Задачи на делимость егэ по математике


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Приведите пример трёхзначного числа, сумма цифр которого равна 20, а сумма квадратов цифр делится на 3, но не делится на 9.

Источник: Демонстрационная версия ЕГЭ — 2015.


2

Найдите трёхзначное натуральное число, большее 400, которое при делении на 6 и на 5 даёт равные ненулевые остатки и первая слева цифра которого является средним арифметическим двух других цифр. В ответе укажите какое-нибудь одно такое число.


3

Найдите четырёхзначное число, кратное 22, произведение цифр которого равно 24. В ответе укажите какое-нибудь одно такое число.


4

Найдите трёхзначное число, кратное 25, все цифры которого различны, а сумма квадратов цифр делится на 3, но не делится на 9. В ответе укажите какое-нибудь одно такое число.

Номер в банке ФИПИ: FE8DFD


5

Приведите пример четырёхзначного натурального числа, кратного 4, сумма цифр которого равна их произведению. В ответе укажите ровно одно такое число.

Пройти тестирование по этим заданиям

19. Задачи на теорию чисел


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Делимость чисел и признаки делимости


Задание
1

#1085

Уровень задания: Легче ЕГЭ

Верно ли, что если число делится на (8) и на (6), то оно делится и на (48)?

Например, (24) делится на (8) и на (6), но не делится на (48).

Ответ:

Нет


Задание
2

#1086

Уровень задания: Легче ЕГЭ

Докажите, что произведение любых трёх последовательных целых чисел делится на

а) (3)

б) (6).

а) Среди трёх последовательных целых чисел всегда есть число, делящееся на (3), следовательно, всё произведение делится на (3).

б) Среди трёх последовательных целых чисел всегда есть чётное число, поэтому, учитывая пункт а), всё произведение делится на (6).

Ответ:

а) Доказательство

б) Доказательство


Задание
3

#1087

Уровень задания: Легче ЕГЭ

Докажите, что число (n^3 — n) делится на (6) при любом целом (n).

[n^3 — n = n(n^2 — 1) = n(n — 1)(n + 1) = (n — 1)n(n + 1)] – произведение трёх последовательных чисел, следовательно, среди них есть число, которое делится на (2) и есть число, которое делится на (3), тогда оно делится на (6).

Ответ:

Доказательство


Задание
4

#1088

Уровень задания: Легче ЕГЭ

Докажите, что произведение любых четырёх последовательных целых чисел делится на (8).

Среди любых четырёх последовательных целых чисел всегда есть два последовательных чётных числа, а среди двух последовательных чётных чисел всегда есть одно, которое делится на (4).

Так как среди четырёх последовательных целых чисел мы нашли число, которое делится на 2 и другое число, которое делится на 4, то всё произведение делится на (8).

Ответ:

Доказательство


Задание
5

#1089

Уровень задания: Легче ЕГЭ

Докажите, что (n(n^2 — 4)(n^2 — 1)) делится на (120) при любом (ninmathbb{Z}).

[n(n^2 — 4)(n^2 — 1) = n(n — 2)(n + 2)(n — 1)(n + 1) = (n — 2)(n — 1)n(n + 1)(n + 2)] – произведение пяти последовательных целых чисел. Среди любых последовательных (5) целых чисел всегда есть число, которое делится на (3), есть число, которое делится на (5), а также всегда есть два последовательных чётных числа.

Таким образом, при любом (ninmathbb{Z}) число (n(n^2 — 4)(n^2 — 1)) делится на (3), делится на (5), делится на (8), следовательно оно делится и на (120).

Ответ:

Доказательство


Задание
6

#1838

Уровень задания: Легче ЕГЭ

Вставьте вместо звёздочек в числе (2ast 45ast 6) цифры так, чтобы полученное число делилось

а) на 12

б) на 36.

В ответ запишите все полученные числа.

а) Для того, чтобы число делилось на 12, оно должно делиться на (3) и на (4). По признаку делимости на (4), две последние цифры числа могут быть (16), (36), (56), (76), (96). Для каждого из этих случаев подберём оставшуюся цифру так, чтобы сумма цифр числа делилась на (3) (по признаку делимости на (3)):
(204516), (234516), (264516), (294516)
(214536), (244536), (274536)
(224556), (254556), (284556)
(204576), (234576), (264576), (294576)
(214596), (244596), (274596).

б) Для того, чтобы число делилось на 36, оно должно делиться на (9) и на (4). По признаку делимости на (4), две последние цифры числа могут быть (16), (36), (56), (76), (96). Для каждого из этих случаев подберём оставшуюся цифру так, чтобы сумма цифр числа делилась на (9) (по признаку делимости на (3)):
(204516), (294516)
(274536)
(254556)
(234576)
(214596).

Ответ:

а) (204516), (234516), (264516), (294516), (214536), (244536), (274536), (224556), (254556), (284556), (204576), (234576), (264576), (294576), (214596), (244596), (274596)

б) (204516), (294516), (274536, 254556, 234576, 214596)


Задание
7

#1839

Уровень задания: Легче ЕГЭ

Можно ли в числе (1ast 21934) поставить вместо звёздочки цифру так, чтобы полученное число делилось на (11)?

