Тренировочные варианты профильного ЕГЭ 2023 по математике с ответами.
Задача 3. Начала теории вероятностей
Задача 3. Начала теории вероятностей
Задача 4. Вероятности сложных событий
Задача 4. Вероятности сложных событий
Задача 5. Простейшие уравнения
Задача 5. Простейшие уравнения
Задача 6. Вычисления и преобразования
Задача 6. Вычисления и преобразования
Задача 7. Производная и первообразная
Задача 7. Производная и первообразная
Задача 8. Задачи с прикладным содержанием
Задача 8. Задачи с прикладным содержанием
Задача 9. Текстовые задачи
Задача 9. Текстовые задачи
Задача 10. Графики функций
Задача 10. Графики функций
Задача 11. Наибольшее и наименьшее значение функций
Задача 11. Наибольшее и наименьшее значение функций
Пробные и тренировочные варианты по математике профильного уровня в формате ЕГЭ 2022 из различных источников.
Тренировочные варианты ЕГЭ 2022 по математике (профиль)
egemath.ru | |
Вариант 1 | скачать |
Вариант 2 | скачать |
Вариант 3 | скачать |
Вариант 4 | скачать |
Вариант 5 | скачать |
Вариант 6 | скачать |
Вариант 7 | скачать |
variant 8 | скачать |
variant 9 | скачать |
variant 10 | скачать |
variant 11 | скачать |
variant 12 | скачать |
variant 13 | скачать |
variant 14 | скачать |
variant 15 | скачать |
variant 16 | скачать |
variant 17 | скачать |
variant 18 | скачать |
variant 19 | скачать |
variant 20 | скачать |
yagubov.ru | |
вариант 21 | ege2022-yagubov-prof-var21 |
вариант 22 | ege2022-yagubov-prof-var22 |
вариант 23 | ege2022-yagubov-prof-var23 |
вариант 24 | ege2022-yagubov-prof-var24 |
вариант 25 | ege2022-yagubov-prof-var25 |
вариант 26 | ege2022-yagubov-prof-var26 |
вариант 27 | ege2022-yagubov-prof-var27 |
вариант 28 | ege2022-yagubov-prof-var28 |
Досрочный Москва 28.03.2022 | скачать |
egemathschool.ru | |
вариант 1 | ответ |
вариант 2 | ответ |
вариант 3 | ответ |
вариант 4 | ответ |
ЕГЭ 100 баллов (с решениями) | |
Вариант 1 | скачать |
Вариант 2 | скачать |
Вариант 3 | скачать |
Вариант 4 | скачать |
Вариант 5 | скачать |
Вариант 6 | скачать |
Вариант 7 | скачать |
Вариант 8 | скачать |
Вариант 9 | скачать |
Вариант 10 | скачать |
variant 11 | скачать |
variant 12 | скачать |
variant 13 | скачать |
variant 14 | скачать |
variant 15 | скачать |
variant 16 | скачать |
variant 17 | скачать |
variant 18 | скачать |
variant 20 | скачать |
variant 21 | скачать |
variant 23 | скачать |
variant 24 | скачать |
variant 25 | скачать |
variant 26 | скачать |
variant 29 | скачать |
variant 30 | скачать |
math100.ru (с ответами) | |
Вариант 140 | скачать |
Вариант 141 | скачать |
Вариант 142 | скачать |
Вариант 143 | math100-ege22-v143 |
Вариант 144 | math100-ege22-v144 |
Вариант 145 | math100-ege22-v145 |
Вариант 146 | math100-ege22-v146 |
variant 147 | math100-ege22-v147 |
variant 148 | math100-ege22-v148 |
variant 149 | math100-ege22-v149 |
variant 150 | math100-ege22-v150 |
variant 151 | math100-ege22-v151 |
variant 152 | math100-ege22-v152 |
variant 153 | math100-ege22-v153 |
variant 154 | math100-ege22-v154 |
variant 155 | math100-ege22-v155 |
variant 156 | math100-ege22-v156 |
variant 157 | math100-ege22-v157 |
variant 158 | math100-ege22-v158 |
variant 159 | math100-ege22-v159 |
variant 160 | math100-ege22-v160 |
variant 161 | math100-ege22-v161 |
variant 162 | math100-ege22-v162 |
variant 163 | math100-ege22-v163 |
variant 164 | math100-ege22-v164 |
variant 165 | math100-ege22-v165 |
variant 166 | math100-ege22-v166 |
variant 167 | math100-ege22-v167 |
variant 168 | math100-ege22-v168 |
variant 169 | math100-ege22-v169 |
variant 170 | math100-ege22-v170 |
variant 171 | math100-ege22-v171 |
