Всего: 24 1–20 | 21–24
Добавить в вариант
По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 90 км/ч и 30 км/ч. Длина товарного поезда равна 600 метрам. Найдите длину пассажирского поезда, если время, за которое он прошел мимо товарного поезда, равно 1 минуте. Ответ дайте в метрах.
Из двух городов, расстояние между которыми 720 км, по параллельным путям отправляются навстречу друг другу два поезда и встречаются на середине пути. Второй поезд вышел на 1 ч позже первого со скоростью, на 4 км/ч большей, чем скорость первого поезда. Найдите скорость второго поезда. Ответ дайте в км/ч.
Источник: Пробный вариант ЕГЭ по математике 03.12.22 Москва.
По двум параллельным железнодорожным путям друг навстречу другу следуют скорый и пассажирский поезда, скорости которых равны соответственно 65 км/ч и 35 км/ч. Длина пассажирского поезда равна 700 метрам. Найдите длину скорого поезда, если время, за которое он прошел мимо пассажирского поезда, равно 36 секундам. Ответ дайте в метрах.
Источник: Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 1.
По двум параллельным железнодорожным путям друг навстречу другу следуют скорый и пассажирский поезда, скорости которых равны соответственно 70 км/ч и 50 км/ч. Длина пассажирского поезда равна 800 метрам. Найдите длину скорого поезда, если время, за которое он прошел мимо пассажирского поезда, равно 45 секундам. Ответ дайте в метрах.
По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 80 км/ч и 50 км/ч. Длина товарного поезда равна 1200 метрам. Найдите длину пассажирского поезда, если время, за которое он прошёл мимо товарного поезда, равно 3 минутам. Ответ дайте в метрах.
По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 90 км/ч и 30 км/ч. Длина товарного поезда равна 900 метрам. Найдите длину пассажирского поезда, если время, за которое он прошёл мимо товарного поезда, равно 1 минуте 3 секундам. Ответ дайте в метрах.
Поезд, двигаясь равномерно со скоростью 60 км/ч, проезжает мимо лесополосы, длина которой равна 400 метрам, за 1 минуту. Найдите длину поезда в метрах.
По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 50 км/ч и 40 км/ч. Длина товарного поезда равна 800 метрам. Найдите длину пассажирского поезда, если время, за которое он прошел мимо товарного поезда, равно 6 минутам. Ответ дайте в метрах.
Поезд Казань-Москва отправляется в 21:35, а прибывает в 10:35 на следующий день (время московское). Сколько часов поезд находится в пути?
Поезд Новосибирск-Красноярск отправляется в 15:20, а прибывает в 4:20 на следующий день (время московское). Сколько часов поезд находится в пути?
Товарный поезд каждую минуту проезжает на 750 метров меньше, чем скорый, и на путь в 180 км тратит времени на 2 часа больше, чем скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.
Товарный поезд каждую минуту проезжает на 300 метров меньше, чем скорый, и на путь в 420 км тратит времени на 3 часа больше, чем скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.
Поезд, двигаясь равномерно со скоростью 60 км/ч, проезжает мимо лесополосы, длина которой равна 400 метров, за 39 секунд. Найдите длину поезда в метрах.
Товарный поезд каждую минуту проезжает на 450 метров меньше, чем скорый, и на путь в 630 км тратит времени на 3 часа больше, чем скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.
Товарный поезд каждую минуту проезжает на 750 метров меньше, чем скорый, и на путь в 560 км тратит времени на 4 часа больше, чем скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.
Поезд Самара-Волгоград отправляется в 7:58, а прибывает в 2:58 на следующий день (время московское). Сколько часов поезд находится в пути?
Поезд, двигаясь равномерно со скоростью 80 км/ч, проезжает мимо придорожного столба за 36 секунд. Найдите длину поезда в метрах.
Поезд, двигаясь равномерно со скоростью 60 км/ч, проезжает мимо придорожного столба за 9 секунд. Найдите длину поезда в метрах.
