядка (по произведению порядков двух окружностей — образующей и направляющей).

Цилиндрическая поверхность вращения. Прямой круговой цилиндр

Цилиндрическая поверхность вращения — это линейчатая поверхность, образованная параллельным перемещением прямолинейной образующей вокруг оси вращения, которая пересекает криволинейную направляющую окружность. Геометрическое тело, ограниченное цилиндрической поверхностью вращения (боковой поверхностью) и двумя параллельными секущими плоскостями (основаниями), перпендикулярными оси вращения, называют цилиндром.

Цилиндр называют круговым, поскольку направляющей является окружность, перпендикулярная оси цилиндра.

Цилиндр называют прямым, если ось вращения цилиндра перпендикулярна его основаниям.

Прямой круговой цилиндр по положению относительно плоскостей проекций называют проецирую щ и м , если его боковая поверхность (или ось вращения) перпендикулярна какой-либо плоскости проекций:

Построение проекции прямого кругового цилиндра

На рис. 4.68 показан пример построения проекций прямого кругового горизонтально-проецирующего цилиндра заданной высоты Задачи по начертательной геометрии с горизонтальными основаниями заданного радиуса Задачи по начертательной геометрии

Для построения проекций цилиндра требуется выполнить графо-аналитические действия в следующем порядке.

1-е действие. По заданному условию построить горизонтальную проекцию (очерк) цилиндра, которая представляет собой окружность заданного радиуса Задачи по начертательной геометрии.

2-е действие. Выпол-нить графический анализ построенной горизонталь-ной проекции цилиндра:

1. Окружность является горизонтальной проекцией боковой поверхности, так как образующие этого цилиндра — горизонтально-проецирующие прямые.

  1. Круг заданного радиуса Задачи по начертательной геометрии совпадающие горизонтальные проекции оснований цилиндра, лежащих в горизонтальных плоскостях уровня
  2. Обозначить вырожденные в точки проекции характерных образующих цилиндра Задачи по начертательной геометрии и Задачи по начертательной геометрии, которые будут определять очерки фронтальной и профильной проекций цилиндра

3-е действие. Построить фронтальную проекцию (очерк) цилиндра, которая представляет собой прямоугольник, ограниченный:

Задачи по начертательной геометрии

4-е действие. Построить профильную проекцию (очерк) цилиндра:

  1. Задать на окружности горизонтальной проекции цилиндра положение базовой линии (б.о ), совпадающей с горизонтальной линией оси этой окружности, т.е. проходящей через ось вращения Задачи по начертательной геометрии.
  2. Выбрать положение базовой оси Задачи по начертательной геометрии (6.0.), которая будет совпадать с вертикальной осью Задачи по начертательной геометрии вращения на профильной проекции цилиндра.
  3. Профильная проекция цилиндра представляет собой прямоугольник, ограниченный:

!!!Запомните характерные признаки очерков прямого кругового цилиндра на чертеже окружность и два прямоугольника.

Построение проекции точек, лежащих на поверхности цилиндра

Принадлежность точки поверхности цилиндра определяется ее принадлежностью образующей этого цилиндра

На рис. 4.68 показан пример построения горизонтальных и профильных проекций точек Задачи по начертательной геометрии и Задачи по начертательной геометрии, лежащих на образующих боковой поверхности цилиндра по их заданным фронтальным проекциям.

Горизонтальные проекции Задачи по начертательной геометрии и Задачи по начертательной геометрии заданных точек лежат на окружности радиуса Задачи по начертательной геометрии, которая является проекцией боковой поверхности цилиндра.

Профильные проекции точек строятся по их принадлежности образующим цилиндра:

Цилиндрические сечения

  1. Плоскость пересекает поверхность цилиндра по образующим, если она расположена параллельно оси вращения цилиндра (см. плоскость Задачи по начертательной геометрии на рис 4.69).
  2. Плоскость пересекает поверхность цилиндра по эллипсу, если она расположена к оси вращения цилиндра под углом Задачи по начертательной геометрии. отличным от прямого (см. на рис. 4.69 плоскость Задачи по начертательной геометрии)
  3. Плоскость пересекает поверхность цилиндра по окружности, если она перпендикулярна оси вращения цилиндра (окружности основании).
  • Построение проекций цилиндра со срезами и плоскостями частного положения
  • Коническая поверхность вращения

Задача №9.

Построить проекции прямого кругового цилиндра со срезами плоскостями частного положения

Задача №10.

Построить проекции прямого кругового конуса со срезами плоскостями частного положения.

Графические условия задач но вариантам даны втабл 4.6

Задачи выполнить на одном листе формата A3 чертежной бумаги.

На рис. 4.78, а приведен пример построения проекций прямого кругового цилиндра со срезами плоскостями частного положения

План графических действий для решения задачи 9 соответствует предложенному графическому алгоритму (см. описание к рис. 4 69):

1-е действие. На левой половине поля чертежа тонкими сплошными линиями построить по заданному диаметру и высоте горизонтальную, фронтальную и профильную проекции прямого кругового цилиндра без срезов, а затем выполнить на его фронтальной проекции заданные по условию срезы плоскостями частного положения.

2-е действие. Обозначить на фронтальной проекции характерные точки и выполнить графический анализ сечений:

1. Профильная плоскость Задачи по начертательной геометрии пересекает поверхность цилиндра по прямоугольнику 1-2-2-1.

  1. Фронтально-проецирующая плоскость Задачи по начертательной геометрии пересекает поверхность цилиндра но участкам эллипса 2-3-4.
  2. Профильная плоскость Задачи по начертательной геометрии пересекает поверхность цилиндра по прямоугольнику 4-5-5-4.
  3. Горизонтальная плоскость Задачи по начертательной геометрии пересекает поверхность цилиндра по участку окружности 6-7-8.
  4. Профильная плоскость Задачи по начертательной геометрии пересекает поверхность цилиндра по прямоугольник) 8-9-9-8.

3-е действие. Достроить горизонтальную проекцию цилиндра, построив проекции плоскостей срезов по горизонтальным проекциям отмеченных точек, и определить видимости плоскостей срезов:

1. Плоскости срезов Задачи по начертательной геометрии и Задачи по начертательной геометрии определяют видимые отрезки Задачи по начертательной геометрии и Задачи по начертательной геометрии -вырожденные в прямые проекции профильных плоскостей Задачи по начертательной геометрии и Задачи по начертательной геометрии.

  1. Плоскость среза Задачи по начертательной геометрии определяет невидимый отрезок Задачи по начертательной геометрии, совпадающий с видимым отрезком Задачи по начертательной геометрии.

2. Плоскость среза Задачи по начертательной геометрии определяют участки Задачи по начертательной геометрии эллипса, совпадающие с окружностью вырожденной боковой поверхности цилиндра;

  1. Плоскость среза Задачи по начертательной геометрии определяет участок окружности Задачи по начертательной геометрии, совпадающий с окружностью вырожденной боковой поверхности.

4-е действие. Выполнить графический анализ построенной горизонтальной проекции для определения ее очерка и внутреннею контура:

  1. Горизонтальный очерк определяет окружность горизонтальной проекции.
  2. Внутренний контур определяют видимые отрезки проекций плоскостей срезов Задачи по начертательной геометрии и Задачи по начертательной геометрии.
Задачи по начертательной геометрии

!!! Поскольку горизонтальная проекция цилиндра имеет вертикальную симметрию относительно базовой оси, точки отмечены на одной ее половине (верхней).

5-е действие. Достроить профильную проекцию цилиндра, построив проекции плоскостей срезов по профильным проекциям отмеченных точек, и определить видимость плоскостей срезов:

Плоскости срезов Задачи по начертательной геометрии и Задачи по начертательной геометрии определяю профильные проекции прямоугольников Задачи по начертательной геометрии и Задачи по начертательной геометрии:

видимые образующие Задачи по начертательной геометрии и Задачи по начертательной геометрии построены по равной для всех точек координате Задачи по начертательной геометрии

  1. Плоскость среза Задачи по начертательной геометрии определяют видимые участки Задачи по начертательной геометрииэллипса
  1. Плоскость среза Задачи по начертательной геометрии определяет видимый горизонтальный отрезок Задачи по начертательной геометрии: точка Задачи по начертательной геометрии лежит на образующей, совпадающей с осью;

точки Задачи по начертательной геометрии лежат на очерковых образующих;

  • точки Задачи по начертательной геометрии построены.

6-е действие. Выполнить графический анализ построенной профильной проекции для определения ее очерка и внутреннего контура.

1. Профильный очерк определяют:

-участки образующих Задачи по начертательной геометрии;

  1. Внутренний контур определяют:

7-е действие. Оформить чертеж цилиндра, выполнив толстыми сплошными линиями очерки и видимее линии ее внутреннего контура каждой проекции (оставить топкими линиями полные очерки проекций и линии построения).

На рис. 4.78, и показан пример построения проекций прямого кругового конуса со срезами плоскостями частного положения.

План графических действий для решения задачи 10 соответствует предложенному графическому алгоритму (см. описание к рис. 4 77).

1-е действие. Построить на правой половине чертежа тонкими сплошными линиями по заданному диаметру основания и высоте горизонтальную, фронтальную и профильную проекции прямого кругового конуса без срезов, а затем выполнить на его фронтальной проекции заданные по условию срезы и сквозной паз плоскостями частного положения.

2-е действие Обозначить на фронтальной проекции характерные точки и выполнить графический анализ сечений.

Фронтально-проецирующая плоскость Задачи по начертательной геометрии проходит через вершину конуса и пересекает его поверхность по треугольнику Задачи по начертательной геометрии (по образующим Задачи по начертательной геометрии, случай I).

  1. Фронтально-проецирующая плоскость Задачи по начертательной геометрии пересекает все образующие конуса под углом, отличным от прямого, и образует на его поверхности неполный эллипс 1-2-0-3 (случаи 5).
  2. Горизонтальная плоскость паза Задачи по начертательной геометрии расположена к оси конуса под прямым углом и пересекает его поверхность по участкам окружности 5-6-5 (случай 2).
  3. Две симметричные боковые профильные плоскости паза Задачи по начертательной геометрии расположены параллельно двум образующим конуса Задачи по начертательной геометрии и Задачи по начертательной геометрии и пересекают его поверхность по участкам гипербол 4-5 (случаи 4);

Горизонтальная плоскость Задачи по начертательной геометрии и две профильные плоскости Задачи по начертательной геометрииобразуют в конусе сквозной прямоугольный паз.

3-е действие. Достроить горизонтальную проекцию конуса со срезами, построив проекции плоскостей срезов по горизонтальным проекциям отмеченных точек, и определить видимость плоскостей срезов

Плоскость а определяет треугольник Задачи по начертательной геометрии, построенный по образующим Задачи по начертательной геометрии которым принадлежат точки Задачи по начертательной геометрии и ограничен видимыми участками Задачи по начертательной геометрии этих образующих и невидимой линией Задачи по начертательной геометрии пересечения плоскостей срезов Задачи по начертательной геометрии и Задачи по начертательной геометрии.

  1. Плоскость Задачи по начертательной геометрии определяет видимый участок эллипса Задачи по начертательной геометрии построенный по принадлежности обозначенных точек вспомогательным параллелям (точка Задачи по начертательной геометрии построена по принадлежности образующей Задачи по начертательной геометрии).
  2. Плоскость Задачи по начертательной геометрии определяют видимые участки окружности Задачи по начертательной геометрии, по которой плоскость Задачи по начертательной геометрии пересекает поверхность конуса.
  3. Плоскости Задачи по начертательной геометрии определяют видимые вертикальные отрезки Задачи по начертательной геометрии вырожденные проекции профильных плоскостей Задачи по начертательной геометрии (отрезки Задачи по начертательной геометрии — невидимые):

точки Задачи по начертательной геометрии построены по принадлежности окружности основания конуса.

  • точки Задачи по начертательной геометрии — построены.

4-е действие. Выполнить графический анализ построенной горизонтальной проекции для определения ее очерка и внутреннего контура:

Горизонтальный очерк определяют два участка очерковой окружности слева и справа от точек Задачи по начертательной геометрии.

  1. Внутренний очерк определяют:

-видимые участки Задачи по начертательной геометрии образующих Задачи по начертательной геометрии,

5-е действие. Достроить профильную проекцию конуса, построив проекции плоскостей срезов по профильным проекциям отмеченных точек, и определить видимость плоскостей срезов:

Плоскость среза Задачи по начертательной геометрии определяет видимый треугольник Задачи по начертательной геометрии, точки Задачи по начертательной геометрии которого построены по принадлежности образующим Задачи по начертательной геометрии.

  1. Плоскость среза Задачи по начертательной геометрии определяет видимый участок эллипса Задачи по начертательной геометрии:

-точки Задачи по начертательной геометрии построены;

-точки Задачи по начертательной геометрии лежат на характерных образующих Задачи по начертательной геометрии и Задачи по начертательной геометрии;

  1. Плоскость паза Задачи по начертательной геометрии определяет проекция невидимою горизонтального отрезка Задачи по начертательной геометрии (участки Задачи по начертательной геометрии — видимые), точки Задачи по начертательной геометрии которою лежат на очерковых образующих Задачи по начертательной геометрии и Задачи по начертательной геометрии;
  2. Плоскость паза Задачи по начертательной геометрии определяют видимые участки гипербол Задачи по начертательной геометрии, точки Задачи по начертательной геометрии которых построены но координате Задачи по начертательной геометрии.

6-е действие. Выполнить графический анализ построенной профильной проекции для определения ее очерка и внутреннего контура.

Профильный очерк определяют:

-участки Задачи по начертательной геометрии образующих Задачи по начертательной геометрии;

-участки Задачи по начертательной геометрииэллипса.

  1. Внутренний контур определяют:

7-е деиетвие. Оформить чертеж конуса, выполнив толстыми сплошными линиями очерки и видимые линии внутреннею контура каждой проекции (оаавить тонкими линиями полные очерки проекций и линии построения).

Поверхности вращении. Сферический поверхность

При вращении окружности вокруг ее диаметра образуется поверхность вращения, называемая сферой. Сферическая поверхность — геометрическое место точек, равноудаленных от ее центра. Сфера — единственная геометрическая поверхность, которая имеет бесконечное число осей, проходящих через ее центр, что удобно использовать при построении проекций точек на ее поверхности и при решении различных позиционных задач с геометрическими формами, в образование которых входит сфера.

Геометрическое тело, ограниченное сферой, называют шаром.

Проекции шара и проекции его очерковых окружностей

Все три очерка шара — фронтальный, горизонтальный и профильный -представляю! собой окружности одного диаметра с центром в точке Задачи по начертательной геометрии это характерный признак проекций шара на чертеже (рис. 4.79). Каждая точка на поверхности шара описывает вокруг соответствующей оси окружности, называемые параллелями.

Фронтальный очерк шара — окружность Задачи по начертательной геометрии — называется главным фронтальным меридианом, который лежит во фронтальной плоскости уровня Задачи по начертательной геометрии его горизонтальная проекция Задачи по начертательной геометрии это горизонтальная прямая, а профильная проекция Задачи по начертательной геометрии вертикальная прямая, проходящие через центр шара.

Горизонтальный очерк шара — это окружность Задачи по начертательной геометрии, то есть экватор шара, лежащий в горизонтальной плоскости уровня Задачи по начертательной геометрии и его фронтальная Задачи по начертательной геометрии и профильная Задачи по начертательной геометрии проекции горизонтальные прямые, проходящие через центр шара

Профильный очерк шара — это окружность Задачи по начертательной геометрии главного профильного меридиана, лежащего в профильной плоскости Задачи по начертательной геометрии, его фронтальная Задачи по начертательной геометрии и горизонтальная Задачи по начертательной геометрии проекции — вертикальные прямые, проходящие через центр шара.

!!! ‘Запомните характерные признаки шара на чертеже — три очерковые окружности одного диаметра.

Задачи по начертательной геометрии
  1. Построение проекции точек па поверхности шара
  2. Построение проекции тара со срезами плоскостями частного положения
  3. Поверхности вращения. Тор поверхность
  4. Построение проекции открытого тора
  5. Построение проекции точек, лежащих на поверхности тора
  6. Сечения тор с плоскостями частного положения

Задача №11.

Построить фронтальную, горизонтальную и профильную проекции шара со срезами заданными плоскостями частного положения.

Задача №12.

Построить фронтальную, горизонтальную и профильную проекции половины открытого тора со срезами плоскостями частного положения.

Графические условия задач по вариантам даны в табл. 4.7.

Задачи выполнять на одном листе формата A3 чертежной бумаги.

На рис. 4.87, а показан пример построения проекций шара со срезами плоскостями частного положения.

План действий для решения задачи 11 соответствует предлагаемому графическому алгоритму:

1-е действие. По заданному диаметру построить на левой половине чертежа тонкими линиями фронтальную, горизонтальную и профильную проекции шара без срезов, а затем выпилить на ею фронтальной проекции заданные срезы горизонтальной плоскостью Задачи по начертательной геометрии профильной плоскостью Задачи по начертательной геометрии и фронтально-проецирующей плоскостью Задачи по начертательной геометрии.

2-е действие. Обозначить на фронтальной проекции характерные точки и выполнить графический анализ сечений:

  1. Горизонтальная плоскость Задачи по начертательной геометрии пересекает поверхность шара по участку окружности 1-2-3 радиусом Задачи по начертательной геометрии, которая проецируется в окружность па горизонтальную проекцию шара, и ограничена вырожденной в точку Задачи по начертательной геометрии фронтально-проецирующей линией 3-3 пересечения плоскостей срезов Задачи по начертательной геометрии и Задачи по начертательной геометрии.
  2. Профильная плоскость Задачи по начертательной геометрии пересекает поверхность шара по участкам окружности 3-4 радиусом Задачи по начертательной геометрии, которая проецируется в окружность на профильную проекцию шара, и ограничена вырожденными в точки Задачи по начертательной геометрии и Задачи по начертательной геометрии двумя фронтально-проецирующими линиями пересечения плоскостей паза:
Задачи по начертательной геометрии
  1. Фронтально-проецирующая плоскость Задачи по начертательной геометрии пересекает поверхность шара по участку окружности 4-5-6-7, которая проецируется в участок эллипса на горизонтальную и профильную проекции шара и ограничена вырожденной в точку Задачи по начертательной геометрии фронтально-проецирующей линией пересечения плоскостей срезов Задачи по начертательной геометрии и Задачи по начертательной геометрии.

