ЕГЭ Профиль №15. Логарифмические неравенства
Нашли ошибку в заданиях? Оставьте, пожалуйста, отзыв.
15 заданием профильного ЕГЭ по математике является неравенство. Самым часто встречаемым неравенством, которое предлагают на реальных экзаменах в 15 задание, является логарифмическое неравенство. При решении логарифмических неравенств, в большинстве случаев (но не всегда) необходимо полностью находить область допустимых неравенств. Большая часть логарифмических неравенств, предлагаемых на реальных экзаменах, решается с помощью замен, методом интервалов или разложением на множители. Прежде чем решать логарифмические неравенства необходимо выучить свойства логарифмов, свойства логарифмической функции и уметь решать логарифмические уравнения. В данном разделе представлены логарифмические неравенства (всего 138) разбитые на два уровня сложности. Уровень А — это простейшие логарифмические неравенства, которые являются подготовительными для решения реальных логарифмических неравенств предлагаемых на ЕГЭ по профильной математике. Уровень В — состоит из неравенств, которые предлагали на реальных ЕГЭ и в диагностических работах прошлых лет.
Решая логарифмические неравенства, мы пользуемся свойством монотонности логарифмической функции. Также мы используем определение логарифма и основные логарифмические формулы.
Давайте повторим, что такое логарифмы:
Логарифм положительного числа по основанию — это показатель степени, в которую надо возвести , чтобы получить .
При этом
Основное логарифмическое тождество:
Основные формулы для логарифмов:
(Логарифм произведения равен сумме логарифмов)
(Логарифм частного равен разности логарифмов)
(Формула для логарифма степени)
Формула перехода к новому основанию:
Алгоритм решения логарифмических неравенств
Можно сказать, что логарифмические неравенства решаются по определенному алгоритму. Нам нужно записать область допустимых значений (ОДЗ) неравенства. Привести неравенство к виду Знак здесь может быть любой: Важно, чтобы слева и справа в неравенстве находились логарифмы по одному и тому же основанию.
И после этого «отбрасываем» логарифмы! При этом, если основание степени , знак неравенства остается тем же. Если основание такое, что знак неравенства меняется на противоположный.
Конечно, мы не просто «отбрасываем» логарифмы. Мы пользуемся свойством монотонности логарифмической функции. Если основание логарифма больше единицы, логарифмическая функция монотонно возрастает, и тогда большему значению х соответствует большее значение выражения .
Если основание больше нуля и меньше единицы, логарифмическая функция монотонно убывает. Большему значению аргумента х будет соответствовать меньшее значение
Важное замечание: лучше всего записывать решение в виде цепочки равносильных переходов.
Перейдем к практике. Как всегда, начнем с самых простых неравенств.
1. Рассмотрим неравенство log3x > log35.
Поскольку логарифмы определены только для положительных чисел, необходимо, чтобы x был положительным. Условие x > 0 называется областью допустимых значений (ОДЗ) данного неравенства. Только при таких x неравенство имеет смысл.
Что делать дальше? Стандартный ответ, который дают школьники, — «Отбросить логарифмы!»
Что ж, эта формулировка лихо звучит и легко запоминается. Но почему мы все-таки можем это сделать?
Мы люди, мы обладаем интеллектом. Наш разум устроен так, что все логичное, понятное, имеющее внутреннюю структуру запоминается и применяется намного лучше, чем случайные и не связанные между собой факты. Вот почему важно не механически вызубрить правила, как дрессированная собачка-математик, а действовать осознанно.
Так почему же мы все-таки «отбрасываем логарифмы»?
Ответ простой: если основание больше единицы (как в нашем случае), логарифмическая функция монотонно возрастает, значит, большему значению x соответствует большее значение y и из неравенства log3x1 > log3x2 следует, что x1 > x2.
Обратите внимание, мы перешли к алгебраическому неравенству, и знак неравенства при этом — сохраняется.
Итак, x > 5.
Следующее логарифмическое неравенство тоже простое.
2. log5(15 + 3x) > log52x
Начнём с области допустимых значений. Логарифмы определены только для положительных чисел, поэтому
Решая эту систему, получим: x > 0.
Теперь от логарифмического неравенства перейдем к алгебраическому — «отбросим» логарифмы. Поскольку основание логарифма больше единицы, знак неравенства при этом сохраняется.
15 + 3x > 2x.
Получаем: x > −15.
Итак,
Ответ: x > 0.
А что же будет, если основание логарифма меньше единицы? Легко догадаться, что в этом случае при переходе к алгебраическому неравенству знак неравенства будет меняться.
Приведем пример.
3.