Пусть искомая цифра – (x), тогда по признаку делимости на (11) получаем: [bigl(1 + 2 + 9 + 4 — (x + 1 + 3)bigr), vdots ,
11,]
следовательно, ((12 — x), vdots , 11). Так как (x) – цифра, то (x) может быть равен только (1), что нам подходит: (1,121,934 , vdots , 11).

Ответ:

Да

Задачи на делимость чисел в ЕГЭ по математике встречаются из года в год. Причем в зависимости от их условия, выпускники могут давать как развернутые ответы, так и достаточно краткие. Именно поэтому в процессе подготовки к ЕГЭ учащимся непременно стоит разобраться с задачами на применение признаков делимости. Сделать это вам поможет образовательный портал «Школково». В соответствующих разделах представлен весь необходимый теоретический и практический материал, подготовленный и изложенный нашими специалистами в максимально доступной форме. Ознакомившись с ним, все школьники, независимо от уровня подготовки, смогут решать интересные задачи на признаки делимости чисел подобные тем, которые ежегодно встречаются в ЕГЭ.

Основные моменты

Для того чтобы успешно справляться с задачами подобной тематики, необходимо вспомнить признаки делимости чисел. Вот некоторые из них:

  • Число делится на два в том случае, если его последняя цифра может быть поделена на два.
  • Натуральное число считается делимым на три, когда сумму его цифр можно поделить на три.
  • Число, состоящее из четырех цифр, делится на четыре, если на четыре делится двузначное число, образованное двумя последними цифрами исходного.
  • Число является делимым на пять, если его последняя цифра — пять либо ноль.
  • Натуральное число делится на девять, когда на девять делится сумма составляющих его цифр.
  • Натуральное число будет делиться на десять, если последняя его цифра — ноль.

Как подготовиться к экзамену?

Вы уже изучили теоретический материал на тему «Делимость чисел» и готовы приступить к решению задач? Попрактиковаться вы можете в режиме онлайн. Для каждой задачи на делимость в соответствующем разделе представлены алгоритм решения и правильный ответ. Наши специалисты подобрали задания различного уровня сложности. Решая задачи на делимость, школьники из Москвы и других городов могут сохранить упражнение в разделе «Избранное», чтобы при необходимости обсудить его с преподавателем.

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Методическая разработка

Подготовка к ЕГЭ (базовый уровень).
Задачи на признаки делимости

Лобанова Галина Павловна,
учитель математики, методист
ГБОУ СПО «СПб УОР №2 (техникум)»

С этого учебного года в ЕГЭ по математике входят задания на признаки делимости. В связи с тем, что в программе 10 и 11 классов нет задач на эту тему,  и материал изучался давно, необходимо выделить время на повторение признаков делимости и решение типовых задач, предлагаемых в экзаменационных вариантах.

Ученики хорошо помнят признаки делимости на 2, на 5.

Натуральное число делится на 2 тогда и только тогда, когда последняя цифра в записи числа 0, 2, 4, 6 или 8.

Натуральное число делится на 5 тогда и только тогда, когда последняя цифра в записи числа 0 или 5.

Признаки деления на 3 и на 9 необходимо напомнить.

На 3 или на 9 делятся те и только те числа, у которых сумма цифр делится соответственно на 3 или на 9.

Признаки делимости на 4, на 8, на 11 и на 25 практически никто не помнит. Их необходимо записать в тетрадях и показать на примерах, как их можно применять при выполнении различных упражнений.

На 4 или 25 делятся те, и только те числа, которые оканчиваются двумя нулями или у которых две последние цифры выражают число, делящееся соответственно на 4 или 25.

Например, число 12675 делится на 25, но не делится на 4; число 5510224 делится на 4, но не делится на 25.

  1. В число  4 587 94*  вставьте вместо звездочки цифру так, чтобы число делилось на 4.
  2. В число  124 587 9 * *  вставьте вместо звездочек цифры так, чтобы число делилось а) на 4 и на 5; в) на 4 и на 25; с) на 25 и на 3.

Натуральное число делится на 8 тогда и только тогда, когда последние три его цифры образуют число, делящееся на 8.

  1. Из чисел 654560, 54326, 6440, 441216, 567487, 456700.456032 выпишите числа, кратные 8
  2. Выпиши все натуральные числа, которые делятся на 8 и расположены между числами 125 100 и 125 120.

Натуральное число делится на 11 тогда и только тогда, когда разность между суммой его цифр, стоящих на нечетных местах, и суммой цифр, стоящих на четных местах, делится на 11.

Например: число 120 340 528 делится на 11, т.к. 1+0+4+5+8=18, 2+3+0+2=7, а 18-7=11 и 11 делится на 11.

В числа  7 405 *31, 8683*5, 1*8556  вставьте вместо звездочки цифру так, чтобы число делилось на 11.