Семья из трех человек едет из Москвы в Чебоксары. Можно ехать поездом, а можно — на своей машине. Билет на поезд на одного человека стоит 930 рублей. Автомобиль расходует 11 литров бензина на 100 километров пути, расстояние по шоссе равно 700 км, а цена бензина равна 18,5 рублей за литр. Сколько рублей придется заплатить за наиболее дешевую поездку на троих?
Семья из трех человек едет из Санкт-Петербурга в Вологду. Можно ехать поездом, а можно — на своей машине. Билет на поезд на одного человека стоит 660 рублей. Автомобиль расходует 8 литров бензина на 100 километров пути, расстояние по шоссе равно 700 км, а цена бензина равна 19,5 рублей за литр. Сколько рублей придется заплатить за наиболее дешевую поездку на троих?
Всего: 24 1–20 | 21–24
ЕГЭ Профиль №9. Задачи на движение по прямой
Скачать файл в формате pdf.
ЕГЭ Профиль №9. Задачи на движение по прямой
Задача 1. Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 24 км/ч, а вторую половину пути — со скоростью, на 16 км/ч большей скорости первого, в результате чего прибыл в пункт В одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч. Пусть x км/ч – скорость первого автомобиля, тогда скорость второго на второй половине пути равна x + 16 км/ч. Возьмём расстояние между пунктами за 2 S км.
Автомобили были в пути одно и то же время. Следовательно: (frac{S}{{24}} + frac{S}{{x + 16}} = frac{{2S}}{x},,left| {,:,S ne 0,,,,, Leftrightarrow ,,,,,} right.frac{1}{{24}} + frac{1}{{x + 16}} = frac{2}{x},,,, Leftrightarrow ,,,,,frac{{x + 16 + 24}}{{24left( {x + 16} right)}} = frac{2}{x},,,,, Leftrightarrow ) ( Leftrightarrow ,,,,xleft( {x + 40} right) = 48left( {x + 16} right),,,, Leftrightarrow ,,,,{x^2} — 8x — 768 = 0) (D = 64 + 3072 = 3136;,,,,,{x_1} = frac{{8 + 56}}{2} = 32;,,,,{x_2} = frac{{8 — 56}}{2} = — 24.) Так как (x > 0), то скорость первого автомобиля равна 32 км/ч. Ответ: 32. |
||||||||||||||||||||||||
Задача 2. Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 13 км/ч, а вторую половину пути — со скоростью 78 км/ч, в результате чего прибыл в пункт В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 48 км/ч. Ответ дайте в км/ч.
Пусть x км/ч – скорость первого автомобиля, тогда скорость второго на первой половине пути равна x – 13 км/ч. Возьмём расстояние между пунктами за 2 S км.
Автомобили были в пути одно и то же время. Следовательно: (frac{S}{{x — 13}} + frac{S}{{78}} = frac{{2S}}{x},,left| {,:,S ne 0,,,,, Leftrightarrow ,,,,,} right.frac{1}{{x — 13}} + frac{1}{{78}} = frac{2}{x},,,, Leftrightarrow ,,,,,frac{{78 + x — 13}}{{78left( {x — 13} right)}} = frac{2}{x},,,,, Leftrightarrow ) ( Leftrightarrow ,,,,xleft( {x + 65} right) = 156left( {x — 13} right),,,, Leftrightarrow ,,,,{x^2} — 91x + 13 cdot 156 = 0) (D = {91^2} — 4 cdot 13 cdot 156 = {13^2} cdot {7^2} — 4 cdot {13^2} cdot 12 = {13^2}left( {49 — 48} right) = {13^2};,,,,,{x_1} = frac{{91 + 13}}{2} = 52;,,,,{x_2} = frac{{91 — 13}}{2} = 39.) Так как по условию задачи (x > 48), то скорость первого автомобиля равна 52 км/ч. Ответ: 52. |
||||||||||||||||||||||||
Задача 3. Из пункта А в пункт В, расстояние между которыми 75 км, одновременно выехали автомобилист и велосипедист. Известно, что за час автомобилист проезжает на 40 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт В на 6 часов позже автомобилиста. Ответ дайте в км/ч.