variant 172 | math100-ege22-v172 |
variant 173 | math100-ege22-v173 |
variant 174 | math100-ege22-v174 |
alexlarin.net | |
Вариант 358 |
скачать |
Вариант 359 | скачать |
Вариант 360 | скачать |
Вариант 361 | скачать |
Вариант 362 | проверить ответы |
Вариант 363 | проверить ответы |
Вариант 364 | проверить ответы |
Вариант 365 | проверить ответы |
Вариант 366 | проверить ответы |
Вариант 367 | проверить ответы |
Вариант 368 | проверить ответы |
Вариант 369 | проверить ответы |
Вариант 370 | проверить ответы |
Вариант 371 | проверить ответы |
Вариант 372 | проверить ответы |
Вариант 373 | проверить ответы |
Вариант 374 | проверить ответы |
Вариант 375 | проверить ответы |
Вариант 376 | проверить ответы |
Вариант 377 | проверить ответы |
Вариант 378 | проверить ответы |
Вариант 379 | проверить ответы |
Вариант 380 | проверить ответы |
Вариант 381 | проверить ответы |
Вариант 382 | проверить ответы |
Вариант 383 | проверить ответы |
Вариант 384 | проверить ответы |
Вариант 385 | проверить ответы |
Вариант 386 | проверить ответы |
Вариант 387 | проверить ответы |
Вариант 388 | проверить ответы |
vk.com/ekaterina_chekmareva (задания 1-12) | |
Вариант 1 | ответы |
Вариант 2 | |
Вариант 3 | |
Вариант 4 | |
Вариант 5 | |
Вариант 6 | |
Вариант 7 | ответы |
Вариант 8 | |
Вариант 9 | |
Вариант 10 | |
vk.com/matematicalate | |
Вариант 1 | matematikaLite-prof-ege22-var1 |
Вариант 2 | matematikaLite-prof-ege22-var2 |
Вариант 3 | matematikaLite-prof-ege22-var3 |
Вариант 4 | matematikaLite-prof-ege22-var4 |
Вариант 5 | matematikaLite-prof-ege22-var5 |
Вариант 6 | matematikaLite-prof-ege22-var6 |
Вариант 7 | matematikaLite-prof-ege22-var7 |
Вариант 8 | matematikaLite-prof-ege22-var8 |
vk.com/pro_matem | |
variant 1 | pro_matem-prof-ege22-var1 |
variant 2 | pro_matem-prof-ege22-var2 |
variant 3 | pro_matem-prof-ege22-var3 |
variant 4 | разбор |
variant 5 | разбор |
vk.com/murmurmash | |
variant 1 | otvet |
variant 2 | otvet |
→ Купить сборники тренировочных вариантов ЕГЭ 2022 по математике |
Структура варианта КИМ ЕГЭ
Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и количеству заданий:
– часть 1 содержит 11 заданий (задания 1–11) с кратким ответом в виде целого числа или конечной десятичной дроби;
– часть 2 содержит 7 заданий (задания 12–18) с развёрнутым ответом (полная запись решения с обоснованием выполненных действий).
Задания части 1 направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.
Посредством заданий части 2 осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.
Связанные страницы:
Средний балл ЕГЭ 2021 по математике
Решение задач с параметром при подготовке к ЕГЭ
Изменения в КИМ ЕГЭ 2022 года по математике
Купить сборники типовых вариантов ЕГЭ по математике
Как решать экономические задачи ЕГЭ по математике профильного уровня?
Каким был ЕГЭ по математике в 2022 году?
Мы знаем, что в 2022 году формат ЕГЭ по математике изменился. Поменялась нумерация заданий. Добавились новые задачи: №9 (Функции и графики) и № 10 (Теория вероятностей). И в первой части стало на 1 задачу меньше.
Во второй части ЕГЭ также произошли изменения.
«Экономическая» задача, которая теперь под № 15, оценивается уже не в 3, а только в 2 первичных балла.
А вот задача по стереометрии, №13, наоборот, «подорожала» и теперь оценивается в 3 балла.
Расскажем о заданиях 2 части ЕГЭ, задачах 13-18, а затем подробно разберем различные типы таких задач.
Задание 12, уравнения. Все стандартно, просто тригонометрия.
Задание 13, стереометрия. По сравнению с прошлыми годами сложность значительно выше. Здесь и теорема Менелая, и произвольная призма, и пересечение сфер.