Для решения заданий, предлагаемых в вариантах ЕГЭ базового уровня необходимо разобрать общий признак делимости на составное число: Пусть a – составное число, являющееся произведением двух взаимно простых чисел b и с: а = bс. Тогда число n делится на а тогда и только тогда, когда n делится и на b, и на с.

Отсюда следует, что на 12 делятся те и только те числа, которые делятся и на 3 и на 4 (но не на 2 и на 6, так как 2 и 6 не взаимно простые числа).

Примеры заданий на признаки делимости чисел из вариантов, представленных на различных сайтах.

  1. Вычеркните в числе 23462141 три цифры так, чтобы получившееся число делилось на 12. В ответе укажите ровно одно получившееся число. Ответ: 24624
  2. Вычеркните в числе 191284734 три цифры так, чтобы получившееся число делилось на 12. В ответе укажите ровно одно получившееся число. Ответ: 191844
  3. Вычеркните в числе 51488704 три цифры так, чтобы получившееся число делилось на 15. В ответе укажите ровно одно получившееся число. Ответ: 54870
  4. Вычеркните в числе 58521304 три цифры так, чтобы получившееся число делилось на 15. В ответе укажите ровно одно получившееся число. Ответ: 58530
  5. Вычеркните в числе 58521314 две цифры так, чтобы получившееся число делилось на 11. В ответе укажите ровно одно получившееся число. Ответ: 585211
  6. Приведите пример четырёхзначного числа, кратного 12, произведение цифр которого равно 10. В ответе укажите ровно одно такое число. Ответ: 5112
  7. Приведите пример четырёхзначного числа, кратного 12, произведение цифр которого больше 25, но меньше 30. В ответе укажите ровно одно такое число.  Ответ:  7212
  8. Приведите пример четырёхзначного числа, кратного 15, произведение цифр которого больше 35, но меньше 45. В ответе укажите ровно одно такое число. Ответ: 4215
  9. Приведите пример трёхзначного натурального числа, кратного 4, сумма цифр которого равна их произведению. В ответе укажите ровно одно такое число. Ответ:  132
  10. Приведите пример шестизначного натурального числа, которое записывается только цифрами 1 и 2 и делится на 72. В ответе укажите ровно одно такое число. Ответ:221112 (Применить признаки делимости на 9 и на 8)
  11. Приведите пример шестизначного натурального числа, которое записывается только цифрами 2 и 0 и делится на 24. В ответе укажите ровно одно такое число. Ответ:202200 (Применить признаки делимости на 4 и на 8)
  12. Приведите пример трёхзначного числа А, обладающего следующими свойствами: 1) сумма цифр числа А делится на 6; 2) сумма цифр числа А+3 также делится на 6; 3) число А больше 350 и меньше 400. В ответе укажите ровно одно такое число.  Ответ: 369
  13. Приведите пример четырёхзначного числа А, обладающего следующими свойствами: 1) сумма цифр числа А делится на 8; 2) сумма цифр числа А+2 также делится на 8; 3) число А меньше 3000. В ответе укажите ровно одно такое число. Ответ: 2499

Свойства чисел


Задание №19 ЕГЭ по математике весьма необычно. Для его решения необходимо применить знания в области теории чисел. Тем не менее, задание является весьма решаемым, однако для школьников с оценкой хорошо и ниже я рекомендовал бы оставить это задание на последнюю очередь. Перейдем к рассмотрению типового варианта.


Разбор типовых вариантов заданий №19 ЕГЭ по математике базового уровня


Вариант 19МБ1

[su_note note_color=”#defae6″]

Найдите трехзначное число, сумма цифр которого равна 20, а сумма квадратов цифр делится на 3, но не делится на 9. В ответе укажите какое-нибудь оно такое число.

[/su_note]

Алгоритм выполнения:
  1. Ввести условные обозначения.
  2. Записать условия с помощью условных обозначений.
  3. Преобразовать полученные выражения.
  4. Логически рассуждая перебрать все возможные варианты, проверить их соответствие условиям.
Решение:

Обозначим первую цифру числа x, а вторую – y. Тогда третье число с учетом суммы цифр равной 20 будет равно 20 – (x + y). (x + y) обязательно меньше 10, иначе сумма равная 20 не получится.

По условию сумма квадратов цифр делится на 3, но не делится на 9. Запишем сумму квадратов цифр:

x 2 + y2 + (20 – (x + y))2

Преобразуем полученное выражение. Преобразуем квадрат разности с учетом формулы приведения.

Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.

(20 – (x + y))2 = 400 -40(x + y) + (x + y)2

Подставим получившееся выражение в начальное, получим:

x 2 + y2 + (20 – (x + y))2 = x 2 + y2 + 400 – 40(x + y) + (x + y)2

Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.