Пусть x км/ч – скорость велосипедиста, тогда скорость автомобиля равна x + 40 км/ч.
Так как, велосипедист прибыл в пункт В на 6 часов позже автомобилиста, то его время на 6 часов больше. Следовательно: (frac{{75}}{x} — frac{{75}}{{x + 40}} = 6,,,,,, Leftrightarrow ,,,,,frac{{75left( {x + 40} right) — 75x}}{{xleft( {x + 40} right)}} = 6,,, Leftrightarrow ,,,,,frac{{75 cdot 40}}{{xleft( {x + 40} right)}} = 6,,,, Leftrightarrow ,,,,6xleft( {x + 40} right) = 75 cdot 40,,left| {,:6,,,, Leftrightarrow } right.) ( Leftrightarrow ,,,{x^2} + 40x — 500 = 0;,,,,D = 1600 + 2000 = 3600;,,,,{x_1} = frac{{ — 40 + 60}}{2} = 10;,,,,{x_2} = frac{{ — 40 — 60}}{2} = — 50) Так как (x > 0), то скорость велосипедиста равна 10 км/ч. Ответ: 10. |
||||||||||||||||||||||||
Задача 4. Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 70 км. На следующий день он отправился обратно в А со скоростью на 3 км/ч больше прежней. По дороге он сделал остановку на 3 часа. В результате велосипедист затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из В в А. Ответ дайте в км/ч.
Пусть x км/ч – скорость велосипедиста из В в А, тогда его скорость из А в В равна x – 3 км/ч.
Так как, на обратном пути велосипедист сделал остановку на 3 часа и в результате затратил столько же времени, то: (frac{{70}}{{x — 3}} — frac{{70}}{x} = 3,,,,,, Leftrightarrow ,,,,,frac{{70x — 70left( {x — 3} right)}}{{xleft( {x — 3} right)}} = 3,, Leftrightarrow ,,,,,frac{{70 cdot 3}}{{xleft( {x — 3} right)}} = 3,,,, Leftrightarrow ,,,,3xleft( {x — 3} right) = 70 cdot 3,,,, Leftrightarrow ) ( Leftrightarrow ,,,{x^2} — 3x — 70 = 0;,,,,D = 9 + 280 = 289;,,,,{x_1} = frac{{3 + 17}}{2} = 10;,,,,{x_2} = frac{{3 — 17}}{2} = — 7) Так как (x > 0), то скорость велосипедиста из В в А равна 10 км/ч. Ответ: 10. |
||||||||||||||||||||||||
Задача 5. Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 98 км. На следующий день он отправился обратно со скоростью на 7 км/ч больше прежней. По дороге он сделал остановку на 7 часов. В результате он затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. Ответ дайте в км/ч.
Пусть x км/ч – скорость велосипедиста из А в В, тогда его скорость из В в А равна x + 7 км/ч.
Так как, на обратном пути велосипедист делал остановку на 7 часов и в результате затратил столько же времени, то: (frac{{98}}{x} — frac{{98}}{{x + 7}} = 7,,,,,, Leftrightarrow ,,,,,frac{{98left( {x + 7} right) — 98x}}{{xleft( {x + 7} right)}} = 7,, Leftrightarrow ,,,,,frac{{98 cdot 7}}{{xleft( {x + 7} right)}} = 7,,,, Leftrightarrow ,,,,7xleft( {x + 7} right) = 98 cdot 7,,, Leftrightarrow ) ( Leftrightarrow ,,,{x^2} + 7x — 98 = 0;,,,,D = 49 + 392 = 441;,,,,{x_1} = frac{{ — 7 + 21}}{2} = 7;,,,,{x_2} = frac{{ — 7 — 21}}{2} = — 14) Так как (x > 0), то скорость велосипедиста из А в В равна 7 км/ч. Ответ: 7. |
||||||||||||||||||||||||
Задача 6. Два велосипедиста одновременно отправились в 240-километровый пробег. Первый ехал со скоростью, на 1 км/ч большей, чем скорость второго, и прибыл к финишу на 1 час раньше второго. Найти скорость велосипедиста, пришедшего к финишу первым. Ответ дайте в км/ч. Пусть x км/ч – скорость велосипедиста, пришедшего к финишу первым, тогда скорость второго велосипедиста x – 1 км/ч.