3-е действие. Достроить горизонтальную проекцию шара, построив проекции плоскостей срезов по горизонтальным проекциям обозначенных точек, и определить видимости плоскостей срезов.

Плоскость среза Задачи по начертательной геометрии определяет видимый участок окружности Задачи по начертательной геометрии (ее точки лежат на круговой параллели радиусом Задачи по начертательной геометрии), который ограничен вертикальным невидимым отрезком Задачи по начертательной геометрии — проекцией линии пересечения плоскостей срезов Задачи по начертательной геометрии и Задачи по начертательной геометрии.

  1. Плоскость среза Задачи по начертательной геометрии определяет частично невидимый отрезок Задачи по начертательной геометрии в который проецируется профильная плоскость:

точки Задачи по начертательной геометрии построены;

  1. Плоскость среза Задачи по начертательной геометрии определяет частично видимый эллипс Задачи по начертательной геометрии в который проецируется плоскость у. он ограничен отрезком Задачи по начертательной геометрии — проекцией линии пересечения плоскостей среза Задачи по начертательной геометрии и Задачи по начертательной геометрии:
  • точки Задачи по начертательной геометрии построены;

точки Задачи по начертательной геометрии и Задачи по начертательной геометрии построены по принадлежности соответствующим горизонтальным параллелям;

  • точка Задачи по начертательной геометрии лежит на проекции главного фронтального меридиана.

!!! Поскольку горизонтальная проекция шара имеет вертикальную симметрию, точки обозначены на одной ее половине.

4-е действие. Выполнить графический анализ построенной горизонтальной проекции шара дня определения ее очерка и внутреннего контура:

  1. Горизонтальный очерк определяют:
  • участок экватора Задачи по начертательной геометрии;
  • участок окружности в плоскости а и участок эллипса в плоскости у.
  1. Внутренний контур определяют :
  • невидимый участок эллипса;
  • невидимый отрезок Задачи по начертательной геометрии.

5-е действие. Достроить профильную проекцию шара, построив проекции плоскостей срезов по профильным проекциям обозначенных точек, и определить видимость плоскостей срезов.

Плоскость среза Задачи по начертательной геометрии определяет видимый отрезок Задачи по начертательной геометрии в который проецируется горизонтальная плоскость, точки Задачи по начертательной геометрии которого лежат на главном профильном меридиане.

  1. Плоскость среза Задачи по начертательной геометрии определяют видимые участки Задачи по начертательной геометрии окружности, построенной по профильной параллели радиусом Задачи по начертательной геометрии (ось вращения Задачи по начертательной геометрии): плоскость ограничена двумя видимыми отрезками Задачи по начертательной геометрии и Задачи по начертательной геометрии — проекциями линий пересечения плоскостей срезов Задачи по начертательной геометрии и Задачи по начертательной геометрии, Задачи по начертательной геометрии и Задачи по начертательной геометрии.
  1. Плоскость среза у определяет видимый участок эллипса Задачи по начертательной геометрии точки которого построены по принадлежности соответствующим параллелям:

6-е действие. Выполнить графический анализ построенной профильной проекции для определения ее очерка и внутреннего контура.

Профильный очерк шара определяют: -участок главного профильного меридиана Задачи по начертательной геометрии -участок главного профильного меридиана Задачи по начертательной геометрии -участки окружности Задачи по начертательной геометрии

  • участки эллипса Задачи по начертательной геометрии
  1. Внутренний контур определяют:

7-е действие. Оформить чертеж шара, выполнив толстыми сплошными линиями очерки и видимые линии внутреннего контура каждой проекции (оставить тонкими линиями полные очерки проекций и линии построения).

На рис. 4.87, б показан пример построения проекций открытого тора со срезами плоскостями частного положения

План графических действий для решения задачи соответствует предложенному графическому алгоритму (к рис. 4.86):

1-е действие. По заданным размерам построить на правой половине чертежа тонкими линиями фронтальную, горизонтальную и профильную проекции половины открытого тора без срезов, а затем выполнить на его фронтальной и горизонтальной проекциях заданные по условию срезы фронтально-проецирую-щей плоскостью Задачи по начертательной геометрии и горизонтально-проецирующей плоскостью Задачи по начертательной геометрии

2-е действие. Обозначить на фронтальной и горизонтальной проекциях тора характерные и промежуточные точки и выполнить графический анализ плоскостей срезов:

  1. Фронтально-проецирующая плоскость Задачи по начертательной геометрии пересекает поверхность тора по участку волнообразной кривой Задачи по начертательной геометрии (соответствует сечению 2).
  2. Горизонтально-проецирующая плоскость Задачи по начертательной геометрии пересекает поверхность тора по кривой 4-го порядка Задачи по начертательной геометрии.

3-е действие. Достроить горизонтальную и фронтальную проекции тора и определить видимость плоскостей срезов:

  1. Достроить горизонтальную проекцию тора, построив участок видимой волнообразной кривой но проекциям обозначенных точек Задачи по начертательной геометрии и Задачи по начертательной геометрии, принадлежащих параллелям и основанию тора (алгоритм I, см. рис. 4.84); кривая ограничена линией Задачи по начертательной геометрии пересечения плоскости среза Задачи по начертательной геометрии с окружностью основания Задачи по начертательной геометрии
  2. Достроить фронтальную проекцию тора, построив участок видимой кривой среза горизонтально-проецирующей плоскостью Задачи по начертательной геометрии по проекциям обозначенных точек Задачи по начертательной геометрии и Задачи по начертательной геометрии по их принадлежности параллелям и основанию (алгоритм И , рис. 4 84).

4-е действие. Выполнить графический анализ достроенных проекций и определить их очерки и внутренний контур.

Фронтальный очерк определяют:

-участок Задачи по начертательной геометрии очерковой окружности Задачи по начертательной геометрии,

-участок Задачи по начертательной геометрии проекции достроенной кривой в плоскости Задачи по начертательной геометрии.

  1. Внутренний контур фронтальной проекции определяет видимый участок кривой Задачи по начертательной геометрии пересечения поверхности тора с плоскостью среза Задачи по начертательной геометрии
  2. Горизонтальный очерк определяют:
  1. Внутренний контур горизонтальной проекции определяют: видимый участок волнообразной кривой Задачи по начертательной геометрии;
  • невидимые участки окружностей оснований Задачи по начертательной геометрии.

5-е действие. Достроить профильную проекцию тора, построив проекции плоскостей срезов по проекциям обозначенных точек, и определить видимость плоскостей срезов.

Плоскость среза or определяет видимый участок волнообразной кривой Задачи по начертательной геометрии построенной по принадлежности точек Задачи по начертательной геометрии и Задачи по начертательной геометрии характерным линиям тора, а точка построена по координате Задачи по начертательной геометрии.

  1. Плоскость среза Задачи по начертательной геометрии определяет невидимый участок кривой среза Задачи по начертательной геометрии построенный по принадлежности точек Задачи по начертательной геометрии и Задачи по начертательной геометрии соответствующим характерным линиям тора, а точки Задачи по начертательной геометрии и Задачи по начертательной геометрии построены по координатам Задачи по начертательной геометрии и Задачи по начертательной геометрии.

6-е действие. Выполнить фактический анализ построенной профильной проекции для определения ее очерка и внутреннего контура.

  1. Профильный очерк определяют:
  1. Внутренний контур определяют: невидимый участок кривой Задачи по начертательной геометрии
  • невидимый участок образующей окружности Задачи по начертательной геометрии

7-е действие. Оформить чертеж тора, выполнив толстыми сплошными линиями очерки и видимые линии внутреннею контура каждой проекции (оставить тонкими линиями полные очерки проекций и линии построения).

Задача №13.

По заданным фронтальной и горизонтальной проекциям комбинированного тела с отверстиями и срезами плоскостями частного положения построить его профильную проекцию. Нсли требуется по условию задачи -достроить з&танные проекции.

Графические условия вариантов задачи 13 даны в табл 4.8.

Решение задач со сложными геометрическими формами, наружную и внутреннюю поверхность которых образуют комбинации нескольких простых геометрических тел со срезами, вырезами и отверстиями, учит читать чертежи пространственных форм любой сложности и оперировать этими формами в воображении, развивает пространственное мышление и является основой для изучения последующих разделов инженерной графики — проекционного и маши ноет роительного черчения.

Для успешного решения задач с комбинированными телами следует научиться выполнять последовательный графический анализ заданного условия, основанный на знании проаых геометрических тел, коюрый позволит не только решит ь задачу, но и созда ть в воображении и рост ране i венный образ комбинированною т ела

Последовательный графический анализ условия задачи определяет логический порядок графических действий для решения задачи, т.е. графический алгоритм.

На рис. 4.88, а, 6, в показан пример поэтапного решения задачи, форма которой задана комбинированным телом, по предлагаемому графическому алгоритму:

1-е действие. Построить на чертеже по заданным размерам фронтальную и горизонтальную проекции комбинированного тела и определить положение базовой оси (б.о.) на горизонтальной проекции и положение базовой оси Задачи по начертательной геометрии для построения его профильной проекции.

2-е действие. Выполнить графический анализ заданных проекций комбинированного тела:

  1. Определить по характерным признакам на заданных проекциях геометрические тела, образующие форму комбинированного тела (см. рис. 4.88, а):

прямой круговой горизонтально-проецирующий цилиндр Задачи по начертательной геометрии определяется по прямоугольнику на фронтальной проекции и окружности на горизонтальной проекции;

прямая правильная горизонтально-проецирующая шестиугольная призма Задачи по начертательной геометрии определяется по прямоугольнику на фронтальной проекции и шестиугольнику, вписанному в окружность, на горизонтальной проекции.

Задачи по начертательной геометрии
  1. Определить формы линий пересечения, по которым плоскости срезов и вырезов пересекают поверхности формообразующих геометрических тел, и обозначить характерные точки, принадлежащие этим линиям (см. рис. 4.88, а):

поверхности цилиндра Задачи по начертательной геометрии и отверстия Задачи по начертательной геометрии срезаны симметричными и горизонтальными плоскостями Задачи по начертательной геометрии, пересекающими эти поверхности по участкам окружностей 2-3-2 и Задачи по начертательной геометрии

в цилиндре Задачи по начертательной геометрии выполнено призматическое сквозное отверстие двумя симметричными фронтально-проецирующими плоскостями Задачи по начертательной геометрии, пересекающими поверхность цилиндра Задачи по начертательной геометрии по участкам эллипсов Задачи по начертательной геометрии, отверстие Задачи по начертательной геометрии — по участкам эллипсов Задачи по начертательной геометрии;

!!! Поскольку заданные проекции комбинированного тела симметричны, точки обозначены на одной какой-либо половине каждой проекции.

  1. Построить горизонтальные проекции отмеченных точек: точки Задачи по начертательной геометрии и Задачи по начертательной геометрии лежат на окружности радиусом Задачи по начертательной геометрии, (проекция боковой поверхности Задачи по начертательной геометрии):

точки Задачи по начертательной геометрии и Задачи по начертательной геометрии лежат на сторонах шестиугольника (проекция боковой поверхности призмы Задачи по начертательной геометрии);

-точки Задачи по начертательной геометрии и Задачи по начертательной геометрии лежат на окружности радиусом Задачи по начертательной геометрии (проекция боковой поверхности цилиндрического отверстия Задачи по начертательной геометрии).

3-е действие. Если по условию задачи в формообразовании комбинированного тела участвуют геометрические тела с непроецирующей боковой поверхностью (пирамида, конус, шар, тор или тороид), требуется в соответствии с выполненным графическим анализом по проекциям обозначенных точек достроить на заданных проекциях (одной или обеих) линии пересечения поверхностей этих геометрических тел с плоскостями заданных срезов и вырезов (рис, 4 89, образец) и оформить очерки достроенных проекций.

В рассматриваемом примере формообразующими геометрическими телами являются горизонтально-проецирующие цилиндры и призма и, следовательно, 3-е действие выполнять не нужно.

4-е действие. Построить тонкими линиями (без заданных срезов и вырезов) профильные проекции формообразующих геометрических тел и внутренних элементов (рис. 4.88, а).

  1. Профильную проекцию определяют:

проекция призмы Задачи по начертательной геометрии прямоугольник, ограниченный двумя вырожденными в линии боковыми гранями Задачи по начертательной геометрии с координатами Задачи по начертательной геометрии, а по высоте Задачи по начертательной геометрии горизонтальными отрезками проекций оснований (ребра Задачи по начертательной геометрии и Задачи по начертательной геометрии совпадают с осью симметрии проекции и базовой осью Задачи по начертательной геометрии).

  1. Внутренний контур профильной проекции, предварительно выполненный тонкими штриховыми линиями, определяют:

проекция цилиндрического отверстия Задачи по начертательной геометрии — прямоугольник, ограниченный двумя очерковыми образующими с координатами Задачи по начертательной геометрии, равными его радиусу Задачи по начертательной геометрии, с условной высотой Задачи по начертательной геометрии;

профильно-проецирующая невидимая очерковая образующая Задачи по начертательной геометрии фронтально-проецирующего отверстия Задачи по начертательной геометрии; образующая Задачи по начертательной геометрии отверстия Задачи по начертательной геометрии совпадает с проекцией верхнего основания призмы Задачи по начертательной геометрии.

5-е действие. Достроить профильную проекцию комбинированного тела, построив на его наружной и внутренней поверхностях линии пересечения с заданными плоскостями срезов и выреза:

  1. Достроить линии пересечения на наружных поверхностях формообразующих геометрических тел — цилиндра Задачи по начертательной геометрии и призмы Задачи по начертательной геометрии — но профильным проекциям обозначенных точек (см. рис. 4.88, б):

построить видимые участки эллипсов 6-7 па гранях Задачи по начертательной геометрии призмы по проекциям точек: точки Задачи по начертательной геометрии по координатам Задачи по начертательной геометрии; точки Задачи по начертательной геометрии по принадлежности совпадающим проекциям ребер Задачи по начертательной геометрии и Задачи по начертательной геометрии;

  1. Достроить линии пересечения на внутренней поверхности комбинированного тела по профильным проекциям обозначенных точек (рис. 4.88, в):

6-е действие. Выполнить графический анализ построенной проекции ятя определения ее очерка и внутреннего контура

  1. Профильный очерк определяют:

сверху — горизонтальные отрезки до точек Задачи по начертательной геометрии — участки верхнего основания цилиндра Задачи по начертательной геометрии;

снизу горизонтальная линия нижнего основания призмы.

  1. Внутренний видимый контур определяют:

-видимая горизонтальная линия Задачи по начертательной геометрии — участок верхнего основания призмы;

Внутренний невидимый контур проекции определяют

7-е действие. Оформить чертеж комбинированного тела, выполнив толстыми линиями очерки и внутренний контур каждой проекции и штриховыми линиями невидимые контуры проекций (оставить тонкими линиями полные очер-ки геометрических тел и линии построения).

Образец выполнения листа 7 с задачей 13 показан на рис. 4.89.

Задача №13.

По заданным фронтальной и горизонтальной проекциям комбинированного тела построить его профильную проекцию, достроив, если требуется по условию, заданные проекции.

1 рафические условия вариантов задачи 13 даны в табл. 4.8.

Задачу выполнить на формате A3 чертежной бумаги.

План графических действий для решения задачи 13 соответствует предложенному алгоритму.

1-е действие. Построить на чертеже по заданным размерам фронтальную и горизонтальную проекции комбинированного тела и определить положение базовой оси (б.о.) на его горизонтальной проекции и базовой оси z для построения профильной проекции.

2-е действие. Выполнить графический анализ заданных проекций комбинированного тела.

/. Определить по характерным признакам на заданных проекциях геометрические тела, образующие форму комбинированного тела:

полушар в основании определяется по полуокружности на фронтальной проекции и окружности на горизонтальной проекции;

прямая правильная четырехугольная горизонтально-проецирующая призма определяется по прямоугольнику на фронтальной проекции и четырехугольнику, вписанному в окружность, на горизонтальной проекции;

цилиндрическое сквозное горизонтатьно-проецируюшее отверстие определяется по прямоугольнику на фронтальной проекции (образующие выполнены штриховыми линиями) и окружности на горизонтальной проекции;

  1. Определить формы линий пересечения, по которым плоскости вырезов пересекаюг поверхности формообразующих геометрических тел, и обозначить характерные точки, принадлежащие этим линиям:

!!! Поскольку заданные проекции комбинированного тела симметричны, точки обозначены на одной половине проекции.

Задачи по начертательной геометрии
  1. Построить горизонтальные проекции обозначенных точек

3-е действие. Поскольку в формообразовании комбинированного тела участвует полушар, не имеющий боковой проецирующей поверхности, заданные фронтальную и горизонтальную проекции нужно досгроть и оформиib очерки этих проекций.

  1. Достроить на фронтальной проекции линии пересечения боковых граней призмы с поверхностью шара;
  • Грани призмы пересекают поверхность шара но участкам окружностей Задачи по начертательной геометрии, горизонтальные проекции которых совпадают со сторонами четырехугольника (проекцией боковой поверхности призмы), а на фронтальную и профильную проецируются в виде участков эллипсов;

построить видимые фронтальные проекции участков эллипсов Задачи по начертательной геометрии построив фронтальные проекции этих точек;

внутренний контур фронтальной проекции определяют два участка эллипсов Задачи по начертательной геометрии (главный фронтальный меридиан шара не существует между точками Задачи по начертательной геометрии и выполнен тонкой линией).