(x + y)2= x2 + 2xy + y2

Подставим:

x 2 + y2 + (20 – (x + y))2 = x 2 + y2 + 400 – 40(x + y) + (x + y)2 = x 2 + y2 + 400 – 40(x + y) + x2 + 2xy + y2

Приведем подобные слагаемые(сложим x2 с x2 и y2 с y2), получим:

x 2 + y2 + 400 – 40(x + y) + x2 + 2xy + y2 = 2x 2 + 2y2 + 2 · 200 – 2 · 20(x + y) + 2xy

Вынесем множитель 2 за скобку:

2x 2 + 2y2 + 2 · 200 – 2 · 20(x + y) + 2xy = 2(x 2 + y2 + 200 – 20(x + y) + xy)

Для удобства объединим 200 и 20(x + y) и вынесем 20 за скобку, получим:

2(x 2 + y2 + 20(10 – (x + y)) + xy)

Множитель 2 – четный, поэтому он никак не влияет на делимость на 3 или 9. Можем его не брать в расчет и рассматривать выражение:

x 2 + y2 + 20(10 – (x + y)) + xy

Предположим, что и x, и y делятся на 3. Тогда x 2 + y2 + xy делится на 3, а 20(10 – (x + y)) – не делится. Следовательно, и вся сумма x 2 + y2 + 20(10 – (x + y)) + xy на 3 не делится.

Предположим, что на 3 делится только одна цифра. Тогда, учитывая, что (x + y) обязательно меньше 10, иначе сумма равная 20 не получится, подберем возможные пары.

(3;8), (6;5), (6;7), (6;8), (9;2), (9;4), (9;5), (9;7), (9;8).

Методом подстановки проверим, соответствуют эти пары условию.

x 2 + y2 + 20(10 – (x + y)) + xy = 3 2 + 82 + 20(10 – (3 + 8)) + 3 · 8 = 9 + 64 – 20 + 24 = 77

x 2 + y2 + 20(10 – (x + y)) + xy = 6 2 + 52 + 20(10 – (6 + 5)) + 6 · 5 = 36 + 25 – 20 + 30 = 71

x 2 + y2 + 20(10 – (x + y)) + xy = 6 2 + 72 + 20(10 – (6 + 7)) + 6 · 7 = 36 + 49 – 60 + 42 = 67

x 2 + y2 + 20(10 – (x + y)) + xy = 6 2 + 82 + 20(10 – (6 + 8)) + 6 · 8 = 36 + 64 – 80 + 48 = 68

x 2 + y2 + 20(10 – (x + y)) + xy = 9 2 + 22 + 20(10 – (9 + 2)) + 9 · 2 = 81 + 4 – 20 + 18 = 83

x 2 + y2 + 20(10 – (x + y)) + xy = 9 2 + 42 + 20(10 – (9 + 4)) + 9 · 4 = 81 + 16 – 60 + 36 = 73

Ни одна из полученных сумм не удовлетворяет условию «сумма квадратов цифр делится на 3, но не делится на 9».

Следующие пары можно не проверять, так как они дают уже имеющиеся тройки цифр.

Предположим, что ни одна из цифр числа не делится на 3.

Возможные пары:

(4;7), (5;7), (5;8), (7;8).

Проверим:

x 2 + y2 + 20(10 – (x + y)) + xy = 4 2 + 72 + 20(10 – (4 + 7)) + 4 · 7 = 16 + 49 – 20 + 28 = 73

x 2 + y2 + 20(10 – (x + y)) + xy = 5 2 + 72 + 20(10 – (5 + 7)) + 5 · 7 = 25 + 49 – 40 + 35 = 69

Сумма 69 удовлетворяет условию «сумма квадратов цифр делится на 3, но не делится на 9». Следовательно, подходят цифры 5,7,8 в любом порядке.

Ответ: 578


Вариант 19МБ2

[su_note note_color=”#defae6″]

На 6 карточках написаны цифры 1; 2; 3; 6; 9; 9 (по одной цифре на каждой карточке). В выражении □ + □□ + □□□ вместо каждого квадратика положили карточку из набора. Оказалось, что полученная сумма делится на 10. Найдите эту сумму. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения:
  1. Вспомнить признак делимости на 10.
  2. Разместить последние цифры каждого слагаемого таким образом, чтобы в сумме получилось 10.
  3. Расположить оставшиеся карточки в произвольном порядке.
Решение:

1. Если сумма делится на 10 нацело, то последняя цифра должна быть 0, остальные цифры значения не имеют.

2. В первый квадрат поместим цифру 1, в следующем числе на последнем месте – цифру 3 (или 6), а в третьем – цифру 6 (или 3), получим (сумма 1+3+6=10):

image001

3. Остальные цифры заполним произвольно, например, так:

image002

и получится сумма

1+23+996 = 1020.