Запишем ОДЗ. Выражения, от которых берутся логарифмы, должны быть положительно, то есть
Решая эту систему, получим: x > 4,5.
Поскольку , логарифмическая функция с основанием монотонно убывает. А это значит, что большему значению функции отвечает меньшее значение аргумента:
И если , то
2x − 9 ≤ x.
Получим, что x ≤ 9.
Учитывая, что x > 4,5, запишем ответ:
x ∈ (4,5; 9].
В следующей задаче логарифмическое неравенство сводится к квадратному. Так что тему «квадратные неравенства» рекомендуем повторить.
Теперь более сложные неравенства:
4. Решите неравенство
Ответ:
5. Решите неравенство
ОДЗ:
Если , то . Нам повезло! Мы знаем, что основание логарифма больше единицы для всех значений х, входящих в ОДЗ.
Сделаем замену
Обратите внимание, что сначала мы полностью решаем неравенство относительно новой переменной t. И только после этого возвращаемся к переменной x. Запомните это и не ошибайтесь на экзамене!
Ответ:
6.
Запомним правило: если в уравнении или неравенстве присутствуют корни, дроби или логарифмы — решение надо начинать с области допустимых значений. Поскольку основание логарифма должно быть положительно и не равно единице, получим систему условий:
Упростим эту систему:
Это область допустимых значений неравенства.
Мы видим, что переменная содержится в основании логарифма. Перейдем к постоянному основанию. Напомним, что
В данном случае удобно перейти к основанию 4.
Сделаем замену
Упростим неравенство и решим его методом интервалов:
Итак,
Вернемся к переменной x:
Мы добавили условие x > 0 (из ОДЗ).
Ответ:
7. Следующая задача тоже решается с помощью метода интервалов
Как всегда, решение логарифмического неравенства начинаем с области допустимых значений. В данном случае
Это условие обязательно должно выполняться, и к нему мы вернемся. Рассмотрим пока само неравенство. Запишем левую часть как логарифм по основанию 3:
Правую часть тоже можно записать как логарифм по основанию 3, а затем перейти к алгебраическому неравенству:
Видим, что условие (то есть ОДЗ) теперь выполняется автоматически. Что ж, это упрощает решение неравенства.
Решаем неравенство методом интервалов:
Ответ:
Получилось? Что же, повышаем уровень сложности:
8. Решите неравенство:
Неравенство равносильно системе:
Ответ:
9. Решите неравенство:
Выражение 5—x2навязчиво повторяется в условии задачи. А это значит, что можно сделать замену:
Поскольку показательная функция принимает только положительные значения, t > 0. Тогда
Неравенство примет вид:
Уже лучше. Найдем область допустимых значений неравенства. Мы уже сказали, что t > 0. Кроме того, (t − 3) (59 · t − 1) > 0
Если это условие выполнено, то и частное будет положительным.
А еще выражение под логарифмом в правой части неравенства должно быть положительно, то есть (625t − 2)2.
Это означает, что 625t − 2 ≠ 0, то есть
Аккуратно запишем ОДЗ
и решим получившуюся систему, применяя метод интервалов.
Итак,
Ну что ж, полдела сделано — разобрались с ОДЗ. Решаем само неравенство. Сумму логарифмов в левой части представим как логарифм произведения:
«Отбросим» логарифмы. Знак неравенства сохраняется.
Перенесем все в левую часть и разложим по известной формуле разности квадратов:
Вспомним, что (это ОДЗ неравенства) и найдем пересечение полученных промежутков.
Получим, что
Вернемся к переменной x
Поскольку
Ответ:
10. Еще один прием, упрощающий решение логарифмических неравенств, — переход к постоянному основанию. Покажем, как использовать переход к другому основанию и обобщенный метод интервалов.
Запишем ОДЗ:
Воспользуемся формулой и перейдем к основанию 10:
Применим обобщенный метод интервалов. Выражение в левой части неравенства можно записать как функцию
Эта функция может менять знак в точках, где она равна нулю или не существует.
Выражение lg |x − 3| равно нулю, если |x − 3| = 1, то есть x = 4 или x = 2.
Выражение lg (|x| − 2) равно нулю, если |x| = 3, то есть в точках 3 и −3.
Отметим эти точки на числовой прямой, с учетом ОДЗ неравенства.
Найдем знак функции g(x) на каждом из промежутков, на которые эти точки разбивают область допустимых значений. Точно так же мы решали методом интервалов обычные рациональные неравенства.
Ответ:
11. А в следующей задаче спрятаны целых две ловушки для невнимательных абитуриентов.
Запишем ОДЗ:
Итак, Это ОДЗ.
Обратите внимание, что .
Это пригодится вам при решении неравенства.