Задача 14, неравенство. Все стандартно – показательное неравенство, замена переменной. Помним о секретах решения таких задач! Сделав замену, сначала полностью решаем неравенство для новой переменной, затем возвращаемся к первоначальной.
Задача 15, экономическая. В 2022 году были только кредиты и вклады. Обошлись без задач на оптимизацию.
Задача 16, планиметрия. Простые задания, без затей. Подобные треугольники, теорема косинусов, свойство биссектрисы треугольника, в общем, обязательная школьная программа по геометрии.
Задание 17, задачи с параметрами. Составители вариантов порадовали разнообразием: был и графический метод, и аналитический. И решение квадратных уравнений с параметрами. И в каждом задании присутствовали модули, так что кто эту тему не знает, надо повторить!
Изучить «параметры» с нуля можно с помощью Видеокурса Анны Малковой
Полный курс, 26 часов видео, 13 видеоуроков. 11 методов решения задач с параметрами.
И наконец, задание 18, задачи на числа и их свойства. Все типы заданий – новые, нестандартные. Числа на круге, использование делимости и остатков.
Освоить эту необычную задачу можно с помощью видеокурса Анны Малковой.
Полный курс, 10 видеоуроков по 2 часа. 11 методов решения задач на числа и их свойства.
А теперь подробно о каждом задании ЕГЭ-2022, 2 часть.
Уравнения на EГЭ -2022 по математике, задача 12
Cтереометрия на EГЭ-2022 по математике, задача 13
Hеравенства на EГЭ-2022 по математике, задача 14
Экономические задачи и финансовая математика на ЕГЭ-2022, задача 15
Планиметрия на EГЭ-2022 по математике, задача 16
Задачи с параметрами на ЕГЭ-2022: модули, окружности, квадратные уравнения
Задача 18 на числа и их свойства на ЕГЭ-2022 по математике
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «ЕГЭ-2022, математика. Все задачи с решениями» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
09.03.2023
Математика Профильный уровень
Об экзамене
Профильная математика – довольно коварная, обманчивая вещь. Вроде бы смотришь на задания первой части, думаешь, лол, что это за детский сад? А потом открываешь вторую часть, и в голове начинают крутиться совершенно другие мысли… И ведь подсознательно понимаешь, что это далеко не самые сложные вещи, но сколько всевозможных тонких моментов, о которые начинаешь сходу спотыкаться. Так что не впадайте в крайности, готовьтесь планомерно, по чуть-чуть повышайте сложность заданий и стремитесь к большему! Ведь профильная математика – это круто!
Структура
Часть 1 содержит 8 заданий (задания 1–8) с кратким ответом; часть 2 содержит 4 задания (задания 9–12) с кратким ответом заданий (задания 13–19) с развернутым ответом. По уровню сложности задания распределяются следующим образом: задания 1–8 имеют базовый уровень; задания 9–17 – повышенный уровень; задания 18 и 19 относятся к высокому уровню сложности.
На выполнение экзаменационной работы отводится 3 часа 55 минут (235 минут).
Пояснения к оцениванию заданий
Правильное решение каждого из заданий 1–12 оценивается 1 баллом. Задание считается выполненным верно, если экзаменуемый дал правильный ответ в виде целого числа или конечной десятичной дроби. Решения заданий с развернутым ответом оцениваются от 0 до 4 баллов. Полное правильное решение каждого из заданий 13–15 оценивается 2 баллами; каждого из заданий 16 и 17 – 3 баллами; каждого из заданий 18 и 19 – 4 баллами. Проверка выполнения заданий 13–19 проводится разработанной системы критериев оценивания.