Ответ: 1020


Вариант 19МБ3

[su_note note_color=”#defae6″]

На 6 карточках написаны цифры 1; 2; 2; 3; 5; 7 (по одной цифре на каждой карточке). В выражении □ + □□ + □□□ вместо каждого квадратика положили карточку из набора. Оказалось, что полученная сумма делится на 20. Найдите эту сумму. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения:
  1. Вспомнить признак делимости на 10 и сформулировать признак делимости на 20.
  2. Разместить последние цифры каждого слагаемого таким образом, чтобы в сумме получилось 10.
  3. Разместить предпоследние цифры каждого слагаемого таким образом, чтобы в сумме получилось четное число в результате с учетом суммы первых цифр.
  4. Расположить оставшиеся карточки в произвольном порядке.
Решение:

1. Чтобы сумма делилась на 20, она должна заканчиваться на 0 и вторая цифра с конца должна быть четной (делиться на 2). Чтобы в конце суммы получить 0, первые три карточки следует выбрать так:

image001

2. Чтобы вторую цифру получить четной, можно взять карточки 2 и 7 (к ней будет добавляться еще 1 от первой суммы 10):

image002

3. В последнее место помещаем оставшуюся цифру 1, в результате имеем:

image003

и сумма равна:

2+23+175=200.

Ответ: 200


Вариант 19МБ4

[su_note note_color=”#defae6″]

Найдите четырехзначное число, кратное 15, произведение цифр которого больше 0, но меньше 25. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения
  1. Если произведение >0, то, значит, оно не равно нулю. Следовательно, ни один из множителей не может быть равным 0.
  2. Если произведение кратно 15, следовательно, оно кратно 5 и кратно 3.
  3. Если произведение кратно 5, то результат его должен оканчиваться 0 или 5. В данном случае берем 5, т.к. 0 не может быть одним из множителей (см.п.1).
  4. Итак, последняя цифра числа равна 5. Тогда произведение первых трех равно 25:5=5. Это означает, что нужно подобать 3 цифры так, чтобы их произведение было менее 5.
  5. Из всех полученных наборов цифр выбираем такой, чтобы сумма этих цифр плюс 5 (последняя, 4-я цифра) была кратной 3.
Решение:

Поскольку по условию произведение всех цифр кратно 15, то оно кратно 5 и 3.

Кратность 5 означает, что последней цифрой числа может быть только 0 или 5. Но 0 в виде последней цифры означал бы, что произведение всех 4-х цифр стало бы равным 0; а это противоречит условию. Тогда последняя цифра искомого числа равна 5.

Тогда получим: x·y·z·5<25 → x·y·z<5, где x, y, z – соответственно, 1-я, 2-я и 3-я цифры искомого числа.

Меньше 5 произведение таких цифр: 1 1 1, 1 1 3, 1 1 2, 1 2 2.

Согласно признаку делимости на 3, выбираем из этих наборов такой, чтобы сумма его цифр плюс 5 делилась на 3:

1+1+1+5=8 – не подходит;

1+1+3+5=10 – не подходит;

1+2+2+5=10 – не подходит

1+1+2+5=9 – подходит.

Тогда условию задачи соответствуют числа: 1125, 1215, 2115.

Ответ: 1125, 1215, 2115


Вариант 19МБ5

[su_note note_color=”#defae6″]

Вычеркните в числе 85417627 три цифры так, чтобы получившееся число делилось на 18. В ответе укажите какое-нибудь одно получившееся число.

[/su_note]

Алгоритм выполнения
  1. Число делится на 18, если оно кратно 2 и 9.
  2. Кратность 2 означает, что число должно быть четным. Поэтому сразу отбрасывают последнюю – нечетную – цифру 7.
  3. Кратность 9 означает, что сумма его цифр делится на 9. Значит, находим сумму оставшихся цифр. Далее определяем подходящее для полученной суммы число, кратное 9. Число должно быть таким, чтобы: а) оно было меньшим суммы цифр; б) разница между этой суммой и найденным числом позволяла выделить в числе 2 цифры, сумма которых была бы равной этой разнице. Вычеркиваем эти цифры.
Решение:

Т.к. по условию число кратно 18, то оно кратно 2 и кратно 9.

Поскольку число кратно 2, то оно должно оканчиваться четной цифрой. 7 – нечетная цифра, поэтому вычеркиваем ее. Осталось: 8541762.

Т.к. полученное число кратно 9, то сумма его цифр должна делиться на 9. Находим общую сумму его цифр: 8+5+4+1+7+6+2=33. Ближайшее число, которое делится на 9, – это 27.

33–27=6 – это сумма двух цифр, которые нужно вычеркнуть. Пары цифр, которые при этом в сумме дают 6, – это 5 и 1 или 4 и 2. Вычеркнув их, получаем соответственно: 84762 или 85176.

Кроме этого, на 9 делится 18. Тогда 33–18=15. В этом случае вычеркнуть придется 8 и 7. Получаем: 54162.

На 9 делится еще и 9, однако 33–9=24, а пары цифр, которые дали бы в сумме 24, естественно, не существует.

Ответ: 84762, 85176, 54162


Вариант 19МБ6

[su_note note_color=”#defae6″]

На шести карточках написаны цифры 3; 6; 7; 7; 8; 9 (по одной цифре на каждой карточке). В выражении 

Вместо каждого квадратика положили карточку из данного набора. Оказалось, что полученная сумма делится на 10, но не делится на 20.

В ответе укажите какую-нибудь одну такую сумму.