Упростим исходное неравенство:
Теперь главное – не спешить. Мы уже говорили, что задача непростая – в ней расставлены ловушки. В первую вы попадете, если напишете, что Ведь выражение в данном случае не имеет смысла, поскольку x < 18.
Как же быть? Вспомним, что (x — 18)2=(18 — x)2. Тогда:
Вторая ловушка – попроще. Запись означает, что сначала надо вычислить логарифм, а потом возвести полученное выражение в квадрат. Поэтому:
Дальше – всё просто. Сделаем замену
Выражение в левой части этого неравенства не может быть отрицательным, поэтому t = 2. Тогда
— не удовлетворяет ОДЗ;
Ответ: 2.
Мы рассмотрели основные приемы решения логарифмических неравенств — от простейших до сложных, которые решаются с помощью обобщенного метода интервалов. Однако есть еще один интересный метод, помогающий справиться и показательными, и с логарифмическими, и с многими другими видами неравенств. Это метод рационализации (замены множителя). О нем — в следующей статье.
Читайте также: Неравенства. Метод замены множителя (метод рационализации)
Логарифмические неравенства повышенной сложности
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Логарифмические неравенства» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
09.03.2023
1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Логарифмические неравенства с числовым основанием
(blacktriangleright) Стандартное логарифмическое неравенство [{Large{log_a{f(x)}geqslant log_a{g(x)}}}] где (a>0, ane 1)
(на месте знака (geqslant) может стоять любой из знаков (leqslant,
>, <))
Если ({large{a>1}}), то данное неравенство равносильно системе [{Large{begin{cases} f(x)geqslant g(x)\ g(x)>0 end{cases}}}] Заметим, что условие (f(x)>0) учитывается автоматически в такой системе.
Если ({large{0<a<1}}), то данное неравенство равносильно системе [{Large{begin{cases}f(x)leqslant g(x)\f(x)>0 end{cases}}}] Заметим, что условие (g(x)>0) учитывается автоматически в такой системе.
(blacktriangleright) С помощью формулы ({Large{b=log_a{a^b}}}) можно любое число (b) представить в виде логарифма по необходимому нам основанию (a>0, ane 1).
Задание
1
#1571
Уровень задания: Легче ЕГЭ
Решите неравенство
[begin{aligned}
log_2 x^2geqslant 1
end{aligned}]
ОДЗ:[x^2 > 0qquadLeftrightarrowqquad xneq 0.]
При (xneq 0):
исходное неравенство равносильно неравенству
[begin{aligned}
log_2 x^2 geqslant log_2 2qquadLeftrightarrowqquad x^2geqslant 2qquadLeftrightarrowqquad xin(-infty; -sqrt{2}]cup[sqrt{2}; +infty)
end{aligned}]
– сюда не вошёл (x = 0), следовательно, это и есть ответ.
Ответ:
((-infty; -sqrt{2}]cup[sqrt{2}; +infty))
Задание
2
#1572
Уровень задания: Легче ЕГЭ
Решите неравенство
[begin{aligned}
log_2 x^2geqslant 1 +log_2 x
end{aligned}]
ОДЗ:[begin{cases}
x^2 > 0\
x > 0
end{cases}
qquadLeftrightarrowqquad x > 0.]
При (x > 0):
исходное неравенство равносильно неравенству
[begin{aligned}
&log_2 x^2 geqslantlog_2 2 + log_2 xqquadLeftrightarrowqquadlog_2 x^2 geqslantlog_2 2xqquadLeftrightarrow\
&Leftrightarrowqquad x^2geqslant 2xqquadLeftrightarrowqquad x(x — 2)geqslant 0,.
end{aligned}]
По методу интервалов:
то есть решения последнего неравенства без учёта ОДЗ: [xin (-infty; 0]cup[2; +infty),] но (x > 0), следовательно, решение исходного неравенства [xin [2; +infty).]
Ответ:
([2; +infty))
Задание
3
#3031
Уровень задания: Легче ЕГЭ
Решите неравенство
[begin{aligned}
log_5^3 x + log_5 xgeqslant 0
end{aligned}]
ОДЗ: (x > 0).
Сделаем замену (t = log_5 x):
[begin{aligned}
t^3 + tgeqslant 0qquadLeftrightarrowqquad t(t^2 + 1)geqslant 0
end{aligned}]
Так как (t^2geqslant 0), то (t^2 + 1geqslant 1 > 0), следовательно, последнее неравенство равносильно неравенству [tgeqslant 0,,] откуда [log_5 x geqslant 0qquadLeftrightarrowqquad log_5 x
geqslant log_5 1 qquadLeftrightarrowqquad x geqslant 1,.]
С учётом ОДЗ ответ: (xin[1; +infty)).