Тема | Результат | Задания | |||
---|---|---|---|---|---|
1. | Простейшие текстовые задачи
Вычисления Округление с недостатком Округление с избытком Проценты Проценты и округление |
Не изучена | Отработать | ||
2. | Чтение графиков и диаграмм
Определение величины по графику Определение величины по диаграмме Вычисление величин по графику или диаграмме |
Не изучена | Отработать | ||
3. | Планиметрия: вычисление длин и площадей
Многоугольники: вычисление длин и углов Многоугольники: вычисление площадей Круг и его элементы Координатная плоскость |
Не изучена | Отработать | ||
4. | Начала теории вероятностей
Классическое определение вероятности Теоремы о вероятностях событий |
Не изучена | Отработать | ||
5. | Простейшие уравнения
Линейные, квадратные, кубические уравнения Рациональные уравнения Иррациональные уравнения Показательные уравнения Логарифмические уравнения Тригонометрические уравнения |
Не изучена | Отработать | ||
6. | Планиметрия
Прямоугольные треугольники Равнобедренные треугольники Треугольники общего вида Параллелограмм Трапеция Центральные и вписанные углы Касательная, хорда, секущая Вписанные окружности Описанные окружности |
Не изучена | Отработать | ||
7. | Производная и первообразная
Физический смысл производной Производная и касательная Применение производной к исследованию функций Определение свойств производной по заданной функции Определение свойств функции по заданной производной Первообразная |
Не изучена | Отработать | ||
8. | Стереометрия
Куб Прямоугольный параллелепипед Элементы составных многогранников Площадь поверхности составного многогранника Объем составного многогранника Призма Пирамида Комбинации тел Цилиндр Конус Сфера, шар |
Не изучена | Отработать | ||
9. | Вычисления и преобразования
Алгебраические выражения Рациональные выражения Иррациональные выражения Степенные выражения Логарифмические выражения Тригонометрические выражения |
Не изучена | Отработать | ||
10. | Задачи с прикладным содержанием
Разные задачи Линейные уравнения и неравенства Квадратные и степенные уравнения и неравенства Иррациональные уравнения и неравенства Рациональные уравнения и неравенства Логарифмические уравнения и неравенства Тригонометрические уравнения и неравенства Показательные уравнения и неравенства |
Не изучена | Отработать | ||
11. | Текстовые задачи
Задачи на сплавы и смеси Задачи на движение по прямой Задачи на движение по окружности Задачи на движение по воде Задачи на производительность Задачи на прогрессии Задачи на проценты |
Не изучена | Отработать | ||
12. | Наибольшее и наименьшее значение функций
Исследование степенных и иррациональных функций Исследование частных Исследование произведений Исследование показательных и логарифмических функций Исследование тригонометрических функций Исследование функций без помощи производной |
Не изучена | Отработать | ||
Часть 2 | |||||
13. | Уравнения
Рациональные и иррациональные уравнения Логарифмические и показательные уравнения Тригонометрические уравнения Тригонометрические уравнения, исследование ОДЗ Уравнения смешанного типа |
Отработать | |||
14. | Углы и расстояния в пространстве
Задача на доказательство и вычисление Угол между скрещивающимися прямыми Угол между прямой и плоскостью Угол между плоскостями Расстояние от точки до прямой и до плоскости Расстояние между прямыми и плоскостями Сечения многогранников Объёмы многогранников Тела вращения: цилиндр, конус, шар |
Отработать | |||
15. | Неравенства
Рациональные неравенства Иррациональные неравенства Показательные неравенства Логарифмические неравенства Неравенства с логарифмами по переменному основанию Неравенства с модулем Смешанные неравенства |
Отработать | |||
16. | Планиметрическая задача
Многоугольники и их свойства Окружности и треугольники Окружности и четырёхугольники Окружности и системы окружностей Задача на доказательство и вычисление |
Отработать | |||
17. | Практические задачи
Банки, вклады, акции Кредиты (с установленными размерами платежей) Кредиты (с установленной схемой уменьшения долга) Задачи на оптимальный выбор Разные задачи |
Отработать | |||
18. | Уравнения, неравенства, системы с параметром
Комбинация «кривых» Кусочное построение графика функции Комбинация прямых Координаты (x, a) Левая и правая части в качестве отдельных графиков Перебор случаев Подвижная галочка Расстояние между точками Симметрия в решениях Уравнение окружности Функции, зависящие от параметра Уравнения с параметром Расположение корней квадратного трехчлена Использование симметрий, оценок, монотонности |
Отработать | |||
19. | Числа и их свойства
Числа и их свойства Числовые наборы на карточках и досках Последовательности и прогрессии Сюжетные задачи |
Отработать |
Любой учитель или репетитор может отслеживать результаты своих учеников по всей группе или классу.
Для этого нажмите ниже на кнопку «Создать класс», а затем отправьте приглашение всем заинтересованным.
Ознакомьтесь с подробной видеоинструкцией по использованию модуля.
Для успешного решения профильных вариантов ЕГЭ по математике стоит отказаться от подобного алгоритма. При подготовке к экзамену нужно делать упор не на его сдачу как самоцель, а на повышение уровня знаний учащегося. Для этого необходимо изучать теорию, отрабатывать навыки, решая разнообразные варианты профильного ЕГЭ по математике нестандартными способами с развернутыми ответами, следить за динамикой обучения. А поможет вам во всем этом образовательный проект «Школково».
Почему вам стоит выбрать наш ресурс?