[/su_note]

Алгоритм выполнения
  1. Во 2-м предложении текста задачи фактически представлено условие, при котором сумма делится на 10, однако не делится на 2.
  2. Из п.1 следует, что результирующее число должно оканчиваться 0, а предпоследняя его цифра должна быть нечетной.
Решение:

Для удобства восприятия разместим карточки в столбик:

C:UsersКсеньяDesktop111мое3_1.jpg

Если число делится на 10, но не делится на 20, значит, оно точно не делится на 2 без последнего нуля.

Поскольку число кратно 10, то оно должно оканчиваться нулем. Поэтому в последнем разряде (единиц) нужно расположить 3 карточки с такими цифрами, чтоб их сумма оканчивалась на 0. Подходят здесь карточки: 1) 6, 7, 7; 2) 3, 8, 9. Их суммы равны 20. Соответственно, 0 мы пишем под чертой, а 2 переносим на предыдущий разряд (десятков):

C:UsersКсеньяDesktop111мое3_1_2.jpg C:UsersКсеньяDesktop111мое3_2_2.jpg

Чтобы число не делилось на 20, необходимо, чтобы перед нулем стояла нечетная цифра. Нечетная сумма здесь получится тогда, когда одно из слагаемых будет нечетным, а два других четными. Одно из этих (других) слагаемых – это перенесенная 2. Поэтому из оставшихся цифр следует взять: 1) 3 и 8; 2) 6 и 7. Получаем:

C:UsersКсеньяDesktop111мое3_1_3.jpg C:UsersКсеньяDesktop111мое3_2_3.jpg

На место сотен ставим последнюю (оставшуюся) карточку с цифрой: 1) 9; 2) 7. Получаем, соответственно, числа 1030 и 850:

C:UsersКсеньяDesktop111мое3_1_4.jpg C:UsersКсеньяDesktop111мое3_2_4.jpg

Ответ: 1030,850


Вариант 19МБ7

[su_note note_color=”#defae6″]

Найдите четное трехзначное натуральное число, сумма цифр которого на 1 меньше их произведения. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения
  1. Вводим буквенные обозначения для цифр искомого числа. Исходя из условия задачи, составляем уравнение.
  2. Выражаем одну из цифр через 2 другие.
  3. Подбираем для этих 2-х (других) цифр значения так, чтобы 3-я (выраженная) представляло бы собой натуральное число. Вычисляем 3-ю цифру.
  4. Формируем искомое число так, чтобы оно было четным.
Решение:

Пусть цифры искомого числа – x, y, z. Тогда получаем:

xyz–(x+y+z)=1

xyz–x–y–z=1

zxy–z=x+y+1

z(xy–1)=x+y+1

z=(x+y+1)/(xy–1)

Знаменатель в этом выражении должен быть целым и положительным. Для простоты (а также для гарантии правильных расчетов) примем, что он должен быть равен 1. Тогда имеем: ху–1=1 → ху=2. Поскольку х и у это цифры, то их значения могут быть равными только 1 и 2 (т.к. только произведение этих однозначных натур.чисел дает в результате 2).

Отсюда z составляет: z=(1+2+1)/(1·2–1)=4/1=4.

Итак, имеем цифры: 1, 2, 4.

Т.к. по условию итоговое число должно быть четным, то оканчиваться оно может только 2 или 4. Тогда правильными вариантами чисел будут такие:

124, 142, 214, 412.

Ответ: 124, 142, 214, 412


Вариант 19МБ8

[su_note note_color=”#defae6″]

Найдите шестизначное число, которое записывается только цифрами 2 и 0 и делится на 24. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения
  1. Если число делится на 24, значит, оно делится на 8 и на 3.
  2. Согласно признаку делимости на 8, 3 последних цифры его должны образовывать число, которое кратно 8.
  3. Чтобы число делилось на 3, необходимо, чтобы сумма его цифр делилась на 3. Учитывая уже сформированную 2-ю часть числа (см.п.2), дополняем его первыми тремя цифрами соответственно.
Решение:

Чтобы искомое число было кратно 24, требуется, чтобы оно делилось на 8 и в то же время на 3.

Число делится на 8, если последние его 3 цифры образуют число, кратное 8. С использованием только двоек и нулей такое трехзначное число можно образовать так: 000, 002, 020, 022, 200, 202, 220, 222. Из этих чисел на 8 делится только 000 и 200.

Теперь нужно дополнить искомое число первыми 3-мя цифрами так, чтобы оно делилось еще и на 3.

В 1-м случае это будет единственный вариант: 222000.

Во 2-м случае вариантов два: 220200, 202200.