  1. Достроить на горизонтальной проекции линии пересечения 6-7-8 плоскостей паза с поверхностью шара:

4-е действие. Построить тонкими линиями (без срезов и вырезов) профильные проекции формообразующих геометрических тел и внутренних элементов.

  1. Профильную проекцию определяют
  • проекция шара — полуокружность заданным радиусом шара;
  • проекция призмы — прямоугольник, ограниченный боковыми ребрами и линией верхнего основания.

Внутренний контур профильной проекции определяют: очерковые невидимые линии цилиндрического отверстия: горизонтальные отрезки: невидимая линия Задачи по начертательной геометрии и видимые участки Задачи по начертательной геометрии (проекция горизонтальной плоскости выреза в призме); невидимая линия Задачи по начертательной геометрии(проекция горизонтальной плоскости паза).

5-е действие. Достроить профильную проекцию комбинированного тела, построив на его наружной и внутренней поверхностях линии пересечения с заданными плоскостями вырезов:

У. Достроить линии пересечения на наружной поверхности полушара и призмы по профильным проекциям обозначенных точек:

  1. Досгрошь линии пересечения на внуфенней поверхности комбинированного тела но профильным проекциям обозначенных точек:

построить невидимый участок эллипса Задачи по начертательной геометрии: по принадлежности точек Задачи по начертательной геометрии характерным образующим цилиндрическою отверстия, а точки Задачи по начертательной геометрии — по координате Задачи по начертательной геометрии.

построить невидимые отрезки Задачи по начертательной геометрии проекции горизонтальной плоскости выреза в призме.

6-е действие. Выполнить графический анализ построенной профильной проекции для определения ее очерка и внутреннего контура.

  1. Профильный очерк определяют:
  1. Внутренний видимый контур проекции определяют:
  • участок ребра, совпадающий с осью симметрии профильной проекции;
  • участки эллипсов Задачи по начертательной геометрии‘.
  1. Внутренний невидимый контур проекции определяют:

7-е действие. Оформить чертеж комбинированного тела, выполнив толстыми линиями видимые очерки и внутренние контуры каждой проекции и штриховыми линиями невидимые контуры проекций (оставить тонкими линиями полные очерки геометрических тел и линии построений).

Задачи по начертательной геометрии
Задачи по начертательной геометрии

Графическая работа № 8

Сечение поверхности плоскостью общею положения

Для решения задачи 14 следует повторить изложенные выше темы начертательной геометрии.

Плоскость:

  • плоскости общею и частного положения (плоскости проецирующие и плоскости уровня);

прямые особою положения в плоскости: фронтапь и горизонталь плоскости;

Поверхности — геометрические тела: проекции геометрических тел (призмы, пирамиды, цилиндра, конуса, ша-ра, тора и тороида);

  • построение проекций точек на поверхности геометрических тел; сечение геометрических тел плоскостями частного положения.

Преобразование чертежа: способ замены плоскостей проекций (задачи 1,2, 3 и 4).

Тема 8. Сечение поверхности плоскостью общего положения

Задача №14.

Построить натуральную величину сечения геометрического тела плоскостью общего положения способом замены плоскостей проекций и достроить горизонтальную и фронтальную проекции линии пересечения геометрическою тела с плоскостью с учетом видимости этой линии на проекциях геометрического тела. Преобразование плоскости выполнять относительно горизон тали плоскости.

Графические условия вариантов задачи 14 даны в табл. 4.9.

Задачи по начертательной геометрии
Задачи по начертательной геометрии

Поверхности геометрических тел могут пересекаться плоскостями, занимающими относительно плоскостей проекций частные (проецирующие или уровня ) или общие положения:

Первый случай, когда сечения геометрических тел выполнены плоскостями частного положения, был подробно рассмотрен в темах 4, 5 и 6: «Поверх-ности. Поверхности гранные. Поверхности вращения». Построение проекций линии пересечения выполнялось в этих частных случаях по принадлежности точек их линий поверхностям геометрических тел по определенным графичс-ским алгоритмам, приведенным в рассмотренных темах.

На рис 4.90 показан еще один пример построения горизонтальной проекции линии пересечения поверхности тороида (самопересекающийся тор) фронтально-проецирующей плоскостью Задачи по начертательной геометрии.

Графические действия для построения горизонтальной проекции линии пересечения в этом случае выполняется в следующем порядке:

1-е действие. Обозначить характерные 1, 4 и 6 и промежуточные 2, 3 и 5 точки на заданной фронтальной проекции линии пересечения, совпадающей с вырожденной проекцией плоскости сечения Задачи по начертательной геометрии.

2-е действие. Построить горизонтальные проекции обозначенных точек по их принадлежности параллелям тороида.

3-е действие. Соединить построенные горизонтальные проекции точек плав-ной кривой, имеющей форму овала (видимая кривая).

Во втором случае, когда сечения геометрических тел выполнены плоскостями общего положения, для более удобного решения задачи следует изменить заданное графическое условие таким образом, чтобы один из графических образов занял относительно плоскостей проекций частное положение, т.е. привести условие к первому частному случаю.

По условию задачи преобразовать в частное положение из двух заданных образов (геометрического тела и плоскости) возможно только плоскость общего положения.

Напоминаем, что для преобразования плоскости общего положения в плоскость проецирующую следует вы-полнить задачу 3 преобразования способом замены плоскостей проекций (см. рис. 4.51). Это возможно только в том случае, если прямая уровня заданной плоскости горизонталь или фронталь преобразуется в проецирующую прямую (задача 2, см. рис. 4.47 и 4.48): для преобразования в горизонтально-проецирующую плоскость используется фронталь, для преобразования во фронтально-проецирующую плоскость горизонталь.

Задачи по начертательной геометрии

Для определения натуральной плоскостью следует далее преобразовать построенную после 1-го преобразова-ния проецирующую плоскость в плоскость уровня, т.е. решить задачу 4 замены плоскостей проекций (см. рис 4.54).

На рис. 4.91 показано последовательное двойное преобразование плоскости общего положения в плоскость уровня способом замены плоскостей проекций.

Задачи по начертательной геометрии

Графический алгоритм последовательного преобразования заданной плоскости общего положения Задачи по начертательной геометрии в плоскость уровня выполняется двумя заменами плоскостей проекций в следующем порядке:

1-е действие. Задать на чертеже ось исходной системы плоскостей проекций Задачи по начертательной геометрии (через точку Задачи по начертательной геометрии).

2-е действие. Провести в плоскости линию уровня. В данной задаче провести горизонталь Задачи по начертательной геометрии.

I. Первая замена плоскостей проекций — преобразовать плоскость общею положения Задачи по начертательной геометрии в плоскость проецирующую (задача 3):

3-е действие. Ввести первую дополнительную систему плоскостей проекций Задачи по начертательной геометрии с осью проекций Задачи по начертательной геометрии перпендикулярной горизонтальной проекции горизонтали Задачи по начертательной геометрии плоскости.

4-е действие. Построить в первой дополнительной системе фронтальную проекцию Задачи по начертательной геометрии плоскости Задачи по начертательной геометрии по координатам Задачи по начертательной геометрии взятым из заданной исходной системы Задачи по начертательной геометрии плоскость спроецировалась в линию, т.е. преобразовалась во фронтально-проецирующую плоскость (перпендикулярна Задачи по начертательной геометрии).

II. Вторая замена плоскостей проекций преобразовать плоскость проецирующую в плоскость уровня (задача 4):

5-е действие. Ввести вторую дополнительную систему плоскостей проекций Задачи по начертательной геометрии с осью проекций Задачи по начертательной геометрии параллельной вырожденной в линию проекции плоскости Задачи по начертательной геометрии, построенной в результате первого преобразования.

6-е действие. Построить во второй дополнительной системе горизонтальную проекцию Задачи по начертательной геометрии плоскости Задачи по начертательной геометрии по координатам y(yj, взятым из предыдущей системы Задачи по начертательной геометрии до предыдущей оси проекций Задачи по начертательной геометрии: плоскость спроецировалась в треугольник Задачи по начертательной геометрии, имеющий натуральную величину как плоскость уровня (параллельна Задачи по начертательной геометрии).

На рис. 4.92 показан пример построения натуральной величины сечения прямой правильной четырехугольной призмы плоскостью общею положения Задачи по начертательной геометрии, заданной треугольником, и построение проекций линии пересечения поверхности призмы этой плоскостью на заданных проекциях призмы.

Задача решена двумя заменами плоскостей проекции, т.е. двумя последовательными преобразованиями по следующему графическому алгоритму:

1-е действие. Построить проекции геометрического тела и секущей плоскости Задачи по начертательной геометрии и задать на чертеже систему плоскостей проекций Задачи по начертательной геометрии гак, чтобы ось проекций Задачи по начертательной геометрии совпала с фронтальной проекцией нижнего основания заданной призмы.

2-е действие. Провести в плоскости горизонтальЗадачи по начертательной геометрии по заданному графическому условию, горизонталью Задачи по начертательной геометрии плоскости является ее сторона Задачи по начертательной геометрии.

I. Первая замена плоскостей проекций — преобразовать плоскость общего положения Задачи по начертательной геометрии в проецирующую.

3-е действие. Ввести первую дополнительную систему плоскостей проекций Задачи по начертательной геометрии с осью Задачи по начертательной геометрии, перпендикулярной горизонтальной Задачи по начертательной геометриипроекции горизонтали (стороне Задачи по начертательной геометрии).

Задачи по начертательной геометрии

4-е действие. Построить тонкими линиями в первой дополнительной системе фронтальные проекции плоскости Задачи по начертательной геометрии и призмы Задачи по начертательной геометрии (точки отмечены на верхнем основании призмы) по координатам Задачи по начертательной геометрии, взятым из заданной системы Задачи по начертательной геометрии; в результате преобразования плоскость спроецировалась в прямую линию и заняла положение фронтально-проецирующей, а призма спроецировалась в прямоугольник высотой Задачи по начертательной геометрии.

I. Обозначить на преобразованной проекции характерные точки Задачи по начертательной геометрииЗадачи по начертательной геометрии и Задачи по начертательной геометрии на ребрах призмы, по которым плоскость сечения пересекает ее поверхность (плоская ломаная линия Задачи по начертательной геометрии пересечения совпадает с вырожденной проекцией плоскости сечения).

!!! В результате выполнения первой замены плоскостей проекций графическое условие задачи преобразовано в частный случай сечения геометрического тела фронтально-проецирующей плоскостью.

И. Вторая замена плоскостей проекций — преобразовать плоскость сечения в плоскость уровня.

5-е действие. Ввести вторую дополнительную систему плоскостей проекций Задачи по начертательной геометрии с осью проекций Задачи по начертательной геометрии, параллельной вырожденной проекции плоскости сечения, полученной в результате первою преобразования.

6-е действие. Построить во второй дополнительной системе горизонтальную Задачи по начертательной геометрии проекцию ломаной линии сечения по координатам Задачи по начертательной геометрии, взятым из предыдущей дополнительной системы Задачи по начертательной геометрии до оси проекций Задачи по начертательной геометрии; полученная в результате второго преобразования проекция плоскости сечения параллельна дополнительной плоскости проекций Задачи по начертательной геометрии, те является плоскостью уровня и определяет натуральную величину сечения

III. Достроить на заданных проекциях призмы горизонтальную и фронтальную проекции ломаной линии пересечения секущей плоскости Задачи по начертательной геометрии с поверхностью призмы и определить видимость этой линии на проекциях.

7-е действие. Построить по линиям обратной связи горизонтальную проекцию ломаной линии сечения Задачи по начертательной геометрии на заданной горизонтальной проекции призмы по принадлежности обозначенных точек ребрам призмы (обратным проецированием) и определить ее видимость (линия совпадает с проекцией боковой поверхности призмы).

8-е действие. Построить по линиям обратной связи фронтальную проекцию Задачи по начертательной геометрии ломаной линии сечения на заданной фронтальной проекции призмы по принадлежности обозначенных точек ребрам призмы, используя координаты Задачи по начертательной геометрии из первой дополнительно системы Задачи по начертательной геометрии; определить видимость ломаной линии пересечения на поверхности призмы: невидимый участок Задачи по начертательной геометрии — на невидимых гранях призмы; видимый участок Задачи по начертательной геометрии на видимых гранях призмы.

Образец выполнения листа 8 с задачей 14 показан на рис. 4.93.

Задача №14.

Построить натуральную величину сечения наклонной четырехугольной пирамиды плоскостью общею положения Задачи по начертательной геометрии, заданной двумя пересекающимися прямыми Задачи по начертательной геометрии и Задачи по начертательной геометрии, и построить проекции ломаной линии пересечения плоскости Задачи по начертательной геометрии с поверхностью пирамиды на заданных проекциях.

Задачу выполнить на формате АЗ чертежной бумаги.

Графические условия вариантов задачи 14 даны в табл. 4.9.

План графических действий для решения задачи соответствует предложенному графическому алгоритму:

1-е действие. Построить на чертеже по заданным координатам фронтальную и горизонтальную проекции наклонной пирамиды и плоскости сечения Задачи по начертательной геометрии и задать на чертеже систему плоскостей проекций Задачи по начертательной геометрии с осью проекций Задачи по начертательной геометрии, совпадающей на фронтальной проекции пирамиды с ее основанием

2-е действие. Провести в плоскости горизонталь Задачи по начертательной геометрии) — использовать прямую Задачи по начертательной геометрии заданной плоскости сечения.

I. Первая замена плоскостей проекций — преобразовать плоскость общего положения Задачи по начертательной геометрии во фронтально-проецирующую плоскость.

3-е действие. Ввести первую дополнительную систему плоскостей проекций Задачи по начертательной геометрии с осью проекций перпендикулярной горизонтальной проекции Задачи по начертательной геометрии горизонтали Задачи по начертательной геометрии.

4-е действие. Построить в первой дополнительной системе фронтальные проекции плоскости Задачи по начертательной геометрии и наклонной пирамиды по координатам Задачи по начертательной геометрии (отмечены двумя черточками для точек Задачи по начертательной геометрии и Задачи по начертательной геометрии и тремя черточками для точки Задачи по начертательной геометрии), взятым в заданной системе Задачи по начертательной геометрии. в результате преобразования секущая плоскость спроецировалась в прямую и заняла положение фронтально-проецирующей, а пирамида спроецировалась в треугольник.

Задачи по начертательной геометрии

Обозначить характерные точки Задачи по начертательной геометрии и Задачи по начертательной геометрии ломаной линии, по которой плоскость сечения пересекает ребра и основание пирамиды (проекции точек Задачи по начертательной геометрии и Задачи по начертательной геометрии совпадают).

II. Вторая замена плоскостей проекций — преобразовать плоскость сечения пирамиды в плоскость уровня.

5-е действие. Ввести вторую дополнительную систему плоскостей проекций Задачи по начертательной геометрии с осью проекций Задачи по начертательной геометрии, параллельной плоскости сечения, полученной в результате первою преобразования.

6-е действие. Построить во второй дополнительной системе горизонтальную проекцию сечения Задачи по начертательной геометрии по координатам Задачи по начертательной геометрии (отмечена знаком «~» для точки 3Д взятым из предыдущей дополнительной системы Задачи по начертательной геометрии до оси проекций Задачи по начертательной геометрии полученная в результате второго преобразования проекция плоскости сечения параллельна дополнительной плоскости проекций Задачи по начертательной геометрии т.е. является плоскостью уровня и определяет натуральную величину сечения.

III. Достроить на заданных проекциях пирамиды горизонтальную и фронтальную проекции ломаной линии пересечения секущей плоскости с поверхностью пирамиды и определить видимость этой линии на проекциях.

7-е действие. Построить полициям обратной связи горизонтальную проекцию Задачи по начертательной геометрии ломаной линии пересечения на заданной горизонтальной проекции пирамиды по принадлежности обозначенных точек ребрам и основанию пирамиды; определить видимость ломаной: участок Задачи по начертательной геометрии — видимый (лежит на видимых гранях), участок Задачи по начертательной геометрии — невидимый.

8-е действие. Построить по линиям связи фронтальную проекцию ломаной линии Задачи по начертательной геометрии пересечения на заданной фронтальной проекции пирамиды по принадлежности обозначенных точек ребрам и основанию пирамиды; определить видимость ломаной: участок Задачи по начертательной геометрии — видимый на видимых гранях, а участки Задачи по начертательной геометрии и Задачи по начертательной геометрии — невидимые, участок Задачи по начертательной геометрии лежит на основании пирамиды.

Пересечение поверхностей и способы построения линий пресечении

Линия пересечения принадлежит обеим пересекающимся поверхностям и образуется множеством их общих точек. Следовательно, построение линии пересечения поверхностей сводится к построению этих общих точек.

При пересечении поверхностен вращения порядок линии пересечения определяется умножением порядков пересекающихся поверхностей. Например, если пересекаются круговой конус (поверхность 2-го порядка) и сфера (поверхность 2-ю порядка), то линия пересечения является кривой 4-ю порядка.

Определение способа построения линии пересечения зависит от взаимною расположения пересекающихся поверхностей, а также от их расположения относительно плоскостей проекций.

Из всех возможных вариантов пересечения

поверхностей геометрических тел в зависимости от их взаимного рас-положения можно выделить четыре случая, которые позволяют определить и представить форму линии пересечения поверхностей:

I случай. Частичное врезание (рис. 4.94). В этом случае линией пересечения -одна замкнутая пространственная линия.

II случай. Полное проницание (рис. 4.95). В этом случае линией пересечения являются две замкнутые пространственные линии.

Задачи по начертательной геометрии
Задачи по начертательной геометрии

III случай. Одностороннее соприкосновение (рис. 4.96). В этом случае поверхности соприкасаются водной общей точке Задачи по начертательной геометрии и линия их пересечения, про-ходя через эту точку, распадается на две замкнутые пространственные линии (поверхности имеют одну общую касательную плоскость).