Так как первый велосипедист приехал на 1 час раньше второго, то его время на 1 час меньше. Следовательно: (frac{{240}}{{x — 1}} — frac{{240}}{x} = 1,,,,,, Leftrightarrow ,,,,,frac{{240x — 240left( {x — 1} right)}}{{xleft( {x — 1} right)}} = 1,,,,, Leftrightarrow ,,,,,frac{{240}}{{xleft( {x — 1} right)}} = 1,,,, Leftrightarrow ,,,,xleft( {x — 1} right) = 240,,, Leftrightarrow )( Leftrightarrow ,,,,,{x^2} — x — 240 = 0;,,,,,D = 1 + 4 cdot 240 = 961;,,,,,{x_1} = frac{{1 + 31}}{2} = 16;,,,,,{x_2} = frac{{1 — 31}}{2} = — 15.) Так как (x > 0), то скорость велосипедиста, пришедшего к финишу первым, равна 16 км/ч. Ответ: 16. |
||||||||||||||||||||||||
Задача 7. Из двух городов, расстояние между которыми равно 560 км, навстречу друг другу одновременно выехали два автомобиля. Через сколько часов автомобили встретятся, если их скорости равны 65 км/ч и 75 км/ч?
Пусть t ч – время движения автомобилей до встречи. Тогда первый автомобиль пройдет расстояние – 65t км, а второй – 75t км. Следовательно: (65t + 75t = 560,,,, Leftrightarrow ,,,,140t = 560,,,, Leftrightarrow ,,,,t = 4). Таким образом, автомобили встретятся через 4 часа. Ответ: 4. |
||||||||||||||||||||||||
Задача 8. Из городов A и B, расстояние между которыми равно 330 км, навстречу друг другу одновременно выехали два автомобиля и встретились через 3 часа на расстоянии 180 км от города B. Найдите скорость автомобиля, выехавшего из города A. Ответ дайте в км/ч.
Так как автомобили встретились на расстоянии 180 км от города В, то автомобиль, выехавший из города А, проехал расстояние (330 — 180 = 150) км за 3 часа. Следовательно, его скорость равна: (V = frac{{150}}{3} = 50) км/ч. Ответ: 50. |
||||||||||||||||||||||||
Задача 9. Расстояние между городами A и B равно 435 км. Из города A в город B со скоростью 60 км/ч выехал первый автомобиль, а через час после этого навстречу ему из города B выехал со скоростью 65 км/ч второй автомобиль. На каком расстоянии от города A автомобили встретятся? Ответ дайте в километрах.
Пусть t ч – время движения до встречи автомобиля, выехавшего из города А, тогда время второго автомобиля t – 1 ч. За t часов первый автомобиль проехал расстояние 60t км, а второй за t – 1 ч проехал 65(t – 1), а вместе до встречи они проехали 435 км. Следовательно: (60t + 65left( {t — 1} right) = 435,,,,, Leftrightarrow ,,,,,60t + 65t — 65 = 435,,,,, Leftrightarrow ,,,,125,t = 500,,,,, Leftrightarrow ,,,,,t = 4.) Следовательно, первый проехал расстояние (60 cdot 4 = 240) км, и оно равно расстоянию от города А до встречи автомобилей. |
||||||||||||||||||||||||
Задача 10. Расстояние между городами A и B равно 470 км. Из города A в город B выехал первый автомобиль, а через 3 часа после этого навстречу ему из города B выехал со скоростью 60 км/ч второй автомобиль. Найдите скорость первого автомобиля, если автомобили встретились на расстоянии 350 км от города A. Ответ дайте в км/ч.