Ответ: 222000, 220200, 202200


Вариант 19МБ9

[su_note note_color=”#defae6″]

Найдите четырехзначное число, кратное 15, произведение цифр которого больше 35, но меньше 45. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения
  1. Если число кратно 15, значит, оно кратно 3 и 5.
  2. Применяем признак делимости на 5 и условие задачи, согласно которому произведение цифр числа ≠0. Так получаем, что последняя цифра искомого числа – только 5.
  3. Делим 35 на 5 и 45 на 5. Узнаем диапазон значений, которые может принимать произведение первых 3-х цифр числа. Узнаем, что оно может быть равно только 8.
  4. Определяем последовательности цифр, которые дают при перемножении 8.
  5. Проверяем полученные из найденных цифр числа на кратность трем.
Решение:

Кратность искомого числа 15 дает 2 условия: оно должно делиться на 5 и на 3.

Если число кратно 5, то оно должно оканчиваться цифрой 5 или 0. Однако 0 в данном случае использовать нельзя, поскольку при этом произведение цифр числа оказывается равным 0. По условию же это не так. Итак, последняя – 4-я – цифра числа равна 5.

По условию 35 < x·5 < 45, где х – произведение первых 3-х цифр числа. Тогда имеем: 7 < x < 9. Это неравенство верно только при х=8. Следовательно, для первых 3-х цифр должны выполняться равенства:

1·1·8=8, 1·2·4=8.

Отсюда получаем числа:

1185; 1245.

Проверяем их на кратность 3:

1+1+8+5=15;

1+2+4+5=12.

Вывод: оба найденные числа кратны 3. Плюс кратны их комбинации:

1815; 8115; 1425; 2145; 2415; 4125; 4215.

Ответ: 1815; 8115; 1425; 2145; 2415; 4125; 4215


Вариант 19МБ10

[su_note note_color=”#defae6″]

Найдите пятизначные число, кратное 25, любые две соседние цифры которого отличаются на 2. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения
  1. Принимаем во внимание, что на 25 делятся числа, которые придется последовательно делить на 5 дважды. Определяем, какой парой цифр они должны оканчиваться.
  2. Учитывая, что 2-й частью условия является различие каждой соседней пары цифр исключительно на 2 единицы, выбираем подходящий вариант (или варианты) цифр.
  3. Способом подбора находим остальные цифры и, соответственно, числа. Одно из них запишем в ответе.
Решение:

Если число делится на 25, то оно должно оканчиваться на: 00, 25, 50, 75. Т.к. соседние цифры должны отличаться строго на 2, то использовать для 4-й и 5-й цифр можем только 75. Получаем: ***75.

Далее ищем 3-ю цифру:

  1. **975 или
  2. **575.

Дальше получаем по аналогии:

1) *7975 → 97975 или 57975;

2) *3575 → 13575 или 53575, *7575 → 57575 или 97575.

Ответ: 97975, 57975, 13575, 53575, 57575, 97575


Вариант 19МБ11

[su_note note_color=”#defae6″]

Найдите трехзначное натуральное число, большее 600, которое при делении на 3, на 4 и на 5 дает в остатке 1 и цифры которого расположены в порядке убывания слева направо. В ответе укажите какое-нибудь такое число.

[/su_note]

Алгоритм выполнения
  1. Определяем диапазон значений для 1-й цифры числа (сотен).
  2. Определяем, какой может быть последняя цифра (единицы), приняв во внимание: 1) при делении на 5 дает в остатке 1; 2) на этом месте не может быть четная цифра, поскольку это одно из условий делимости на 4.
  3. Способом подбора определяем набор чисел, которые при делении на 3 дают в остатке 1.
  4. Из этого набора (см.п.3) отбрасываем числа, которые при делении на 4 дают остаток, отличный от 1.
Решение:

Т.к. искомое число >600 и при этом является трехзначным, то 1-й цифрой может быть только 6, 7, 8 или 9. Тогда получаем для искомого числа:

6***

7***

8***

9***

Если число при делении на 5 должно давать в остатке 1, значит, оно может оканчиваться только на 0+1=1 или на 5+1=6. Шестерку тут отбрасываем, поскольку в этом случае число четное и потенциально может делиться на 4. Поэтому имеем:

6**1

7**1

8**1

9**1

Если число при делении на 3 дает в остатке 1, значит, сумма его цифр должна быть кратной 3 плюс 1. Кроме того, учитываем, что цифры должны располагаться в числе в порядке убывания. Подбираем такие числа:

631

721

751

841

871

931

961

Из этой последовательности отбрасываем числа, для которых не выполняется условие о том, что число при делении на 4 должно давать в остатке 1.

Т.к. признак делимости на 4 заключается в том, что 2 последние цифры должны делиться на 4, то получаем:

для 631: 31=28+3, т.е. в остатке имеем 3; число не подходит

для 721: 21=20+1, т.е. в остатке – 1; число подходит

для 751: 51=48+3, т.е. в остатке – 3; число не подходит

для 841: 41=40+1, т.е. в остатке – 1; число подходит

для 871: 71=68+3, т.е. в остатке – 3; число не подходит

для 931: 31=28+3, т.е. в остатке – 3; число не подходит

для 961: 61=60+1, т.е. в остатке – 1; число подходит

Ответ:  721, 841, 961


Вариант 19МБ12

[su_note note_color=”#defae6″]