IV случай. Двойное соприкосновение (рис. 4.97).

В этом случае поверхности имеют две точки соприкосновения Задачи по начертательной геометрии и Задачи по начертательной геометрии и линия их пересечения распадается на две плоские кривые в соответствии с теоремой 2 (С.А Фролов «Начертательная геометрия»): если две поверхности вращения второго порядка имеют касание в двух точках, то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую Задачи по начертательной геометрии, соединяющую точки касания (поверхности имеют две общие касательные плоскости).

Задачи по начертательной геометрии

В зависимости от расположения пересекающихся геометрических тел относительно плоскостей проекций и участия в пересечении геометрических тел, имеющих проецирующую поверхность (как призма или цилиндр) или не имеющих проецирующей поверхности (пирамида, конус, шар, тор, тороид, наклонная призма или наклонный цилиндр, глобоид и др.), следует выбрать оптимальный способ построения проекций линии пересечения поверхностей на чертеже.

По этим признакам способы построения линий пересечения поверхностей можно объединить в две группы:

Первая группа: частные случаи пересечения поверхностей, когда для построения линий пересечения не требуется применения специальных способов, а используется частное положение пересекающихся геометрических тел относительно плоскостей проекций.

Задачи по начертательной геометрии

Вторая группа: общие случаи пересечения поверхностей, когда для построения линий пересечения требуется применить специальные способы посредников. Частные случаи пересечения поверхностей

К первой группе частных случаев пересечения поверхностен относятся следующие четыре случая:

1 случаи: пересечение геометрических тел, боковые поверхности которых являются проецирую щ ими, т.е. перпендикулярны какой-либо плоскости проекций.

2 случаи: пересечение геометрических тел, у одного из которых боковая поверхность является проецирующей.

3 случаи: пересечение соосных поверхностей вращения, т.е. имеющих общую ось вращения

4 случаи: пересечение поверхностей вращения второго порядка, описанных вокруг сферы (по теореме Г. Монжа).

Рассмотрим на примерах построение проекций линий пересечения поверхностей геометрических тел в четырех частных случаях первой группы .

Следует отметить, что перечисленные частные случаи пересечения поверхностей наиболее часто встречаются при формообразовании различных реальных деталей.

Задачи по начертательной геометрии

Задачи по начертательной геометрии

1-й частный случай.

На рис. 4.98 показан пример построения проекций линии пересечения поверхностей горизонтально-проецирующего цилиндра и фронтально-проецирую-щей прямой правильной треугольной призмы, т.е. пересекаются два геометрических тела, боковые поверхности которых занимают относительно плоское гей проекций проецирующее положение.

Характерный признак 1-го частного случая: на заданных проекциях тел определяются две проекции нс-комой линии пересечения:

фронтальная проекция Задачи по начертательной геометрии линии пересечения Задачи по начертательной геометрии совпадает с вырожденной в ломаную линию боковой поверхностью призмы;

горизонтальная проекция Задачи по начертательной геометрии линии пересечения Задачи по начертательной геометрии совпадает с участком окружности которая является вырожденной проекцией боковой поверхности цилиндра

Следовательно, требуется достроить только профильную проекцию Задачи по начертательной геометрии линии пересечения, построив профильные проекции обозначенных точек по их принадлежности одному из тел (в данной задаче — цилиндру), и соединить их плавной кривой с учетом ее видимости на поверхностях.

Задачи по начертательной геометрии
Задачи по начертательной геометрии

2-й частный случай

На рис. 4.показан пример построения проекций линии пересечения поверхностей прямого кругового конуса и фронтально-проецирующего цилиндра, т.е. пересекающихся геометрических тел, у одного из которых боковая поверхность проецирующая.

Характерный признак 2-го частного случая: на заданных проекциях тел определяется одна проекция линии пересечения:

фронтальная проекция Задачи по начертательной геометрии линии пересечения Задачи по начертательной геометрии совпадает с окружностью, которая является вырожденной проекцией боковой поверхности цилиндра.

Следовательно, требуется достроить горизонтальную Задачи по начертательной геометрии и профильную Задачи по начертательной геометрии проекции линии пересечения, построив горизонтальные и профильные проекции обозначенных то-чек по их принадлежности конусу, и соединить построенные на проекциях точки плавными кривыми линиями с учетом их видимости на поверхностях.

!!! На профильную проекцию предмета пространственная кривая линия пересечения 4-го порядка проецируется в виде участка гиперболы.

3-й частный случай.

Пересечение соосных геометрических тел.

Соосными называются геометрические тела вращения, имеющие общую ось вращения Задачи по начертательной геометрии. Поверхности соосных тел пересекаются по окружностям, перпендикулярным их общей оси. Если общая ось Задачи по начертательной геометрии соосных геометрических тел является прямой проецирующей (т.е. она перпендикулярна какой-либо одной плоскости проекций, а двум другим параллельна), то окружность пересечения проецируется дважды в прямую линию, перпендикулярную их общей оси, на те плоскости проекций, которым эта общая ось параллельна.

На рис. 4.100 показан пример построения линии пересечения соосных геометрических тел — конуса и горизонтально-проецирующего цилиндра, имеющих общую горизонтально-проецирующую ось Задачи по начертательной геометрии (ось перпендикулярна Задачи по начертательной геометрии и параллельна Задачи по начертательной геометрии и Задачи по начертательной геометрии). Линией пересечения является окружность, фронтальная Задачи по начертательной геометрии и профильная Задачи по начертательной геометрии проекции которой представляют собой прямые линии, перпендикулярные их общей оси Задачи по начертательной геометрии и проходящие через точки пересечения фронтальных и профильных очерков поверхностей Горизонтальная проекция этой

Задачи по начертательной геометрии

окружности пересечения Задачи по начертательной геометрии) совпадает с вырожденной горизонтальной проекцией боковой поверхности цилиндра.

На рис. 4.101 показан пример построения линий пересечения двух пар соосных поверхностей:

  • поверхности шара и горизонтально-проецирующего цилиндра, соосных относительно горизонтально-проецирующей оси Задачи по начертательной геометрии, окружности пересечения которых проецируются в прямые линии на фронтальную и профильную проекции;

поверхности шара и сквозного профильно-проецирующего цилиндрического отверстия Задачи по начертательной геометрии в шаре, соосных относительно профильно-проецирующей оси Задачи по начертательной геометрии, окружности пересечения которых проецируются в прямые линии на фронтальную и горизонтальную проекции.

4-и частный случай.

Пересечение поверхностей вращения второго порядка, описанных вокруг сферы (по теореме Г. Монжа).

Напоминаем, к поверхностям вращения второго порядка относятся круговые цилиндр и конус, шар, эллипсоиды, параболоид, одно-и двуполостные гиперболоиды.

Эллиптические цилиндры и конусы, а также наклонный круговой конус — это не поверхности вращения!

Все горы (открытый, закрытый и самопересекающийся), глобоиды и торо-иды относятся к поверхностям вращения четвертого порядка!

В 4-м частном случае имеет место двойное соприкосновение пересекающихся поверхностей вращения второго порядка, описанных вокруг сферы, и построение линии пересечения основано на теореме 2 (С.Д. Фролов «Начертательная геометрия»):

Задачи по начертательной геометрии

Теорема 3 , известная как теорема Г. Монжа, вытекает из теоремы 2: если две поверхности вращения второго порядка описаны вокруг третьей поверхности второго порядка или вписаны в нее, то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки касания

Практическое применение теоремы возможно в том случае, когда две поверхности вращения второго порядка описаны вокруг сферы или вписаны в нее.

Использовать теорему Г. Монжа для построения на чертеже линии пересечения поверхностей можно при наличии в задаче четырех обязательных графических условий:

  1. Пересекаются поверхности вращения второго порядка.
  2. Оси поверхностей вращения должны пересекаться (точка пересечения центр вписанной сферы).
  3. Поверхности описаны вокруг общей сферы или вписаны в нее.
  4. Общая плоскость симметрии, проходящая через оси поверхностей, является плоскостью уровня.

При соблюдении этих четырех условий на одной из заданных проекций можно построить проекции двух плоских кривых, на которые распадается ис-комая линия пересечения:

плоские кривые проецируются в отрезки прямых линий на ту проекцию предмета, которая расположена па плоскости проекций, параллельной обшей плоскости симметрии поверхностей;

-точки пересечения очерков поверхностей на этой проекции принадлежат искомой линии пересечения и через эти точки проходят прямые, в которые проецируются плоские кривые пресечения;

прямые, как проекции плоских кривых, пересекаются в точке, с которой совпадают проекции двух точек Задачи по начертательной геометрии соприкосновения поверхностей и соответственно проекция прямой Задачи по начертательной геометрии соединяющей эти точки соприкосновения (точки касания).

!!! Точки касания (соприкосновения) поверхностей Задачи по начертательной геометрии и Задачи по начертательной геометрии определяются на пересечении проекций окружностей касания вписанной сферы с каждой из поверхностей.

На рис. 4.102 показан пример построения проекций линии пересечения поверхностей вращения второго порядка — прямого кругового конуса и наклонного круговою цилиндра, описанных вокруг обшей сферы. Для решения задачи использована теорема Г. Монжа, поскольку здесь соблюдены все четыре обязательные условия ее применения:

  1. Пересекаются прямой круговой конус и круговой наклонный цилиндр, т.е. поверхности вращения второго порядка.
  2. Оси конуса и цилиндра пересекаются в точке Задачи по начертательной геометрии.
Задачи по начертательной геометрии
  1. Обе поверхности описаны вокруг обшей для них сферы с центром в точке Задачи по начертательной геометрии.
  2. Общая плоскость симметрии поверхностен Задачи по начертательной геометрии является фронтальной плоскостью уровня Задачи по начертательной геометрии.

Построение проекций линии пересечения поверхностей по теореме Г. Монжа выполняется по следующему графическому алгоритму:

1-е действие. Определить проекцию предмета, на которую плоские кривые проецируются в отрезки прямых линий: в данной задаче это фронтальная проекция, так как общая плоскость симметрии Задачи по начертательной геометрии параллельна фронтальной плоскости проекций Задачи по начертательной геометрии.

2-е действие. Построить фронтальные совпадающие проекции Задачи по начертательной геометрии точек соприкосновения заданных поверхностей, лежащих на пересечении проекций окружностей касания вписанной сферы с каждой из поверхностей (прямые линии -проекций этих окружностей касания — строятся как линии пересечения соосных поверхностей, так как вписанная сфера образует две пары соосных поверхностей -конус/сфера с обшей осью Задачи по начертательной геометрии и цилиндр/сфера с общей осью Задачи по начертательной геометрии. Па чертеже проекции этих окружное!ей касания проходят через точки, полученные на пересечении перпендикуляров, проведенных из точки Задачи по начертательной геометрии — центра вписанной сферы — к образующим конуса (окружность касания 1) и цилиндра (окружность касания 2).

3-е действие. Отметить на фронтальной проекции точки Задачи по начертательной геометрии и Задачи по начертательной геометрии пересечения очерков поверхностей и построить фронтальные проекции плоских кривых пересечения 2-го порядка, соединив прямыми линиями Задачи по начертательной геометрии и Задачи по начертательной геометрии противоположные точки пересечения очерков (обе прямые обязательно должны пройти через построенные проекции точек соприкосновения поверхностен Задачи по начертательной геометрии;

4-е действие Построить горизонтальные проекции двух плоских кривых пересечения — эллипсов, по горизонтальным проекциях обозначенных точек Задачи по начертательной геометрии и Задачи по начертательной геометрии построенных по принадлежности поверхности конуса; обозначить и построить точки Задачи по начертательной геометрии и Задачи по начертательной геометрии, которые лежат на очерковых образующих горизонтальной проекции цилиндра и определяют границу видимости кривых на горизонтальной проекции предмета, а также отметить и построить необходимое количество промежуточных точек (здесь не обозначены).

5-е действие. Оформить фронтальный и горизонтальный очерки пресекающихся поверхностей.

!!! Построение точек соприкосновения Задачи по начертательной геометрии поверхностей особенно важно в задачах, где по условию нельзя определить одну из четырех точек пересечения очерков поверхностей. Совпадающие проекции точек соприкосновения в этом случае определят направление одной из двух прямых линий — проекций плоских кривых пересечения.

Общие случаи пересечения поверхностей и способы построения линий пересечения поверхностей

Ко второй рассматриваемой группе относятся общие случаи пересечения геометрических тел, боковые поверхности которых могут занимать относительно плоскостей проекций непроецирующее положение (это наклонные призмы и цилиндры), а также геометрические тела, поверхности которых непроецирующие — это конус, сфера, торы, глобоид, эллипсоид, параболоид и гиперболоиды. Сюда же относятся наклонный эллиптический цилиндр, имеющий круговые сечения, и наклонный круговой конус.

Для построения линий пересечения поверхностей в этом случае применяются специальные способы вспомогательных посредников — плоскостей уровня или поверхностей (сфер, цилиндров, конусов), из которых мы рассматриваем следующие:

  1. способ вспомогательных секущих плоскостей уровня;
  2. способ вспомогательных концентрических сфер;
  3. способ вспомогательных эксцентрических сфер.

11рименение одного из указанных способов для построения линий пересечения поверхностей геометрических тел возможно при наличии некоторых обя-затсльных графических условий расположения геометрических тел относительно плоскостей проекций и зависит от того, какие именно геометрические тела пересекаются в конкретной задаче.

Линия пересечения поверхностей является общей для обеих поверхностей и образуется множеством общих точек, которые строятся с помощью вспомогательных посредников.

Предварительно требуется выполнить графический анализ условия задачи для выбора рационального способа ее решения, определить проекцию предмета, на которой следует начинать решение задачи, и фаницы введения посредников.

Для построения проекций точек, принадлежащих линии пересечения поверхностей. способом посредников следует применять общий для всех рассматриваемых способов графический алгоритм.

Графический алгоритм I:

1-е действие. Ввести вспомогательную плоскость- или поверхность-посредник.

2-е (к’жтвие. Построить вспомогательные линии пересечения плоскости- или поверхности-посредника с каждой из заданных поверхностей.

3-е действие. Определить точки пересечения построенных вспомогательных линий пересечения — эти точки принадлежат искомой линии пересечения.

Рассмотрим на примерах применение различных способов вспомогательных посредников для построения проекций линий пересечения поверхностей.

Способ вспомогательных секущих плоскостей уровня

Применение способа вспомогательных секущих плоскостей рационально при н&тичии двух графических условий:

  1. Общая плоскость симметрии пересекающихся геометрических тел является плоскостью уровня; при соблюдении этого условия точки пересечения очерков поверхностей принадлежат искомой линии пересечения и определяют верхнюю и нижнюю границу введения плоскостей-посредников на соответствующей проекции предмета.
  2. Сечениями геометрических тел в одной из плоскостей уровня должны быть простые в построении линии пересечения — прямые линии (образующие) или окружности; эту плоскость уровня и следует выбрать в качестве посредника.

На рис. 4.103 показан пример построения проекций линии пересечения прямого конуса и половины тара.

Для решения задачи требуется предварительно выполнить графический анализ заданных проекций предмета.

Выбираем для решения задачи способ вспомогательных секущих плоскостей, так как здесь соблюдены два графических условия его применения:

  • общая плоскость симметрии Задачи по начертательной геометрии геометрических тел — конуса и полушара — является фронтальной плоскостью уровня (первое условие применения);
  • горизонтальные плоскости уровня, которые пересекают поверхности конуса и полушара но окружностям, выбираем в качестве вспомогательных плоскостей-посредников (второе условие применения).

Решение задачи, т.е. введение плоскостей-посредников, начинаем

Задачи по начертательной геометрии

на фронтальной проекции предмета, так как общая плоскость симметрии геометрических тел является фронтальной плоскостью уровня.

Определяем границы введения плоскостей-посредников — это точка Задачи по начертательной геометрии пересечения фронтальных очерков и точки Задачи по начертательной геометрии пересечения окружностей оснований конуса и полушара, лежащие в горизонтальной плоскости уровня Задачи по начертательной геометрии

Построить проекции точек искомой линии пересечения, выполнив действия предложенного графического алгоритма 1:

1-е действие. Ввести на фронтальной проекции предмета первую вспомогательную секущую горизонтальную плоскость-посредник Задачи по начертательной геометрии произвольно и ниже точки Задачи по начертательной геометрии.

2-е действие. Построить на горизонтальной проекции предмета вспомогательные окружности радиусами Задачи по начертательной геометрии и Задачи по начертательной геометрии но которым секущая плоскость-посредник Задачи по начертательной геометрии пересекает поверхности конуса и шара.

3-е действие. Определить на пересечении построенных вспомогательных окружностей горизонтальные проекции точек Задачи по начертательной геометрии, принадлежащих линии пересечения; фронтальные совпадающие проекции Задачи по начертательной геометрии этих точек определяются полиции связи на фронтальной проекции плоскости-посредника Задачи по начертательной геометрии.

Повторить действия основного графического алгоритма, введя вторую плоскость-посредник Задачи по начертательной геометрии, и построить проекции точек Задачи по начертательной геометрии и т. д.

Дополнительные действия:

4-е действие Соединить проекции построенных точек на фронтальной и горизонтальной проекциях предмета плавными кривыми линиями с учетом их видимости на проекциях: на фронтальную проекцию предмета пространственная кривая пересечения проецируется в видимую плоскую кривую второго порядка (участок параболы), поскольку горизонтальная проекция предмета имеет фронтальную симметрию: на горизонтальную проекцию предмета — в участок видимой кривой 4-го порядка сложной формы.

5-е действие. Оформить очерки поверхностей на заданных проекциях предмета с учетом их относительной видимости:

!!! Способ вспомогательных секущих плоскостей позволяет строить одновременно две проекции искомой линии пересечения.