Автомобиль, выехавший из города В со скоростью 60 км/ч, проехал расстояние (470 — 350 = 120) км. Следовательно, он затратил на этот путь время равное: (frac{{120}}{{60}} = 2) часа. Тогда автомобиль, выехавший из города А, затратил на расстояние равное 350 км время равное: (2 + 3 = 5) часов. Поэтому его скорость равна: (frac{{350}}{5} = 70) км/ч. Ответ: 70. |
||||||||||||||||||||||||
Задача 11. Из городов A и B навстречу друг другу выехали мотоциклист и велосипедист. Мотоциклист приехал в B на 3 часа раньше, чем велосипедист приехал в A, а встретились они через 48 минут после выезда. Сколько часов затратил на путь из B в A велосипедист?
Пусть время движения велосипедиста из В в А равно x ч, тогда время движения мотоциклиста из А в В равно x – 3 ч, при этом (x — 3 > 0), то есть (x > 3). Обозначим расстояние между городами за S км. Тогда скорость велосипедиста равна: (frac{S}{x}), а скорость мотоциклиста (frac{S}{{x — 3}}). За время 48 минут ((frac{{48}}{{60}} = frac{4}{5}) ч) велосипедист проехал расстояние: (frac{4}{5} cdot frac{S}{x}) км, а мотоциклист: (frac{4}{5} cdot frac{S}{{x — 3}}) км, а вместе они преодолели расстояние равное S км. Следовательно: (frac{4}{5} cdot frac{S}{x} + frac{4}{5} cdot frac{S}{{x — 3}} = S,,left| : right.,,S ne 0,,,,, Leftrightarrow ,,,,,frac{4}{{5x}} + frac{4}{{5left( {x — 3} right)}} = 1,,,,, Leftrightarrow ,,,,,frac{{4left( {x — 3} right) + 4x}}{{5xleft( {x — 3} right)}} = 1,,,, Leftrightarrow ) ( Leftrightarrow ,,,,5{x^2} — 15x = 8x — 12,,,, Leftrightarrow ,,,,5{x^2} — 23x + 12 = 0;) (D = 529 — 240 = 289;,,,,{x_1} = frac{{23 + 17}}{{10}} = 4;,,,,{x_2} = frac{{23 — 17}}{{10}} = frac{3}{5}.) Так как (x > 3), то время велосипедиста их В в А равно 4 часа. Ответ: 4. |
||||||||||||||||||||||||
Задача 12. Товарный поезд каждую минуту проезжает на 750 метров меньше, чем скорый, и на путь в 180 км тратит времени на 2 часа больше, чем скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.
Пусть x км/ч – скорость товарного поезда, тогда скорость скорого x км/ч +750 м/мин = (x + frac{{750}}{{1000}} cdot 60 = x + 45) км/ч.
По условию задачи время товарного поезда на 2 часа больше. Следовательно: (frac{{180}}{x} — frac{{180}}{{x + 45}} = 2,,,,,, Leftrightarrow ,,,,,frac{{180left( {x + 45} right) — 180x}}{{xleft( {x + 45} right)}} = 2,, Leftrightarrow ,,,,,frac{{180 cdot 45}}{{xleft( {x + 45} right)}} = 2,,,, Leftrightarrow ) ( Leftrightarrow ,,,,2xleft( {x + 45} right) = 180 cdot 45,left| {,:} right.2,,,, Leftrightarrow ,,,,{x^2} + 45 — 90 cdot 45 = 0) (D = {45^2} + 4 cdot 90 cdot 45 = {45^2}left( {1 + 4 cdot 2} right) = {45^2} cdot 9;,,,,,,sqrt D = ,,45 cdot 3 = 135;) (,,,{x_1} = frac{{ — 45 + 135}}{2} = 45;,,,,{x_2} = frac{{ — 45 — 135}}{2} = — 90.) Так как (x > 0), то скорость товарного поезда равна 45 км/ч. Ответ: 45. |
||||||||||||||||||||||||
Задача 13. Расстояние между городами A и B равно 150 км. Из города A в город B выехал автомобиль, а через 30 минут следом за ним со скоростью 90 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Ответ дайте в километрах.