Найдите трехзначное натуральное число, большее 400, но меньшее 650, которое делится на каждую свою цифру и все цифры которого различны и не равны 0. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения
  1. Из условия следует, что числа могут начинаться только на 4,5 или 6.
  2. При анализе чисел 4-й сотни отбрасываем числа: 1) 1-го десятка, т.к. в них содержится 0; 2) 4-го десятка, т.к. в этом случае первые две цифры совпадут; 3) числа 5-го десятка, т.к. они должны оканчиваться только на 5 или 0, что недопустимо. Кроме того, для всех четных десятков можно рассматривать только четные числа.
  3. Числа 5-й сотни отбрасываем полностью, т.к. чтобы делиться на каждую свою цифру, они должны оканчиваться 5 или 0.
  4. Для чисел 6-й сотни рассматривать можно только: 1) четные; 2) кратные 3; 3) не оканчивающиеся 0.
Решение:

Числа 40* и 4*0 отбрасываем, т.к. они содержат 0.

Числа 41* годятся только четные, т.к. это обязательное условия для кратности 4. Анализируем:

412 – подходит

414 – не подходит, т.к. в нем совпадают цифры

416 – не подходит, т.к. не делится на 6

418 – не подходит, т.к. не делится ни на 4, ни на 8

Из чисел 42* годятся только четные, поскольку должны делиться на 2:

422 и 424 – не подходят, т.к. в них совпадают цифры

426 – не подходит, т.к. не делится на 4

428 – не подходит, т.к. не делится на 8

Числа 43* годятся только четные и кратные 3. Поэтому тут подходит только 432.

Числа 44* не подходят полностью.

Числа 45* не подходят полностью, т.к. они должны оканчиваться только 5 (т.е. быть нечетными) или 0.

Числа 46*, 47*, 48*, 49* не подходят полностью, т.к. для каждого из них не выполняется 1 или несколько условий.

Числа 5-й сотни не годятся полностью. Они должны делиться на 5, а для этого оканчиваться либо 5, либо 0, что не допускается.

Числа 60* не годятся полностью.

Среди остальных можно рассматривать только четные, кратные 3, не оканчивающиеся 0. Опуская подробности перебора чисел, оговорим только, что из них годятся: 612, 624, 648. Для остальных не выполняется одно или несколько условий.

Ответ: 412, 432, 612, 624, 648


Вариант 19МБ13

[su_note note_color=”#defae6″]

Найдите четырехзначное число, кратное 45, все цифры которого различны и четны. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения
  1. Если число кратно 45, значит, оно делится на 5 и на 9.
  2. Рассматривать следует только числа четных сотен.
  3. Оканчиваться числа могут только 0, т.к. 5 – нечетная цифра.
  4. Сумма цифр числа должна быть равна 18. Только в этом случае можно составить его из всех четных цифр.
Решение:

Т.к. по условию цифры должны быть четными, то рассматривать можно только числа 2-й, 4-й, 6-й и 8-й тысяч. Это значит, что начинаться оно может с 2, 4, 6 или 8.

Если число кратно 45, то оно кратно 5 и кратно 9.

Если число кратно 5, то оно должно оканчиваться 5 или 0. Но поскольку все цифры должны быть четными, то подходит здесь только 0.

Т.о., получаем шаблоны чисел: 2**0, 4**0, 6**0, 8**0. Отсюда следует, что для проверки кратности 9 требуется, чтобы сумма первых 3-х цифр была равной 9, или 18, или 27 и т.д. Но подходит тут только 18. Основания: 1) для получения в сумме 9 нужно, чтобы одно из слагаемых было нечетным, а это противоречит условию; 2) 27 не подходит потому, что даже если взять самую большую 1-ю цифру 8, то сумма 2-й и 3-й цифр будет равна 27–8=19, что превышает допустимый предел. Еще большие суммы цифр, кратные 9, не подходят тем более.

Рассматриваем числа по тысячам.

Числа 2**0. Сумма средних цифр равна: 18–2=16. Получить 16 из четных чисел можно только так: 8+8. Однако цифры не должны повторяться. Поэтому подходящих условию чисел здесь нет.

Числа 4**0. Сумма средних цифр: 18–4=14. 14=8+6. Поэтому получаем: 4680 или 4860.

Числа 6**0. Сумма средних цифр: 18–6=12. 12=6+6, что не подходит, т.к. цифры повторяются. 12=4+8. Получаем: 6480 или 6840.

Числа 8**0. Сумма средних цифр: 18–8=10. 10=2+8, что не подходит, т.к. при этом будет повторяться 8. 10=4+6. Получаем: 8460 или 8640.

Ответ: 4680, 4860, 6480, 6840, 8460, 8640

Даниил Романович | Просмотров: 11.5k

Понравилась статья? Поделить с друзьями:
  • Задачи на двугранный угол егэ
  • Задачи на двойное сцепление с х хромосомой линия 28 егэ 2022 по биологии
  • Задачи на двойное оплодотворение у цветковых растений егэ
  • Задачи на движение формулы егэ
  • Задачи на движение протяженных тел в задачах егэ