Основанием для применения сферы в качестве вспомогательной поверхности-посредника являются две ее характерные особенности:

  • в сфере можно провести через ее центр бесконечное количество осей;

сфера может быть соосна любой поверхности вращения (кроме открытого и закрытого тора); соосные поверхности пересекаются по окружностям, проекции которых легко построить (см. рис. 4.100 и 4.101).

Сфера-посредник образует две пары соосных поверхностей с каждой из заданных поверхностей. Каждая образованная пара соосных поверхностей пересекается по соответствующим окружностям, которые проецируются в прямые, перпендикулярные общей оси каждой пары, и проходят через точки пересечения очерков каждой пары соосных поверхностей.

Применение способа вспомогательных концентрических сфер для построе-ния линии пересечения поверхностей возможно при наличии трёх следующих графических условий:

  1. Пересекаются поверхности вращения (кроме открытого и закрытого тора).
  2. Общая плоскость симметрии пересекающихся поверхностей является плоскостью уровня; при этом условии точки пересечения очерков на проекции предмета, изображенного на параллельной общей плоскости симметрии плоскости проекций, принадлежат искомой линии пересечения.
  3. Оси поверхностей пересекаются; точка пересечения осей является центром всех вспомогательных сфер.

Па рис. 4.104 показан пример построения проекций линии пересечения усеченного конуса и тороида (самопсрссскающийся тор).

Рассмотренный способ вспомогательных секущих плоскостей здесь применять не следует, так как ни одна плоскость уровня не пересекает поверхности одновременно по окружностям (одно из условия применения).

Для решения задачи требуется предварительно выполнить графический анализ заданных проекций предмета.

Задачи по начертательной геометрии

Выбираем для решения задачи способ вспомогательных концентрических сфер, так как здесь соблюдены три графических условия его применения:

  • пересекаются поверхности вращения — прямой круговой конус и тороид (самопересекающийся тор);

-общая плоскость симметрии геометрических тел Задачи по начертательной геометрии является фронтальной плоскостью уровня;

  • оси поверхностей пересекаются в точке Задачи по начертательной геометрии — центр всех вспомогательных сфер.

Решение задачи, т.е. введение вспомогательных сфер-посредников, начинаем на фронтальной проекции предмета, гак как общая плоскость симметрии является фронтальной плоскостью уровня и точки Задачи по начертательной геометрии и Задачи по начертательной геометрии пересечения фронтальных очерков принадлежа! линии пересечения.

Определяем границы введения сфер — это точки Задачи по начертательной геометрии и Задачи по начертательной геометрии пересечения фронтальных очерков пересекающихся геометрических тел.

Построить проекции точек линии пересечения, выполнив действия предложенного графического алгоритма I.

1-е действие. Ввести на фронтальной проекции вспомогательную сферу-посредник минимального радиуса Задачи по начертательной геометрии, с центром в точке Задачи по начертательной геометрии, вписанную в тороид (минимальная сфера-посредник должна в одну из поверхностей вписываться, а с другой поверхностью — пересекаться).

2-е действие. Построить проекции вспомогательных окружностей пересечения двух пар соосных поверхностей, образованных сферой-посредником с каждой заданной поверхностью

3-е действие. Определить точки Задачи по начертательной геометрии пересечения построенных проекций вспомогательных окружностей Задачи по начертательной геометрии и Задачи по начертательной геометрии которые принадлежат искомым линиям пересечения (по две пары совпадающих точек).

!!! Здесь имеет место случай полною проницания (Н-й случай) и линия пересечения распадается на две замкнутые кривые.

Дополнительные действия:

4-е действие. Повторить действия основного графического алгоритма, введя вспомогательные сферы большего радиуса Задачи по начертательной геометрии и Задачи по начертательной геометрии с тем же центром в точке Задачи по начертательной геометрии, и построить следующие пары точек Задачи по начертательной геометрии и Задачи по начертательной геометрии.

Достроить горизонтальные проекции построенных точек линии пересечения по принадлежности параллелям конуса.

  1. Соединить проекции построенных точек на фронтальной и горизонтальной проекциях предмета плавными кривыми линиями с учетом их видимости па проекциях (только линия пересечения Задачи по начертательной геометрии будет невидимой на горизонтальной проекции предмета)

5-е действие. Оформить очерки поверхностей на заданных проекциях предмета с учетом их относительной видимости способ вспомогательных эксцентрических сфер

Наименование способа говорит о том, что вспомогательные сферы имеют разные центры, которые и нужно определять в процессе построения проекций линии пересечения поверхностей.

Способ вспомогательных эксцентрических сфер для построения линии пересечения поверхностей возможно применять при наличии трех следующих графических условий:

Пересекаются:

  • поверхности вращения 4-го порядка, т.е. торовые поверхности — открытый или закрытый тор;
  • поверхности эллиптических цилиндра и конуса, имеющие круговые сечения.
  1. Общая плоскость симметрии поверхностей является плоскостью уровня.
  2. Оси поверхностей пересекаются или скрещиваются.

Поскольку в этом способе центр каждой вспомогательной сферы нужно определять графическими построениями, первое действие графического алго-ритма для построения проекций точек линии пересечения дополняется пост-роением центра каждой вспомогательной сферы.

Порядок графических действий для построения линий пересечения спосо-бом вспомогательных эксцентрических сфер показан на двух примерах.

На рис. 4.105 показан пример построения проекции линии пересечения профильно-проецирующего цилиндра с поверхностью четвертой части открытого тора Задача решается способом вспомогательных эксцентрических сфер, так как здесь соблюдены три необходимых условия для применения этого способа:

Задачи по начертательной геометрии

Построение проекций точек линии пересечения поверхностей выполняется на заданной фронтальной проекции предмета по предлагаемому графическому алгоритму II.

Графический алгоритм II:

1-е действие. Ввести вспомогательную сферу, выполнив предварительно следующие графические действия:

  1. Задать произвольное круговое сечение поверхности тора фронтально-проецирующей плоскостью Задачи по начертательной геометрии проходящей через его ось Задачи по начертательной геометрии окружность Задачи по начертательной геометрии, (ее проекция — прямая линия Задачи по начертательной геометрии) это заданная ЛИНИЯ ПЕРЕСЕЧЕНИЯ ТОРА С ИСКОМОЙ ВСПОМОГАТЕЛЬНОЙ СФЕРОЙ, центр которой должен лежать на перпендикуляре к проекции этой окружности прямой Задачи по начертательной геометрии (хорда окружности, в которую проецируется вспомогательная сфера).
  2. Провести к прямой Задачи по начертательной геометрии через се середину перпендикуляр Задачи по начертательной геометрии и на его пересечении с осью цилиндра Задачи по начертательной геометрии определить центр первой вспомогательной сферы -точку Задачи по начертательной геометрии.
  3. Провести окружность — проекцию вспомогательной сферы-посредника — с центром в точке Задачи по начертательной геометрии, радиус которой Задачи по начертательной геометрии определяется расстоянием от точки Задачи по начертательной геометрии до одной из крайних точек Задачи по начертательной геометрии илиЗадачи по начертательной геометрии прямой Задачи по начертательной геометрии.

2-е действие. Построить проекцию окружности пересечения построенной сферы-посредника с поверхностью соосного ей цилиндра — это прямая Задачи по начертательной геометрии, проходящая через точки Задачи по начертательной геометрии и Задачи по начертательной геометрии пересечения очерков цилиндра и сферы-посредника.

3-е действие. Определить на пересечении построенных проекций заданной окружности Задачи по начертательной геометрии и построенной окружности Задачи по начертательной геометрии совпадающие точки Задачи по начертательной геометрии, принадлежащие искомой линии пересечения заданных поверхностей.

Дополнительные действия:

4-е действие. Повторить действия графического алгоритма и построить достаточное количество точек линии пересечения. В данном примере дополнительными сечениями вспомогательных плоскостей Задачи по начертательной геометрии и Задачи по начертательной геометрии и вспомогательными сферами Задачи по начертательной геометрии и Задачи по начертательной геометрии с центрами Задачи по начертательной геометрии и Задачи по начертательной геометрии построены точки 2 и 3, принадлежащие линии пересечения. Причем в плоскости Задачи по начертательной геометрии окружности сечений совпадают и совпадающие точки 3 делят существование этих окружностей на две половины — верхняя часть принадлежит цилиндру, а нижняя — тору.

5-е действие. На фронтальной проекции соединить плавной видимой кривой точки Задачи по начертательной геометрии линии пересечения

6-е действие. Оформить очерки поверхностей на заданной проекции.

Па рис. 4.106 показан пример построения линии пересечения наклонного кругового цилиндра Задачи по начертательной геометрии с осью Задачи по начертательной геометрии и наклонного эллиптического цилиндра с осью Задачи по начертательной геометрии, у которого есть круговые сечения в горизонтальных плоскостях уровня.

Выполнить графический анализ условия и исключить нерациональный способ решения задачи.

Рассмотренный способ вспомогательных секущих плоскостей применять не следует, так как на заданной фронтальной проекции ни одна плоскость уровня не

Задачи по начертательной геометрии

пересекает поверхности одновременно по окружностям или образующим (одно из условий применения).

Рассмотренный способ вспомогательных концентрических сфер применять нельзя, так как проведенные сферы с центром в точке пересечения осей образуют соосные нары только с одной заданной поверхностью Задачи по начертательной геометрии (одно из условий применения).

Выбираем для решения задачи способ вспомогательных эксцентрических сфер, так как здесь соблюдены три условия его применения:

пересекаются наклонный круговой цилиндр Задачи по начертательной геометрии и эллиптический цилиндр Задачи по начертательной геометрии (поверхность не вращения);

Решение задачи, т.е введение сечений цилиндра Задачи по начертательной геометрии (параллельных заданному) горизонтальными плоскостями уровня Задачи по начертательной геометрииа начинаем на фронтальной проекции предмета, так как общая плоскость симметрии является фронтальной плоскостью уровня и точки Задачи по начертательной геометрии и Задачи по начертательной геометрии пересечения фронтальных очерков принадлежат линии пересечения.

Определяем границы введения сечений цилиндра Задачи по начертательной геометрии — это точки Задачи по начертательной геометрии и Задачи по начертательной геометрии пересечения фронтальных очерков пересекающихся геометрических тел.

Построить проекции точек линии пересечения поверхностей, выполнив действия предложенного графического алгоритма II.

Графический алгоритм II:

1-е действие. Ввести вспомогательную сферу, выполнив предварительные графические действия.

Задать произвольное круговое сечение эллиптического цилиндра Задачи по начертательной геометрии горизонтальной плоскостью Задачи по начертательной геометрии — прямую Задачи по начертательной геометрии. Эта заданная линия Задачи по начертательной геометрии — окружность пересечения эллиптического цилиндра с искомой вспомогательной сферой, центр которой лежит на перпендикуляре, проведенном из середины этой прямой

  1. Провести к прямой Задачи по начертательной геометрии через се середину перпендикуляр Задачи по начертательной геометрии и на пересечении с осью кругового цилиндра Задачи по начертательной геометрии определить точку Задачи по начертательной геометрии — центр первой вспомогательной сферы-посредника.
  1. Провести окружность сферы-посредника радиусом Задачи по начертательной геометрии который определяется расстоянием от точки Задачи по начертательной геометрии до одной из точек Задачи по начертательной геометрии или Задачи по начертательной геометрии прямой Задачи по начертательной геометрии

2-е действие. Построить проекцию окружности пересечения сферы-посредника с соосной ей поверхностью кругового цилиндра Задачи по начертательной геометрии — это прямая Задачи по начертательной геометрии, проходящая через точки пересечения очерков сферы и цилиндра

3-е действие. Определить на пересечении заданной окружности Задачи по начертательной геометрии и построенной окружности Задачи по начертательной геометрии совпадающие точки Задачи по начертательной геометрии принадлежащие искомой линии пересечения

.Дополнительные действия:

4-е действие. Повторить действия графического алгоритма II и построить проекции точек Задачи по начертательной геометрии.

5-е действие. На фронтальной проекции соединить плавной видимой кривой точки Задачи по начертательной геометрии линии пересечения.

6-е действие. Оформить очерки поверхностей на заданной проекции.

Образец выполнения листа 9 с задачами 15 и 16 показан па рис. 4.107, а и б.

Задачи выполнять на формате A3 белой чертежной бумаги. Графические условия вариантов задачи 15 и 16 даны соответственно в табл. 4.10 и 4.11.

Задача №15.

Построить проекции линии пересечения поверхностей способом вспомогательных секущих плоскостей на заданных проекциях. Задачу выполнить на левой половине поля чертежа.

В задаче 15 комбинированное тело образовано пересечением прямого кругового конуса и торой да.

Выбираем для решения задачи первый рассмотренный способ вспомогательных секущих плоское гей, гак как здесь соблюдены два условия ei о применения:

Решение задачи, т.е. введение плоскостей-посредников, начинаем на фронтальной проекции предмета, так как общая плоскость симметрии является фронтальной плоскостью уровня.

Определяем границы введения вспомогательных плоскостей-посредников — это точка Задачи по начертательной геометрии пересечения фронтальных очерков и точки Задачи по начертательной геометрии пересечения окружностей в горизонтальной плоскости уровня Задачи по начертательной геометрии, проходящей через основание тороида.

План графических действий для решения задачи соответствует предложенному графическому алгоритму I (см. рис. 4.103):

1-е действие. Ввести на фронтальной проекции предмета первую горизонтальную плоскость-посредник Задачи по начертательной геометрии (произвольно и ниже точки Задачи по начертательной геометрии).

2-е действие. Построить на горизонтальной проекции вспомогательные окружности радиусами Задачи по начертательной геометрии, и Задачи по начертательной геометрии пересечения первой вспомогательной плоскости-посредника с каждой заданной поверхностью.

Задачи по начертательной геометрии

3-е. действие. Определить на пересечении построенных вспомогательных окружностей две горизонтальные проекции точек Задачи по начертательной геометрии (отмечены с одной стороны), принадлежащих искомой линии пересечения Фронтальные проекции точек Задачи по начертательной геометрии строятся по линии связи на фронтальной проекции плоскости-посредника Задачи по начертательной геометрии.

Дополнительные действия:

4-е действие. Повторить действия графического алгоритма и построить проекции точек 2 и 3 линии пересечения.

5-е действие. На заданных проекциях соединить плавными кривыми линиями построенные проекции точек линии пересечения с учетом их видимости на поверхностях геометрических гел.

6-е действие. Оформить на проекциях очерки поверхностей (оставить тонкими сплошными линиями несуществующие очерки поверхностей и линии построения).

Задача №16.

Построить проекции линии пересечения поверхностей способом вспомогательных концентрических или эксцентрических сфер на заданных проекциях. Задачу выполнить на правой половине поля чертежа.

В задаче 16 комбинированное тело образовано пересечением шара и кругового усеченного конуса с горизонтальной осью Задачи по начертательной геометрии.

Выполнив графический анализ условия задачи, определяем, что рассмотренный способ вспомогательных секущих плоскостей применять не следует, так как на заданных проекциях нельзя провести плоскости уровня, пересекающие по окружностям обе заданные поверхности.

Выбираем для решения задачи второй рассмотренный способ вспомогательных секущих плоскостей, так как здесь соблюдены три условия его применения:

  • пересекаются поверхности вращения;
  • общая плоскость симметрии Задачи по начертательной геометрии является фронтальной плоскостью уровня;

-оси поверхностей пересекаются и центр вспомогательных сфер — точка Задачи по начертательной геометрии — лежит на пересечении горизонтальной оси конуса Задачи по начертательной геометрии и вертикальной оси шара Задачи по начертательной геометрии.

Решение задачи, т.е. введение сфер-посредников, начинаем на фронтальной проекции предмета, так как общая плоскость симметрии является плоскостью уровня.

Определяем границы введения сфер-посредников — это точки Задачи по начертательной геометрии и Задачи по начертательной геометрии пересечения фронтальных очерков.

План графических действий для решения задачи соответствует предложенному графическому алгоритму I (см. рис. 4.104):

1-е действие. Ввести первую вспомогательную минимальную сферу радиусом Задачи по начертательной геометрии с центром в точке Задачи по начертательной геометрии, вписанную в коническую поверхность.

2-е действие. Построить проекции окружностей (прямые), по которым сфера-посредник пересекается с конусом и шаром:

  • первая пара соосных поверхностей — конус и вписанная вспомогательная сфера пересекаются по окружности касания — окр. 1к касательная;
  • вторая пара соосных поверхностей — заданная сфера и вспомогательная сфера пересекаются по окружности — окр. 1ш.

3-е действие. Определить на пересечении построенных вспомогательных проекций окружностей совпадающие точки Задачи по начертательной геометрии, принадлежащие искомой линии пересечения

Дополнительные действия:

4-е действие. Повторить действия основного графического алгоритма, введя вспомогательные концентрические сферы радиусами Задачи по начертательной геометрии и Задачи по начертательной геометрии с тем же центром Задачи по начертательной геометрии. и построить точки Задачи по начертательной геометрии и Задачи по начертательной геометрии, принадлежащие линии пересечения.

При выборе радиусов ВТОРОЙ и ТРЕТЬЕЙ вспомогательных концентрических сфер нужно учесть графическое условие данной задачи:

Достроить горизонтальные проекции точек Задачи по начертательной геометрии и Задачи по начертательной геометрии линии пересечения:

  1. Соединить плавными кривыми линиями фронтальные и горизонтальные проекции построенных точек линии пересечения с учетом их видимое!и на проекциях геометрических тел — невидимыми будут участки Задачи по начертательной геометрии пространственной кривой 4-го порядка на горизонтальной проекции.

5-е действие: Оформи ть очерки поверхностей на заданных проекциях с уче-том их относительной видимое! и (оставить тонкими линиями несуществующие очерки геометрических тел и линии построения).