Пусть x км – расстояние от А до С, а y км/ч – скорость автомобиля. Рассмотрим сначала движение автомобиля и мотоцикла от А до С.
Так как автомобиль выехал на 30 мин раньше, то его время на (frac{1}{2}) часа больше. Тогда первое уравнение будет иметь вид: (frac{x}{y} — frac{x}{{90}} = frac{1}{2}.) Теперь рассмотрим случай движения автомобиля из С в В, а мотоциклиста из С в А.
Так как мотоциклист вернулся в А одновременно с автомобилистом, приехавшим в В, то второе уравнение будет иметь вид: (frac{{150 — x}}{y} = frac{x}{{90}}.) Таким образом, получаем систему уравнений: (left{ {begin{array}{*{20}{c}} {frac{x}{y} — frac{x}{{90}} = frac{1}{2};} \ {frac{{150 — x}}{y} = frac{x}{{90}}.} end{array}} right.) Из второго уравнения: (y = frac{{90left( {150 — x} right)}}{x}) подставляя в первое уравнение, получим: (frac{{{x^2}}}{{90left( {150 — x} right)}} — frac{x}{{90}} = frac{1}{2},,,,,, Leftrightarrow ,,,,,,frac{{{x^2} — xleft( {150 — x} right)}}{{90left( {150 — x} right)}} = frac{1}{2},,,,,, Leftrightarrow ,,,,,,frac{{2{x^2} — 150x}}{{90left( {150 — x} right)}} = frac{1}{2},,,,,, Leftrightarrow ) ( Leftrightarrow ,,,,4{x^2} — 300x = 90 cdot 150 — 90x,,left| {,:,2,,,,, Leftrightarrow ,,,,2{x^2} — 105x — 6750 = 0} right.;) (D = {105^2} + 4 cdot 2 cdot 6750 = {15^2} cdot {7^2} + 4 cdot 2 cdot {15^2} cdot 30 = {15^2}left( {49 + 240} right) = {15^2} cdot 289;,,,) (sqrt D = 15 cdot 17 = 255;,,,,,{x_1} = frac{{105 + 255}}{4} = 90;,,,,,{x_2} = frac{{105 — 255}}{4} = — 37,5.) Так как (x > 0), то расстояние от А до С равно 90 км. Ответ: 90. |
Задача 14. Два пешехода отправляются одновременно в одном направлении из одного и того же места на прогулку по аллее парка. Скорость первого на 1,5 км/ч больше скорости второго. Через сколько минут расстояние между пешеходами станет равным 300 метрам?
Пусть x км/ч – скорость второго пешехода, тогда x + 1,5 км/ч – скорость первого, а в пути они были t ч.
Так как расстояние между пешеходами должно стать равно 300 м = 0,3 км, то первый должен пройти на 0,3 км больше. Следовательно: (left( {x + 1,5} right)t — x,t = 0,3,,,,,, Leftrightarrow ,,,,,x,t + 1,5,t — x,t = 0,3,, Leftrightarrow ,,,,,1,5t = 0,3,,,, Leftrightarrow ,,,,t = frac{1}{5},.,,) Следовательно, через (frac{1}{5}) часа или (frac{1}{5} cdot 60 = 12) минут расстояние между пешеходами будет ровно 300 м. Ответ: 12. Второй вариант решения: Так как скорость первого пешехода на 1,5 км/ч больше скорости второго, то через 1 час (60 минут) расстояние между пешеходами будет равно 1,5 км (1500 м). Следовательно, чтобы расстояние между пешеходами стало равно 300 м (это в 5 раз меньше чем 1500 м) понадобиться 12 минут (это в 5 раз меньше чем 60 минут). Ответ: 12. |
||||||||||||
Задача 15. Первый велосипедист выехал из поселка по шоссе со скоростью 15 км/ч. Через час после него со скоростью 10 км/ч из того же поселка в том же направлении выехал второй велосипедист, а еще через час после этого — третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 2 часа 20 минут после этого догнал первого. Ответ дайте в км/ч.