Мы не предлагаем вам типовые примеры профильных задач ЕГЭ по математике, которые кочуют на просторах Интернета с одного сайта на другой. Наши специалисты самостоятельно разработали базу заданий, которая состоит из интересных и уникальных упражнений и ежедневно пополняется. Все задачи ЕГЭ по математике профильного уровня содержат ответы и подробные решения. Они позволяют выявить сильные и слабые стороны в подготовке школьника и научить его мыслить свободно и нестандартно.
Для того чтобы выполнять задачи и просматривать решения заданий ЕГЭ по математике профильного уровня, выберите упражнение в «Каталоге». Сделать это довольно просто, поскольку он имеет понятную структуру, которая включает в себя темы и подтемы. Все задания расположены по возрастанию от простых до более сложных и содержат ответы на профильный ЕГЭ по математике с решением.
Кроме того, ученику предоставляется возможность самостоятельно формировать варианты задач. С помощью «Конструктора» он может выбирать задания ЕГЭ по математике профильного уровня на любую интересующую его тему и просматривать их решения. Это позволит отработать навыки по конкретному разделу, например, геометрии или алгебре.
Также учащийся может сделать разбор заданий профильного ЕГЭ по математике в «Личном кабинете ученика». В этом разделе школьник сможет отслеживать собственную динамику и общаться с преподавателем.
Все это поможет вам эффективно подготовиться к профильному ЕГЭ по математике и с легкостью найти решения даже самых сложных задач.
Практика показывает, что задачи на нахождение площади треугольника встречаются в ЕГЭ из года в год. Именно поэтому, если учащиеся хотят получить достойные баллы по итогам прохождения аттестационного испытания, им непременно стоит повторить эту тему и снова разобраться в материале.
Как подготовиться к экзамену?
Научиться решать задачи на нахождение площади треугольника, подобные тем, которые встречаются в ЕГЭ, вам поможет образовательный проект «Школково». Здесь вы найдете весь необходимый материал для подготовки к прохождению аттестационного испытания.
Для того чтобы упражнения по теме «Площадь треугольника в задачах ЕГЭ» не вызывали у выпускников затруднений, рекомендуем прежде всего освежить в памяти базовые тригонометрические понятия и правила. Для этого достаточно перейти в раздел «Теоретическая справка». Там представлены основные определения и формулы, которые помогут при нахождении правильного ответа.
Чтобы закрепить усвоенный материал и попрактиковаться в решении задач, предлагаем выполнить упражнения, которые подобрали специалисты образовательного проекта «Школково». Каждое задание на сайте имеет правильный ответ и подробное описание способа решения. Учащиеся могут практиковаться как с простыми, так и с более сложными задачами.
«Прокачать» свои навыки в выполнении подобных упражнений школьники могут в режиме онлайн как в Москве, так и в любом другом городе России. В случае необходимости выполненное задание можно сохранить в разделе «Избранное», чтобы в дальнейшем вернуться к нему и обсудить ход решения с преподавателем.
Профильный ЕГЭ по математике сдают не все. Это вариант для тех, кто намерен поступить в технический Вуз или освоить профессию, связанную с экономикой или математикой. Чтобы сдать данный экзамен, вам нужно будет показать глубокие знания предмета.
Основные требования
Во время сдачи базового госэкзамена вам понадобятся познания, которые были получены из школьного курса алгебры и геометрии. Вы должны уметь решать разнообразные неравенства и уравнения, а также знать терминологию и алгоритмы решения разных задач. А вот чтобы выполнить тесты высокой сложности, вы должны знать:
- планиметрию;
- стереометрию;
- прогрессию.
Помимо этого от учащегося потребуется знание финансовой математики и умение работать с параметрическими системами, уравнениями, неравенствами, процентами.
Во время подготовки вам придется повторить теорию. При этом вы должны совмещать ее с практикой, чтобы уметь применять все выученные правила, теоремы, аксиомы.
Принципы подготовительного процесса
С самого начала года необходимо готовиться к ЕГЭ. Благодаря этому можно качественно усвоить весь необходимый материал.
Желательно повторять вслух все прочитанное, чтобы запомнить правила.
Некоторые аксиомы и теоремы нужно будет просто выучить. А после этого применять их при работе с тренировочными упражнениями.
Если вы готовитесь вместе с одноклассниками, контролируйте друг друга. Так материал быстрее усвоится.
Анализируйте ошибки во время решения задач. Благодаря этому вы значительно продвинетесь в подготовке.
Не забывайте про решение практических заданий. Во время сдачи тестирования этот навык вам очень пригодится.