Развертки поверхностей. Общие сведения

Разверткой называется плоская фшура, в которую преобразуется поверхность предмета при ее совмещении с плоскостью. При этом подразумевается, что поверхность — это гибкая, но нерастяжимая и несжимаемая пленка и при ее разверт ке не происходит разрывов и образования складок.

Поверхности, которые допускают такое преобразование, называклся развертывают и м и с я .

К развертывающимся поверхностям относятся mhoioi ранники, некоторые линейчатые поверхности — цилиндрические, конические и поверхности с ребром возврата (торсы — развертка торсов не рассматривается).

Развертки можно построить точные и приближенные.

Точные развертки можно строить для гранных поверхностей призмы и пирамиды (не считая графических погрешностей построения), для круговых цилиндров (развертка — прямоугольник с размерами Задачи по начертательной геометрии и круговых конусов (круговой сектор с углом Задачи по начертательной геометрии, где Задачи по начертательной геометрии — радиус основания конуса; Задачи по начертательной геометрии — длина его образующей).

Развертки, которые можно построить графически, заменяя (аппроксимируя) заданные поверхности участками развертывающихся призматических, пирамидальных или цилиндрических поверхностей, называются приближенными. К поверхностям, развертку которых можно построить приближенно, относятся круговые наклонные конуса, эллиптические цилиндры с круговыми сечениями, сферические, торовыс, а также комбинированные поверхности, участки которых состоят из развертывающихся поверхностей.

Каждой точке на поверхности соответствует единственная точка на развертке, т.е. между поверхностью и ее разверткой существует взаимно однозначное соответствие, которое обладает следующими основными свойствами:

а) длины соответствующих линий на поверхности и на развертке равны;

б) линии, параллельные на поверхности, сохраняют параллельность на развертке,

в) углы между соответствующими пересекающимися линиями на поверхности и на развертке равны.

г) площади соответствующих фигур на поверхности и на развертке, ограниченные замкнутыми линиями, равны.

Развертки многогранников

Построение развертки многогранников сводится к определению натуральных величин боковых граней или ребер этих поверхностей Натуральные величины граней (плоскостей) или ребер (прямых) могут быть определены любым из рассмотренных выше способов преобразования чертежа (см тему «I Треобразование чертежа»).

Развертки поверхности призмы

Построение развертки поверхности призмы можно выполнить несколькими способами:

1 Способ нормального сечения.

2 раскатки.

3 Способ треугольников (триангуляции) — здесь не рассматривается

Рассмотрим на примерах построение развертки поверхности призмы первыми двумя способами

1-й способ.

Способ нормального сечения (нормальное сечение перпендикулярно ребрам призмы).

Этот способ развертки боковой поверхности призмы можно применить, если на чертеже:

  • ребра призмы являются прямыми уровня, т.е. имеют на одной из заданных проекций натуральную величину,
  • на проекциях нет натуральных величин оснований призмы.

!!! Если на чертеже ребра призмы являются прямыми общею положения, то следует изменить положение призмы относительно плоскостей проекций, преобразовав ребра в прямые уровня, например, способом замены плоскостей проекций.

Построение развертки боковой поверхности призмы способом нормального сечения выполняется по следующему графическому алгоритму:

1-е действие. На проекции призмы, на которую ребра призмы проецируются в натуральную величину, провести плоскость НОРМАЛЬНОГО СЕЧЕНИЯ, перпендикулярную ее ребрам (в произвольном месте по длине ребер).

2-е действие. Построить натуральную величину многоугольника нормального сечения (например, способом замены плоскостей проекций).

3-е действие. Развернуть на свободном поле чертежа натуральный многоугольник сечения в прямую и через точки его вершин провести перпендикулярные прямые — направления ребер.

4-е действие. Отложить на направлениях ребер в обе стороны от линии нормального сечения натуральные отрезки соответствующих ребер.

5-е действие Соединить построенные конечные точки ребер отрезками прямых и достроить плоскую фигуру развертки боковой поверхности призмы.

6-е действие Оформить чертеж развертки, проведя тонкими штрих пунктирными линиями с двумя короткими пунктирами линии сгиба в местах расположения ребер

На рис. 4.108 показан пример построения развертки поверхности треугольной призмы способом нормального сечения, так как на чертеже призмы ее ребра являются горизонтальными прямыми уровня, а основания — плоскостями общего положения, т.е. не имеют натуральной величины.

Задачи по начертательной геометрии

Поверхность призмы «разрезана» по ребру Задачи по начертательной геометрии и развернута по часовой стрелке.

Для построения развертки выполнены фактические действия предложенною алгоритма.

1-е действие. Провести горизонтально-проецирующую плоскость нормального сечения Задачи по начертательной геометрии перпендикулярно горизонтальным проекциям ребер призмы (произвольно по длине ребер).

2-е действие. Способом замены плоскостей проекций построить натуральную величину нормального сечения треугольник Задачи по начертательной геометрии, стороны которого определяют ширину каждой грани призмы.

3-е действие. На свободном поле чертежа треугольник Задачи по начертательной геометрии нормального сечения развернуть в горизонтальную линию и отметить натуральные величины его сторон; из отмеченных на линии сечения точек 1, 2, 3 и 1 провести перпендикулярные прямые — направления ребер.

4-е действие. Отложить на проведенных направлениях ребер вверх и вниз отрезки натуральных величин ребер (см. ребро Задачи по начертательной геометрии), взятых с заданной горизонтальной проекции призмы, где ребра имеют натуральную величину

5-е действие Соединить отрезками прямых построенные конечные точки ребер и достроить плоскую фигуру развертки.

6-е действие. Оформить чертеж развертки, выполнив тонкими штрихпунктирными линиями с двумя короткими штрихами линии сгиба по ребрам призмы.

На рис. 4.108 показано также построение на развертке точки Задачи по начертательной геометрии лежащей на грани Задачи по начертательной геометрии призмы.

2-й способ. Способ раскатки.

Этот способ разверни применяется, если на чертеже:

  • ребра призмы являются прямыми уровня;
  • основания призмы (или одно из оснований) лежат в плоскости уровня, т.е. имеют на чертеже натуральную величину.

Суть способа в том, что «разрезав» поверхность призмы по одному из ее ребер, вращением призмы (раскаткой) вокруг этого ребра ближайшая грань призмы совмещается с плоскостью развертки (за плоскость развертки принимается плоскость проекций, которой параллельны ребра призмы). Затем последовательным вращением призмы вокруг следующих ребер с плоскостью развертки совмещаются все прочие грани призмы, т.е. выполняется полная раскатка ее боковой поверхности.

На рис. 4.109 показан пример построения развертки способом раскатки, так как на чертеже ребра призмы являются фронтальными прямыми, а оба основания лежат в горизонтальных плоскостях уровня и на горизонтальной проекции призмы имеют натуральную величину. За плоскость развертки принята фронтальная плоскость проекций, так как ребра призмы фронтальные прямые.

Построение развертки способом раскатки выполняется по следующему графическому алгоритму:

1-е действие. «Разрезать» поверхность призмы по очерковому ребру Задачи по начертательной геометрии и повернуть вокруг этого ребра грань Задачи по начертательной геометрии призмы до совмещения с плоскостью развертки, построив ребро Задачи по начертательной геометрии; чтобы построить на развертке это ребро, нужно провести из вершин оснований Задачи по начертательной геометрии и Задачи по начертательной геометрии перпендикуляры к ребру Задачи по начертательной геометрии и на пересечении этих перпендикуляров с дугой-засечкой, равной стороне основания Задачи по начертательной геометрии построить точки Задачи по начертательной геометрии и Задачи по начертательной геометрии, определяющие положение ребра Задачи по начертательной геометрии на развертке (ребро Задачи по начертательной геометрии параллельно ребру Задачи по начертательной геометрии).

2-е действие. Повторись последовательное вращение каждой грани вокруг следующее ребра и совместить каждую грань с плоскостью развертки, построив конечные точки каждого ребра с помощью дуг-засечек, равных следующим сторонам основания Задачи по начертательной геометрии и Задачи по начертательной геометрии.

Задачи по начертательной геометрии

3-е действие. Соединить построенные конечные точки ребер отрезками прямых и достроить плоскую фигуру развертки (достроено также одно основание призмы).

4-е действие. Оформить чертеж развертки, выполнив гонкими

штрихпункт ирными линиями с двумя короткими пунктирами линии сгиба по ребрам.

На этом же рисунке показано построение па развертке точки Задачи по начертательной геометрии, лежащей на грани Задачи по начертательной геометрии призмы.

Развертка поверхности пирамиды

Построение развертки боковой поверхности пирамиды по натуральным величинам се ребер выполняется по следующему графическому алгоритму:

J-с действие. Построить на заданных проекциях пирамиды натуральные величины всех ее боковых ребер (например, способом вращения вокруг проецирующей прямой) и натуральные величины сторон многоугольника основания пирамиды (если основание лежит в плоскости уровня, то натуральные величины даны на одной из проекций).

2-е действие. Построить на свободном поле чертежа последовательно грани пирамиды по натуральным величинам ребер и натуральным величинам сторон основания (с помощью дуг-засечек) гак. чтобы они имели общую вершину Задачи по начертательной геометрии и примыкали друг к другу.

3-е действие. Оформить чертеж разверти выполнив линии сгиба по ребрам пирамиды тонкими илрихиуиктирными линиями.

На рис. -1.110 показан пример построения развертки поверхности правильной треугольной пирамиды, основание которой треугольник Задачи по начертательной геометрии, на горизонтальной проекции имеет натуральные величины сторон, так как лежит в горизонтальной плоскости уровня.

Задачи по начертательной геометрии

Для построения разверни выполнены графические действия предложенною алгоритма.

1-е действие. Построить на заданной фронтальной проекции натуральные величины ребер пирамиды способом вращения вокруг горизонтально-проецирующей оси Задачи по начертательной геометрии. проходящей через вершину пирамиды, точку Задачи по начертательной геометрии, и совпадающей с ее высотой. Напоминаем графические действия этого способа преобразования:

Повернуть горизонтальные проекции ребер Задачи по начертательной геометрии и Задачи по начертательной геометрии вокруг оси Задачи по начертательной геометрии так, чтобы они расположились параллельно фронтальной плоскости проекций Задачи по начертательной геометрии (все ребра правильной пирамиды равны по длине), и получить совмещенные проекции точек Задачи по начертательной геометрии.

  1. Па фронтальной проекции пирамиды конечные точки Задачи по начертательной геометрии и Задачи по начертательной геометрии ребер перемещаются по горизонтальной линии, перпендикулярной оси Задачи по начертательной геометрии, и на пересечении с линией связи от точек Задачи по начертательной геометрии построить точки Задачи по начертательной геометрии
  2. Соединить вершину пирамиды Задачи по начертательной геометрии с совпадающими точками Задачи по начертательной геометрии -полученный отрезок Задачи по начертательной геометрии и есть натуральная величина всех ребер пирамиды.

2-е действие. На свободном ноле чертежа построил» последовательно (например, против часовой стрелки) от ребра Задачи по начертательной геометрии. по которому «разрезается» поверхность, треугольники граней пирамиды с обшей вершиной Задачи по начертательной геометрии следующим образом:

  1. Провести дугу радиусом Задачи по начертательной геометрии, равным натуральной величине ребер Задачи по начертательной геометрии пирамиды из произвольной точки Задачи по начертательной геометрии плоскости чертежа
  1. На дуге отмстить (произвольно) вершину основания, точку Задачи по начертательной геометрии, т.е. построить ребро Задачи по начертательной геометрии пирамиды.
  2. На проведенной дуге засечками, равными длине сторон основания пирамиды Задачи по начертательной геометрии отметить следующие точки вершин основания — Задачи по начертательной геометрии — и точку Задачи по начертательной геометрии.
  3. Построить треугольники граней пирамиды, соединив вершину Задачи по начертательной геометрии с вершинами основания, и достроить основание пирамиды к стороне, например, Задачи по начертательной геометрии грани Задачи по начертательной геометрии

3-е действие. Оформить чертеж развертки, выполнив гонкими штрихпунктирными линиями с двумя короткими пунктирами линии сгиба по ребрам пирамиды.

Геодезическая линия

Геодезическая линия — это линия кратчайшего расстояния между двумя точками на поверхности. На развертке этой линии соответствует прямая. Геодезическая линия строится на развертке по двум ее конечным точкам, заданным на проекциях предмета, а затем достраивается на заданных проекциях по дополнительным промежуточным точкам, взятым на построенной развертке.

На рис. 4.110 показано построение проекций геодезической линии на поверхности пирамиды но двум заданным на проекциях конечным точкам Задачи по начертательной геометрии и Задачи по начертательной геометрии.

11орядок графических действий для построения геодезической линии:

1-е действие. Построить полную развертку поверхности (в данном примере развертка пирамиды уже построена).

2-е действие. 11остроить на развертке геодезическую линию.

Построить на развертке заданные точки Задачи по начертательной геометрии и Задачи по начертательной геометрии.

3-е действие. Достроить фронтальную и горизонтальную проекции геодезической линии Задачи по начертательной геометрии на проекциях пирамиды по промежуточной точке Задачи по начертательной геометрии с учетом видимости линии на поверхности (на проекциях пирамиды проекции геодезической линии — ломаные линии):

Отрезок Задачи по начертательной геометрии, взятый на развертке (отмечен скобкой), отложить на натуральной величине ребер, построенных на фронтальной проекции, и определить положение точки Задачи по начертательной геометрии.

  1. Провести через точку Задачи по начертательной геометрии линию, параллельную основанию пирамиды, и на пересечении с проекцией ребра Задачи по начертательной геометрии построить фронтальную проекцию точки Задачи по начертательной геометрии геодезической линии.
  2. Достроить горизонтальную проекцию точки Задачи по начертательной геометрии по вспомогательной точке Задачи по начертательной геометрии, лежащей на ребре Задачи по начертательной геометрии.
  3. На проекциях пирамиды соединить заданные проекции точек Задачи по начертательной геометрии и Задачи по начертательной геометрии с построенной точкой Задачи по начертательной геометрии, определив видимость участков ломаной геодезической линии.

На рис. 4.111 показан пример построения развертки неправильной треугольной пирамиды Задачи по начертательной геометрии и геодезической линии Задачи по начертательной геометрии на развертке и на проекциях пирамиды но заданным конечным точкам Задачи по начертательной геометрии и Задачи по начертательной геометрии. Основание пирамиды лежит в горизонтальной плоскости, и на горизонтальной проекции пирамиды стороны основания имеют натуральную величину.

Задачи по начертательной геометрии

Построение развертки поверхности пирамиды выполнено по приведенному выше алгоритму с дополнительными графическими действиями по построению геодезической линии:

1-е действие. На фронтальной проекции пирамиды способом вращения вокруг горизонтально-проецирующей оси Задачи по начертательной геометрии, проходящей через вершину пирамиды Задачи по начертательной геометрии, построить натуральные величины всех ребер пирамиды и вспомогательной линий Задачи по начертательной геометрии. проведенной на грани пирамиды Задачи по начертательной геометрии через заданную точку Задачи по начертательной геометрии, и определить проекцию Задачи по начертательной геометрии точки Задачи по начертательной геометрии на натуральной величине Задачи по начертательной геометрии вспомогательной линии Задачи по начертательной геометрии: вспомогательная линия Задачи по начертательной геометрии, проведенная через точку Задачи по начертательной геометрии, является фронтальной Задачи по начертательной геометрии, и проекция Задачи по начертательной геометрии есть ее натуральная величина, которую можно использовать для построения точки Задачи по начертательной геометрии на развертке.

2-е действие. Построить на свободном поле чертежа последовательно от ребра Задачи по начертательной геометрии по часовой стрелке треугольники граней пирамиды с общей вершиной Задачи по начертательной геометрии по натуральным величинам ее ребер и сторон основания дугами-засечками соответствующей величины и достроить основание пирамиды к стороне Задачи по начертательной геометрии.

3-е действие. Оформить чертеж развертки, проведя линии сгиба.

4-е действие. Построить геодезическую линию на развертке и заданных проекциях пирамиды.

  1. Построить на развертке конечные точки Задачи по начертательной геометрии и Задачи по начертательной геометрии на вспомогательных линиях Задачи по начертательной геометрии и Задачи по начертательной геометрии но натуральным величинам отрезков Задачи по начертательной геометрии и Задачи по начертательной геометрии и соединить эти точки прямой геодезической линией Задачи по начертательной геометрии, которая пересекает ребро Задачи по начертательной геометрии в точке Задачи по начертательной геометрии.
  2. Достроить фронтальную и горизонтальную проекции ломаной геодезической линии Задачи по начертательной геометрии на проекциях пирамиды с учетом ее видимости, определив проекции точки Задачи по начертательной геометрии на ребре Задачи по начертательной геометрии по ее положению на развертке (по отрезку Задачи по начертательной геометрии).

Развертка цилиндрической и конической поверхностей

Развертки цилиндрических и конических поверхностей выполняются аналогично разверткам призматических и пирамидальных поверхностей При этом цилиндрическая поверхность заменяется (аппроксимируется) вписанной многоугольной призматической поверхностью (обычно 12-угольной), а коническая поверхность заменяется вписанной многоугольной пирамидальной поверхно-стью, т.е. строятся приближенные развертки.

Развертки прямого кругового цилиндра

Развертку поверхности прямого кругового цилиндра можно выполнять следующими способами:

  • способом нормального сечения на свободном ноле чертежа, если образую-щие являются прямыми уровня, а основания не перпендикулярны образующим;
  • способом раскатки при тех же условиях (развертка является при этом продолжением проекции).

Развертка эллиптического цилиндра (нормальное сечение — эллипс) выполняется способом раскатки, если образующие являются прямыми уровня и на проекциях есть круговое основание (не рассматривается).

Графические алгоритмы для построения разверток поверхности цилиндра этими способами аналогичны вышеприведенным графическим алгоритмам для построения разверток призмы такими же способами.