Ответ:
([1; +infty))
Задание
4
#1574
Уровень задания: Легче ЕГЭ
Решите неравенство
[begin{aligned}
2log_4 xcdot (log_4 x — 2)geqslant -1,5
end{aligned}]
ОДЗ:
[begin{aligned}
x > 0
end{aligned}]
Сделаем замену (log_2 x = t) с учётом того, что на ОДЗ (log_4 x = 0,5log_2 x):
[begin{aligned}
t(0,5t — 2)geqslant -1,5qquadLeftrightarrowqquad t^2 — 4t + 3geqslant 0
end{aligned}]
По методу интервалов:
откуда (tin(-infty; 1]cup[3; +infty)), тогда
(log_2 xin (-infty; 1]cup[3; +infty)), следовательно, с учётом ОДЗ [xin(0; 2]cup [8; +infty),.]
Ответ:
((0; 2]cup [8; +infty))
Задание
5
#2407
Уровень задания: Легче ЕГЭ
Решите неравенство
[begin{aligned}
log^2_2 x + 3log_2 x + 3leqslant 1
end{aligned}]
ОДЗ: (x > 0).
Исходное неравенство равносильно неравенству
[begin{aligned}
log^2_2 x + 3log_2 x + 2leqslant 0
end{aligned}]
Сделаем замену (t = log_2 x):
[begin{aligned}
t^2 + 3t + 2leqslant 0qquadLeftrightarrowqquad (t + 1)(t + 2)leqslant 0
end{aligned}]
По методу интервалов:
откуда (tin [-2; -1]).
Тогда (-2 leqslant log_2 xleqslant -1), что равносильно [log_2 dfrac{1}{4} leqslant log_2 xleqslant log_2 dfrac{1}{2}qquadLeftrightarrowqquad dfrac{1}{4} leqslant xleqslant dfrac{1}{2},.]
С учётом ОДЗ ответ: (xin[0,25; 0,5]).
Ответ:
([0,25; 0,5])
Задание
6
#2408
Уровень задания: Легче ЕГЭ
Решите неравенство
[begin{aligned}
log^2_3 x + 6log_3 x + 8leqslant 0
end{aligned}]
ОДЗ: (x > 0).
Сделаем замену (t = log_3 x):
[begin{aligned}
t^2 + 6t + 8leqslant 0qquadLeftrightarrowqquad (t + 2)(t + 4)leqslant 0
end{aligned}]
По методу интервалов:
откуда (tin [-4; -2]).
Тогда (-4 leqslant log_3 xleqslant -2), что равносильно [log_3 dfrac{1}{81} leqslant log_3 xleqslant log_3 dfrac{1}{9}qquadLeftrightarrowqquad dfrac{1}{81} leqslant xleqslant dfrac{1}{9},.]
С учётом ОДЗ ответ: (xinleft[dfrac{1}{81}; dfrac{1}{9}right]).
Ответ:
(left[dfrac{1}{81}; dfrac{1}{9}right])
Задание
7
#2409
Уровень задания: Легче ЕГЭ
Решите неравенство
[begin{aligned}
ln^2 x — 7ln x + 12geqslant 0
end{aligned}]
ОДЗ: (x > 0).
Сделаем замену (t = ln x):
[begin{aligned}
t^2 — 7t + 12geqslant 0qquadLeftrightarrowqquad (t — 3)(t — 4)geqslant 0
end{aligned}]
По методу интервалов:
откуда (tin (-infty; 3]cup [4; +infty)).
Тогда на ОДЗ [left[
begin{gathered}
ln xleqslant 3\
ln xgeqslant 4
end{gathered}
right.
qquadLeftrightarrowqquad
left[
begin{gathered}
ln xleqslant ln e^3\
ln xgeqslant ln e^4
end{gathered}
right.
qquadLeftrightarrowqquad
left[
begin{gathered}
xleqslant e^3\
xgeqslant e^4
end{gathered}
right.]
С учётом ОДЗ ответ: [xin (0; e^3]cup[e^4; +infty),.]
Ответ:
((0; e^3]cup[e^4; +infty))
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Блок 1. Логарифмические неравенства. Равносильные преобразования (схемы) для простых неравенств
Блок 2. Логарифмические неравенства. Равносильные преобразования (схемы) для более сложных неравенств
Блок 3. Логарифмические неравенства. Метод замены множителей (метод рационализации)
Блок 4. Логарифмические неравенства. Метод замены множителей (метод рационализации) и замена переменных
Блок 5. Логарифмические неравенства. Закрепление метода замены множителей (метода рационализации) и метода замены переменных
Блок 6. Логарифмические неравенства. Использование свойств логарифмической функции