На рис. 4.112 показан пример построения развертки боковой поверхности прямого кругового цилиндра, наклоненного относительно горизонтальной плоскости проекций Задачи по начертательной геометрии и срезанного по одному торцу профильной плоскостью.

Задачи по начертательной геометрии

Поскольку по условию задачи образующие являются фронтальными прямыми уровня, а нормальным сечением кругового цилиндра является окружность. то здесь для построения развертки можно объединить и способы построения и графические действия алгоритмов.

Развертка выполняется по предлагаемому графическому алгоритму.

1-е действие. Провести на фронтальной проекции цилиндра фронтально-проецирующую плоскость нормального сечения Задачи по начертательной геометрии перпендикулярно фронтальным проекциям образующих (в произвольном месте по длине образующих) и построить окружность нормального сечения, повернув плоскость этой окружности вокруг линии сечения.

Окружность нормального сечения разделить на двенадцать частей и точки деления пронумеровать от точки Задачи по начертательной геометрии на очерковой образующей Задачи по начертательной геометрии т.е. цилиндр заменить (аппроксимировать) двенадцатиугольной вписанной призмой; из точек деления окружности сечения провести на фронтальной проекции образующие до их пересечения с проекциями оснований.

2-е действие. На продолжении линии нормального сечения отметить двенадцать отрезков — сторон двенадцатиугольника (хорды окружности), которым заменяется окружность сечения, и провести направления ребер (образующих), перпендикулярно линии сечения (линии пронумеровать), то есть выполнить от ребра Задачи по начертательной геометрии Поспеловательную раскатку граней призмы, заменившей цилиндр.

3-е действие. Построить конечные точки каждой образующей (ребра) на пересечении образующих с линиями, проведенными перпендикулярно образующим из одноименных точек нижнего основания.

4-е действие. Оформить чертеж развертки боковой поверхности цилиндра, соединив построенные конечные точки образующих плавными кривыми линиями (в примере развертка оборвана из-за недостатка места).

Для построения более точной развертки следует по формуле (I) (см рис. 4 112) вычислить длину развертки и, разделив эту длину на 12 равных частей, провести образующие и далее выполнить 3-е и 4-е действия алгоритма.

Развертка прямого кругового конуса

На рис. 4.113 показан пример построения развертки боковой поверхности прямого кругового конуса со срезом фронтально-проецирующей плоскостью Задачи по начертательной геометрии, которая пересекает его поверхность по эллипсу.

Задачи по начертательной геометрии

Построение развертки боковой поверхности конуса выполняется по вышеприведенному алгоритму, для построения развертки пирамиды с некоторыми дополнениями.

Развертка выполняется по предлагаемому алгоритму:

1-е действие. Заменить прямой круговой конус вписанной правильной 12-угольной пирамидой с ребрами-образующими.

2-е действие. Построить развертку боковой поверхности пирамиды по натуральным величинам ребер (образующих) и сторон основания, выполнив следующие графические действия:

  1. Отметить на свободном поле чертежа точку Задачи по начертательной геометрии и провести дугу радиусом Задачи по начертательной геометрии равным натуральной величине всех образующих конуса (ребер пирамиды).
  2. Отметить на дуге точку Задачи по начертательной геометрии на вертикальной линии симметрии развертки и построить вправо и влево на дуге засечками, равными сторонам-хордам 12-угольника, точки, соответствующие вершинам этого многоугольника;

пронумеровать эти точки и соединить их с вершиной развертки, построив таким образом вспомогательные ребра-образующие (грани пирамиды)

3-е действие. Достроить на развертке линию среза конуса фронтально-проецирующей плоскостью Задачи по начертательной геометрии, выполнив следующие графические действия:

  1. На фронтальной проекции конуса перенести горизонтально на натуральную величину образующей Задачи по начертательной геометрии точки сечения, отмеченные на вспомогательных образующих, т.е. вращением вокруг оси Задачи по начертательной геометрии построить натуральные величины отрезков образующих-ребер сечения.
  2. Отложить на соответствующих образующих развертки натуральные величины отрезков образующих-ребер до точек сечения (отмечены на фронтальной проекции и на развертке фигурными скобками отрезки Задачи по начертательной геометрии образующей для точки Задачи по начертательной геометрии и Задачи по начертательной геометрии образующей для точки Задачи по начертательной геометрии) и соединить построенные точки сечения на развертке плавной кривой линией.

4-е действие. Оформить чертеж развертки, проведя сплошными толстыми линиями контур построенной развертки.

Для построения более точной развертки следует вычислить но формуле (2) (см. рис. 4.113) угол развертки и разделить дугу развертки на 12 равных частей, провести образующие и далее выполнить 3-е и 4-е действии алгоритма.

Образец выполнения листа 10 с задачей 17 показан на рис. 4 114.

Построение развертки поверхности пирамиды, включая основание и плоскости сечений

Построить развертку поверхности пирамиды, включая основание и плоскости сечений.

Задачу 17 выполнять на формате A3 белой чертежной бумаги по образцу.

Графическое условие задачи 17 — пирамида (задача 8 из табл. 4.5).

На поле чертежа слева выполнить фронтальную и горизонтальную проекции правильной треугольной пирамиды по заданному графическому условию.

План графических действий решения задачи соответствует ipa-фичееким действиям предложенного алгоритма для развертки пирамиды.

1-е действие. Построить на проекциях пирамиды натуральные величины ребер, плоскостей среза и паза:

  1. Натуральные величины всех ребер определяет фронтальная проекция ребра Задачи по начертательной геометрии.
  2. Построить натуральные величины плоскостей среза и сквозного паза способом вращения вокруг проецирующих осей:

плоскость среза Задачи по начертательной геометрии повернуть вокруг фронтально-проецирующей оси Задачи по начертательной геометрии совпадающей с вырожденной в точку Задачи по начертательной геометрии линией пересечения 2-2 плоскости Задачи по начертательной геометрии с гранью Задачи по начертательной геометрии;

2-е действие. На поле чертежа справа построить полную развертку поверхности пирамиды, «разрезав» поверхность пирамиды по ребру Задачи по начертательной геометрии

Задачи по начертательной геометрии
  1. Построить треугольники боковых граней пирамиды, отметив на луге засечками величины сторон основания, и соединить вершины основания Задачи по начертательной геометрии и Задачи по начертательной геометрии с вершиной Задачи по начертательной геометрии (грани развернуты по часовой стрелке).
  2. Достроить на развертке боковой поверхности линии среза и паза, полученные на гранях пирамиды:

прямые 1-2, 2-2 и 2-1, по которым плоскость среза Задачи по начертательной геометрии пересекает все три грани, по натуральным величинам отрезков ребер Задачи по начертательной геометрии и Задачи по начертательной геометрии.

  1. К развертке боковой поверхности пирамиды достроить плоскости среза, паза и участки основания:

3-е действие. Оформить чертеж полной развертки поверхности пирамиды, выполнив внутри контура развертки все линии сгиба тонкими штрихпунктирными линиями с двумя пунктирами.

Прямоугольные проекции предмета на взаимно перпендикулярные плоскости проекций

Прямоугольные проекции предмета на взаимно перпендикулярные плоскости проекций по методу I . Монжа позволяют точно передать на чертеже форму предмета и его размеры, они просты в построении, но не обладают нагляд-ностью. Создание в уме по комплексному чертежу пространственного образа изображенного предмета требует навыков аналитического мышления и наличия пространственного воображения, т.е. достаточно развитого пространственного мышления.

Для наглядного изображения предмета существуют проекции, которые называют аксонометрическими , или аксонометриями (в переводе с древнегреческого — осеизмерение).

АКСОНОМЕТРИЧЕСКАЯ ПРОЕКЦИЯ — это параллельная проекция предмета вместе с системой ирямоуюльных координат, к которым этот предмет отнесен в пространстве, на некоторую плоскость аксонометрических проекций.

Чтобы обеспечить наглядность предмета по одному изображению на одной аксонометрической плоскости, направление проецирования (направление проецирующих лучей) не должно быть параллельным координатным плоскостям проекций Задачи по начертательной геометрии и Задачи по начертательной геометрии, относительно которых выполняются проекции предмета на чертеже.

Систему прямоугольных координат Задачи по начертательной геометрии, к которой предмет относят в пространстве для построения его аксонометрии, выбирают обычно так, чтобы оси Задачи по начертательной геометрии и Задачи по начертательной геометрии этой системы совпадали с натуральной системой координатных осей чертежа.

Аксонометрические проекции, как проекции параллельные, имеют некоторые их свойства

  • аксонометрическая проекция отрезка прямой также является прямой;
  • если отрезки прямых параллельны на предмете, они также параллельны на его аксонометрической проекции.

Аксонометрической проекцией окружности на аксонометрии в общем случае является эллипс.

На рис. 4.115 показана схема проецирования точки Задачи по начертательной геометрии, построенной на чертеже в системе натуральных прямоугольных координат Задачи по начертательной геометрии и отнесенной к этим же координатам на некоторую плоскость аксонометрических проекций Задачи по начертательной геометрии по направлению проецирования Задачи по начертательной геометрии

Положение точки Задачи по начертательной геометрии определяется в этой системе пространственной координатной ломаной Задачи по начертательной геометрии, отрезки которой соответствуют координатам Задачи по начертательной геометрии и Задачи по начертательной геометрии точки Задачи по начертательной геометрии. На взятой произвольно плоскости аксонометрических проекций а получены три прямые Задачи по начертательной геометрии и Задачи по начертательной геометрии, выходящие из одной точки Задачи по начертательной геометрии, которые называются АКСОНОМЕТРИЧЕСКИМИ ОСЯМИ и являются проекциями пространственных координатных осей Задачи по начертательной геометрии и Задачи по начертательной геометрии, к которым отнесена точка Задачи по начертательной геометрии. Полученные углы между аксонометрическими осями зависят от положения аксонометрической

Задачи по начертательной геометрии

плоскости и угла проецирования к этой плоскости. На аксонометрии положение точки Задачи по начертательной геометрии определяет плоская координатная ломаная Задачи по начертательной геометрии, отрезки которой соответствуют аксонометрическим координатам Задачи по начертательной геометрии, Задачи по начертательной геометрии и Задачи по начертательной геометрии аксонометрической проекции точки Задачи по начертательной геометрии

Поскольку направление проецирования Задачи по начертательной геометрии не параллельно ни одной из осей системы прямоугольных пространственных координат, то истинные размеры отрезков пространственной координатной ломаной Задачи по начертательной геометрии на аксонометрической проекции искажаются и, следовательно, искажаются размеры любого предмета на его аксонометрическом изображении

Для определения степени искажения размеров предмета на аксонометрических проекциях введено понятие коэффициентов
искажения по аксонометрическим осям

Если на осях Задачи по начертательной геометрии и Задачи по начертательной геометрии системы натуральных прямоугольных координат отложить от точки Задачи по начертательной геометрии равные масштабные отрезки Задачи по начертательной геометрии, то в системе аксонометрических координатных осей получаются искаженные проекции этих отрезков Задачи по начертательной геометрии и Задачи по начертательной геометрии.

ОТНОШЕНИЯ аксонометрических проекций масштабных отрезков к натуральным величинам масштабных отрезков и называются коэффициентами искажения по аксонометрическим осям:

Задачи по начертательной геометрии

Расчетные коэффициенты искажения имеют дробные значения, неудобные для выполнения аксонометрических построений (0,82; 0,47 и т.д.).

Для построения на чертежах аксонометрических проекций пользуются так называемыми ПРИВЕДЕННЫМИ коэффициентами искажения, округленными до 1 или 0,5.

В зависимости от соотношения коэффициентов искажения аксонометрические проекции разделяются:

а) на изометрические, у которых все коэффициенты искажения равны, т.е. Задачи по начертательной геометрии (Задачи по начертательной геометрии — равный);

б) диметрические , у которых два коэффициента равны, т.е. Задачи по начертательной геометрии, а Задачи по начертательной геометрии им не равен (di — двойной);

в) три метрические, у которых все коэффициенты разные, т.е. Задачи по начертательной геометрии (treis — три).

В зависимости от угла наклона проецирующих лучей к плоскости аксонометрий (угла проецирования) аксонометрические проекции разделяются

а) на прямоугольные — проецирующие лучи перпендикулярны аксонометрической плоскости проекций (угол проецирования равен 90°);

б) косоугольные — проецирующие лучи не перпендикулярны аксонометрической плоскости проекций (угол проецирования не равен 90°).

Аксонометрических проекций можно получить бесконечное множество, как может быть бесконечно количество аксонометрических плоскостей проекций и направлений проецирования к ним.

Основная теорема аксонометрических проекций была сформулирована немецким геометром К. Польке: «Любые три отрезка на плоскости, выходящие из одной точки, могут быть приняты за параллельные проекции (то есть аксонометрические проекции) трех равных и взаимно перпендикулярных отрезков (аксонометрических осей) в пространстве».

Г. Шварц, немецкий математик, обобщил теорему К. Польке, доказав, что «любой полный четырехугольник на плоскости всегда является параллельной проекцией некоторого масштабного тетраэдра (пирамиды), имеющего равные и взаимно перпендикулярные ребра» (диагонали четырехугольника можно рассматривать как аксонометрические оси). Эту обобщенную теорему и называют теоремой К. Польке-Г. Шварца.

Стандартные аксонометрии. ГОСТ 2.317-69 «Аксонометрические проекции».

Математические (тригонометрические) расчеты величин коэффициентов искажения, углов между аксонометрическими осями, расположение и размеры больших и малых осей эллипсов здесь не рассматриваются [5-7].

В стандарте даны пять видов аксонометрических проекций:

  1. Прямоугольная изометрия.
  2. Прямоугольная диметрия.
  3. Косоугольная фронтальная диметрия.
  4. Косоугольная фронтальная изометрия.
  5. Косоугольная горизонтальная изометрия.

В курсе начертательной геометрии рассматриваются первых три вида аксонометрических проекций.

Окружности на проекциях предметов проецируются на аксонометрическое изображение предмета в виде эллипсов. Различные графические способы построения четырехцентровых овалов, которыми заменяют эллипсы, окружности которых лежат в плоскостях, параллельных плоскостям проекций Задачи по начертательной геометрии и Задачи по начертательной геометрии, рассматриваются в учебниках но черчению и инженерной графике. Эллипсы, окружности которых лежат в плоскостях, непараллельных плоскостям проекций, строятся на аксонометриях в основном по точкам, принадлежащих этим окружностям.

Прямоугольная изометрия

Для прямоугольных аксонометрий получена расчетная формула по коэффициентам искажения:

Задачи по начертательной геометрии

т е. сумма квадратов коэффициентов искажения равна двум [5-7]

В прямоугольной изометрии коэффициенты искажения равны, и по формуле (1) получается, что Задачи по начертательной геометрии. Для построения прямоугольной изометрии пользуются приведенными коэффициентами искажения, округленными до единицы, то есть Задачи по начертательной геометрии.

Аксонометрическая плоскость прямоугольной изометрии равнонаклонена ко всем трем плоскостям проекций Задачи по начертательной геометрии и Задачи по начертательной геометрии и пересекает эти плоскости проекций по равностороннему треугольнику, который называют треугольником следов. Следовательно, аксонометрические оси прямоугольной изометрии являются высотами, биссектрисами и медианами этого треугольника, а точка Задачи по начертательной геометрии их пересечения является точкой начала аксонометрических координат. Как известно из геометрии, углы между высотами равностороннего треугольника равны 120°, следовательно, и углы между аксонометрическими осями также равны 120°

На рис. 4.116 показано расположение аксонометрических осей в прямоугольной изометрии (ось Задачи по начертательной геометрии всегда располагается вертикально), размеры и расположение больших и малых осей эллипсов и их построение одним из известных способов.

Большие оси Задачи по начертательной геометрии всех трех эллипсов равны Задачи по начертательной геометрии; где Задачи по начертательной геометрии — диаметр окружности, а малые оси Задачи по начертательной геометрии эллипсов равны Задачи по начертательной геометрии.

Ориентация больших и малых осей эллипсов относительно аксонометрических осей:

Задачи по начертательной геометрии

Па рис. 4 116 покачан один из способов построения четырехцентровых овалов, которыми на чертежах заменяют эллипсы в прямоугольной изометрии.

Графические действия для построения овалов следующие:

  • на пересечении проведенных дуги прямых п получить точки 3. которые определяют окончание больших дуг;

из двух центров в точках 2 провести две малые дуги радиусами Задачи по начертательной геометрии и Задачи по начертательной геометрииЗадачи по начертательной геометрии до точек 3

Прямоугольная диметрия

В прямоугольной диметрии коэффициенты искажения по аксонометрическим осям Задачи по начертательной геометрии и Задачи по начертательной геометрии равны между собой, а коэффициент искажения по оси у принят равным их половине. Отсюда по приведенной формуле I получены следующие величины коэффициентов искажения по аксонометрическим осям: Задачи по начертательной геометрии, а Задачи по начертательной геометрии. Для построения прямоугольной диметрии пользуются приведенными коэффициентами искажения, округленными и равными: Задачи по начертательной геометрии, а Задачи по начертательной геометрии.

Аксонометрические оси по математическим расчетам располагаются относительно горизонтальной линии следующим образом: ось Задачи по начертательной геометрии расположена вертикально, ось Задачи по начертательной геометрии под углом Задачи по начертательной геометрии, ось у под углом Задачи по начертательной геометрии.

Задачи по начертательной геометрии

На рис 4 117 покатана расположение аксонометрических осей и способ графического построения углов между осями, размеры и расположение больших и малых осей эллипсов и способы построения четырехцентровых овалов, заменяющих эллипсы на чертеже.

  1. Графический способ построения аксонометрических осей на чертеже:

Большие оси Задачи по начертательной геометрии всех трех эллипсов равны Задачи по начертательной геометрии, а величины малых осей Задачи по начертательной геометрии эллипсов следующие:

Ориентация больших и малых осей эллипсов относительно аксонометрических осей:

  1. Графические действия для построения овала 1 с центром в точке Задачи по начертательной геометрии: отложить на прямой, перпендикулярной оси Задачи по начертательной геометрии, отрезок Задачи по начертательной геометрии, равный размеру большой оси эллипса Задачи по начертательной геометрии:
  • дуги проводить до точек сопряжения 3 (построение показано).
  1. Графические действия для построения овала 2 с центром в точке Задачи по начертательной геометрии: отложить на горизонтальной прямой, перпендикулярной оси Задачи по начертательной геометрии, отрезок Задачи по начертательной геометрии, равный размеру большой оси эллипса Задачи по начертательной геометрии:
  2. отложить на продолжении оси Задачи по начертательной геометрии отрезок Задачи по начертательной геометрии, равный размеру малой оси Задачи по начертательной геометрии:
  3. построить точки 1, отложив от точки Задачи по начертательной геометрии вверх и вниз по оси Задачи по начертательной геометрии отрезки Задачи по начертательной геометрии, равные большой оси эллипса Задачи по начертательной геометрии;
  4. построить точки 2 на большой оси, отложив от точек Задачи по начертательной геометрии и Задачи по начертательной геометрии отрезки Задачи по начертательной геометрии и Задачи по начертательной геометрииЗадачи по начертательной геометрии, равные 1/4 малой оси эллипса Задачи по начертательной геометрии;
  5. из полученных точек 1 провести две большие дуги радиусом Задачи по начертательной геометрии. а из точек 2- две малые дуги радиусом Задачи по начертательной геометрии
  6. дуги проводить до точек сопряжения 3 (построение показано).

Построение овала 3 выполняется аналогично (большая ось Задачи по начертательной геометрии).

Косоугольная (фронтальная) диметрия

В качестве аксонометрической плоскости проекций здесь взята плоскость, параллельная плоскости проекций Задачи по начертательной геометрии Поэтому на аксонометрии сохраняется угол 90° между аксонометрическими осями Задачи по начертательной геометрии и Задачи по начертательной геометрии, а ось Задачи по начертательной геометрии располагают под углом 45° к горизонтальной прямой.

Приведенные коэффициенты искажения по аксонометрическим осям:

по осямЗадачи по начертательной геометрии и Задачи по начертательной геометрии: Задачи по начертательной геометрии по оси Задачи по начертательной геометрии: Задачи по начертательной геометрии.

На рис. 4.118 показано расположение аксонометрических осей в косоугольной диметрии, размеры и расположение больших и малых осей эллипсов и графический способ построения овалов.

Окружности на проекциях предмета, лежащие в плоскостях, параллельных плоскости проекций Задачи по начертательной геометрии, проецируются на аксонометрическое изображение в виде окружностей, т.е. не искажаются, так как параллельны плоскости аксонометрических проекций.

Задачи по начертательной геометрии

Окружности, лежащие в плоскостях, параллельных плоскостям проекций Задачи по начертательной геометрии и Задачи по начертательной геометрии. проецируются на аксонометрическое изображение в виде эллипсов, большие оси Задачи по начертательной геометрии которых равны Задачи по начертательной геометрии, а малые оси Задачи по начертательной геометрии равны Задачи по начертательной геометрии.

Расположение больших и малых осей эллипсов относительно аксонометрических осей:

эллипс 3 большая ось Задачи по начертательной геометрии расположена под углом Задачи по начертательной геометрии к вертикальной линии и наклонена в сторону аксонометрической оси у, малая ось Задачи по начертательной геометрии перпендикулярна большой оси эллипса.

Графическое построение двух одинаковых овалов 2 и 3, заменяющих эллипсы на чертежах, аналогичны построениям овалов для прямоугольной диметрии.

Примеры построения аксонометрических проекции

На рис. 4 119 показан пример построения аксонометрической проекции правильной треугольной пирамиды со срезом фронтально-проецирующей плоскостью Задачи по начертательной геометрии в прямоугольной диметрии

Построение аксонометрии пирамиды выполняется по предлагаемому графическому алгоритму

1-е действие. Отнести пирамиду к системе прямоугольных координат Задачи по начертательной геометрии и Задачи по начертательной геометрии, оси которой параллельны осям натуральной системы координат, но проходят через высоту пирамиды (ось Задачи по начертательной геометрии) и ее основание (оси Задачи по начертательной геометрии и Задачи по начертательной геометрии).

2-е действие. Определить в принятой системе координат на проекциях пирамиды координаты Задачи по начертательной геометрии и Задачи по начертательной геометрии отмеченных точек 1, 2, 3. лежащих на ребрах пирамиды, и точек Задачи по начертательной геометрии — вершин основания пирамиды.

3-е действие. На свободном поле чертежа провести аксонометрические оси прямоугольной диметрии из произвольной точки Задачи по начертательной геометрии: ось Задачи по начертательной геометрии — вертикально, ось Задачи по начертательной геометрии — под углом Задачи по начертательной геометрии а ось Задачи по начертательной геометрии — под углом Задачи по начертательной геометрии к горизонтальной линии (использовать графический способ построения аксонометрических осей).

Задачи по начертательной геометрии

4-е действие. Построить тонкими линиями аксонометрическую проекцию пирамиды без среза.

  1. Построить аксонометрическое изображение основания пирамиды Задачи по начертательной геометрии по координатным ломаным этих точек (основание лежит в системе осей Задачи по начертательной геометрии и называется вторичной проекцией):

!!! Координатные отрезки параллельны соответствующим аксонометрическим осям.

  1. Построить по координате Задачи по начертательной геометрии на аксонометрической оси Задачи по начертательной геометрии проекцию вершины пирамиды и соединить вершину Задачи по начертательной геометрии с точками основания Задачи по начертательной геометрии ребрами, то есть построить аксонометрию пирамиды.

5-е действие. Достроить срез на аксонометрии пирамиды, построив на ребрах пирамиды по координатам Задачи по начертательной геометрии и Задачи по начертательной геометрии аксонометрические проекции отмеченных точек 1, 2 и 3 по соответствующим плоским координатным ломаным:

6-е действие. Оформить аксонометрию пирамиды, выполнив толстыми линиями ее видимый контур (оставить тонкими линиями полную проекцию пирамиды, невидимые линии и линии построения).

Па рис. 4 120 показан пример построения аксонометрической проекции конуса со срезами двумя фронтально-проецирующими плоскостями (в сечении плоскостью Задачи по начертательной геометрии — треугольник со сторонами-образующими, в сечении плоскостью Задачи по начертательной геометрии -эллипс) в прямоугольной изометрии.

Задачи по начертательной геометрии

Графические действия для построения аксонометрии конуса соответствуют предложенному алгоритму для построения аксонометрии пирамиды:

1-е действие Отнести конус к такой же системе прямоугольных координат Задачи по начертательной геометрии и Задачи по начертательной геометрии (ось Задачи по начертательной геометрии совпадет с высотой конуса, оси Задачи по начертательной геометрии и Задачи по начертательной геометрии проходят по основанию конуса).

2-е действие. Определить координаты Задачи по начертательной геометрии и Задачи по начертательной геометрии для точек 1 2, 3 и 4 на поверхности конуса для построения сечений на его аксонометрии.

3-е действие. Па свободном поле чертежа отмстить точку Задачи по начертательной геометрии начала аксонометрических координат и провести оси прямоугольной изометрии под углами 120° с вертикальной осью Задачи по начертательной геометрии.

4-е действие. Построить аксонометрическую проекцию конуса без срезов:

Построить эллипс основания конуса с центром в точке Задачи по начертательной геометрии, большая ось которого перпендикулярна аксонометрической оси Задачи по начертательной геометрии, так как окружность основания конуса лежит в горизонтальной плоскости (см. графическое построение овала 2 на рис. 4.116).

  1. Построить вершину конуса, точку Задачи по начертательной геометрии, на оси Задачи по начертательной геометрии по ее координате Задачи по начертательной геометрии и провести две касательные к эллипсу через вершину Задачи по начертательной геометрии.

5-е действие. Достроить срезы на аксонометрии конуса, построив аксонометрические проекции отмеченных точек 1, 2. 3 и 4 по соответствующим плоским координатным ломаным:

-соединить построенные точки соответствующими линиями (участок эллипс и треугольник).

6-е действие. Оформить чертеж аксонометрии конуса, выполнив толстыми линиями ее видимый контур (оставить тонкими линиями полный контур пирамиды, невидимые линии и линии построения).

Образцы выполнения листов 11 и 12 с задачами 18 и 19 даны на рис. 4.121 и 4.122.

Задача №18.

Построить аксонометрическую проекцию пирамиды в прямоугольной или косоугольной аксонометрии.

Графическое условие задачи 18 — пирамида задачи 8 (табл. 4.5, лист 4).

Задачу выполнить на формате A3 белой чертежной бумаги.

Задача №19.

Построить аксонометрическую проекцию цилиндра в прямоугольной изометрии.

Графическое условие задачи 19 — цилиндр задачи 9 (табл. 4.6, лиа 5).

Задачу выполнить на формате A3 белой чертежной бумаги.

Образец выполнения аксонометрической проекции пирамиды со срезом и сквозным пазом показан на рис. 4.121 (лист 11).

На поле чертежа слева выполнить две проекции заданной пирамиды, а справа ее аксонометрическое изображение в прямоугольной диметрии

Плоскости среза и плоскости паза пересекают поверхность пирамиды по ломаным линям.

Построение аксонометрии выполняется по предложенному графическому алгоритму.

1-е действие. Отнести пирамиду к системе прямоугольных координат Задачи по начертательной геометрии и Задачи по начертательной геометрии

2-е действие Определить в принятой системе координат на проекциях пирамиды координаты Задачи по начертательной геометрии и Задачи по начертательной геометрии отмеченных точек 1, 2, 4 и 5, лежащих на боковой поверхности пирамиды, и точек Задачи по начертательной геометрии 3 и 6, лежащих на основании пирамиды.

3-е действие. Па свободном поле чертежа справа отметить точку Задачи по начертательной геометрии начала аксонометрических координат и провести оси прямоугольной диметрии (использовать графический способ построения).

4-е действие. Построить тонкими линиями полную аксонометрию пирамиды без среза и паза:

  1. Построить аксонометрическое изображение основания пирамиды Задачи по начертательной геометрии и проекции точек 3 и 6, лежащих на основании пирамиды, по координатным ломаным этих точек.
  2. Построить на аксонометрической оси Задачи по начертательной геометрии вершину пирамиды точку Задачи по начертательной геометрии по координате Задачи по начертательной геометрии и соединить вершину с вершинами основания.
Задачи по начертательной геометрии

5-е действие. Достроить срез и паз на аксонометрии пирамиды, построив аксонометрические проекции отмеченных точек 1, 2. 4 и 5 по соответствующим координатным ломаным (отрезки 4-3 параллельны ребру Задачи по начертательной геометрии).

6-е действие. Оформить аксонометрию пирамиды, выполнив толстыми сплошными основными линиями ее видимый контур (тонкими линиями оставить полную проекцию пирамиды, невидимый контур и линии построения).

Образец выполнения аксонометрической проекции цилиндра с пазом и срезом показан на рис. 4.122 (лист 12).

На поле чертежа слева выполнить две проекции цилиндра со сквозным пазом и срезом, а справа — его аксонометрическое изображение в прямоугольной изометрии.

Профильные плоскости паза пересекают поверхность цилиндра по образующим, фронталыю-проецируюшая плоскость паза — по участкам эллипса, горизонтальная плоскость нижнего среза — по окружности.

Графический алгоритм для построения аксонометрии цилиндра аналогичен предыдущему.

1-е действие. Отнести цилиндр к системе прямоугольных координат Задачи по начертательной геометрии и Задачи по начертательной геометрии (ось Задачи по начертательной геометрии совпадает с осью вращения цилиндра, оси Задачи по начертательной геометрии и Задачи по начертательной геометриипроходят по нижнему основанию)

2-е действие. Определить в принятой системе координат на проекциях цилиндра координаты отмеченных точек 1-9.

3-е действие. На свободном поле чертежа справа отметить точку Задачи по начертательной геометрии начата аксонометрических координат и провести аксонометрические оси прямоугольной изометрии.

4-е действие. Построить гонкими линиями полную аксонометрию цилиндра без паза и среза:

  1. В точке Задачи по начертательной геометрии нижнего основания и в точке Задачи по начертательной геометрии верхнего основания, лежащей на оси Задачи по начертательной геометрии на высоте цилиндра Задачи по начертательной геометрии, построить два эллипса, большие оси которых перпендикулярны оси Задачи по начертательной геометрии (построение овала см. на рис. 4.116).
  2. Провести две образующие цилиндра через конечные точки больших осей эллипсов.

5-е действие. Достроить паз и срез на аксонометрии, построив аксонометрические проекции отмеченных точек.

  1. Построить паз по координатным ломаным точек 1, 2,3, 4 и 5.
  2. Достроить с центром в точке Задачи по начертательной геометрии, эллипс в горизонтальной плоскости нижнего среза и определить положение точек 6, 7 и 8. лежащих на этом эллипсе, и положение точек 9. лежащих на нижнем основании цилиндра.

6-е действие. Оформить аксонометрию цилиндра, выполнив толстыми линиями ее видимый контур (оставить тонкими линиями полную проекцию цилиндра, невидимый контур и линии построения).

Задачи по начертательной геометрии

Министерство
образования Российской Федерации

ГОУ ВПО «СИБИРСКИЙ
ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ
УНИВЕРСИТЕТ»

И.И.Астапкович,
Т.В.Борисова, Н.И.Лукьянчук, Е.Н.Первиненко

Начертательная геометрия

Сборник контрольных
заданий с примерами решений

для студентов
технологических специальностей

очной и заочной
формы обучения

учащихся техникумов,
колледжей и лицеев

Красноярск

2004

Начертательная
геометрия:
Сборник контрольных заданий
с примерами решений для студентов
технологических специальностей очной
и заочной формы обучения, учащихся
техникумов, колледжей и лицеев/.
И.И.Астапкович, Т.В.Борисова, Н.И.Лукьянчук,
Е.Н.Первиненко – Красноярск: СибГТУ,
2004. Рис. 20 , библиогр. назв. 4 – 64с.

Рецензенты: доц. В.В.Силин (методический совет СибГту),

проф. А.И.Лагерь (КГАЦМиЗ)

В сборнике приведены
задания для контрольных работ по основным
темам курса начертательной геометрии.
Задания приведены в приложении. Каждое
задание по теме представлено 30 вариантами
индивидуальных заданий. В помощь
студентам приведен краткий теоретический
материал по каждой теме с примерами
решения типовых задач. К каждому заданию
приводится пример его оформления на
чертежной бумаге.

Сборник контрольных
заданий рекомендуется для студентов
технологических специальностей ВУЗов
очной и заочной формы обучения, но может
быть использован студентами других
специальностей ВУЗов и техникумов
независимо от формы обучения для
самостоятельной работы. Для контроля
и закрепления материала работа содержит
контрольные вопросы по отдельным темам
раздела.


И.И.Астапкович,
Т.В.Борисова, Н.И.Лукьянчук,Е.Н.Первиненко.
, 2004

 ГОУ ВПО «Сибирский
государственный технологический
университет», 2004

Введение

Данное
учебное пособие предназначено для
студентов технологических специальностей
очной и заочной формы обучения.

Сборник
контрольных заданий рассчитан для курса
«Начертательная геометрия» с объемом
32/16 лекционных часов и 32 часов практических
занятий. В нем рассмотрены следующие
темы курса: точка, прямая, плоскость,
позиционные задачи, метрические задачи,
поверхности.

Цель учебного
пособия состоит в оказании помощи
студентам при выполнении контрольных
заданий по начертательной геометрии.

По
указанным темам студенты очной формы
обучения выполняют 5, а студенты заочной
формы – 4 контрольных задания, каждое
из которых содержит указания по их
выполнению , примеры решения задач,
контрольные вопросы по теоретическому
курсу, варианты контрольных заданий и
образцы их выполнения.

Варианты
заданий студентам очной формы обучения
выдает преподаватель. Для студентов
заочной формы обучения вариант
соответствует сумме трех последних
цифр шифра (№ зачетной книжки) или
выдается преподавателем.

При
сдаче задания студент должен объяснить
решение задач и ответить на теоретические
вопросы по данной теме.

Задания
должны быть выполнены в сроки,
предусмотренные учебным графиком
выполнения работ, который выдается
студенту в начале осеннего семестра.

Задачи
контрольных заданий решаются на
практических занятиях и в процессе
самостоятельной работы студентов.
Тщательная и последовательная проработка
этих заданий позволяет студентам
приобрести достаточные практические
навыки в решении аналогичных задач.

Итогом
курса «Начертательная геометрия»
является экзамен. Для получения допуска
на экзамен студент должен выполнить по
своему варианту все задания, вошедшие
в этот сборник, текущие контрольные
мероприятия, решить задачи в рабочей
тетради и выполнить зачетную работу.

Использование
методического пособия позволит сократить
время, затрачиваемое преподавателем
на индивидуальные консультации, и может
быть рекомендовано для самостоятельной
работы студентам ВУЗов других
специальностей, учащимся техникумов,
колледжей и лицеев.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.

Отлично

Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.

Отлично

Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.

Отлично

Отличный сайт
Лично меня всё устраивает — и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.

Отлично

Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.

Хорошо

Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.

Отлично

Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.

Отлично

Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.

Отлично

Отзыв о системе «Студизба»
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.

Хорошо

Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.

Отлично

Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.

Отлично

Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.

Отлично

Like this post? Please share to your friends:
  • Задачи вступительных экзаменов по математике 6 класс
  • Есенин полное собрание сочинений том 6
  • Задания на группировку ranging егэ
  • Егэ фор лайф
  • Задание 17 егэ математика профильный уровень таблица