Пусть x км/ч – скорость третьего велосипедиста, а t ч – время, которое ему понадобилось, чтобы догнать второго велосипедиста. Тогда за время t ч третий проехал расстояние равное (x cdot t) км, а второй выехал на 1 час раньше третьего, поэтому он проехал расстояние (10left( {t + 1} right)) км. Следовательно, первое уравнение будет иметь вид: (x cdot t = 10left( {t + 1} right)). Теперь рассмотрим, как третий велосипедист догоняет первого. Третьему велосипедисту понадобилось t ч, чтобы догнать второго, а затем еще 2 часа 20 минут, чтобы догнать первого, то есть третий догонял первого (t + frac{7}{3}) часа и проехал расстояние: (x cdot left( {t + frac{7}{3}} right)). Первый выехал на 2 часа раньше третьего, поэтому он проехал расстояние равное: (15 cdot left( {t + frac{7}{3} + 2} right)). Следовательно, второе уравнение будет иметь вид: (xleft( {t + frac{7}{3}} right) = 15left( {t + frac{{13}}{3}} right)). Таким образом, получаем систему уравнений: (left{ {begin{array}{*{20}{c}} {x cdot t = 10left( {t + 1} right);,,,,,,,,,,,,,,,,,,,,} \ {x cdot left( {t + frac{7}{3}} right) = 15left( {t + frac{{13}}{3}} right).} end{array}} right.) Из первого уравнения: (x = frac{{10left( {t + 1} right)}}{t}). Подставляя во второе первое, получим: (frac{{10t + 10}}{t} cdot frac{{3t + 7}}{3} = 15t + 65,,,, Leftrightarrow ,,,,30{t^2} + 70t + 30t + 70 = 45{t^2} + 195t,,,, Leftrightarrow ) ( Leftrightarrow ,,,,15{t^2} + 95t — 70 = 0,,left| {,:} right.5,,,, Leftrightarrow ,,,,3{t^2} + 19t — 14 = 0;) (D = 361 + 168 = 529;,,,,{t_1}, = frac{{ — 19 + 23}}{6} = frac{2}{3};,,,,{t_2} = frac{{ — 19 — 23}}{6} = — 7) Так как, (t > 0), то (t = frac{2}{3}) часа. Следовательно, скорость третьего велосипедиста: (x = frac{{10 cdot left( {frac{2}{3} + 1} right)}}{{frac{2}{3}}} = 25) км/ч. ()Ответ: 25. |
||||||||||||
Задача 16. Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 74 км/ч, а вторую половину времени — со скоростью 66 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.
Чтобы найти среднюю скорость на протяжении пути, нужно весь пройденный путь разделить на все время движения. Пусть автомобиль находился в пути 2t часов. Тогда за первую половину времени (то есть за t часов) он проехал расстояние равное 74t км, а за вторую половину 66t км. Тогда средняя скорость автомобиля будет равна: (V = frac{{74t + 66t}}{{2t}} = frac{{140t}}{{2t}} = 70) км/ч. Ответ: 70. |
||||||||||||
Задача 17. Путешественник переплыл море на яхте со средней скоростью 20 км/ч. Обратно он летел на спортивном самолете со скоростью 480 км/ч. Найдите среднюю скорость путешественника на протяжении всего пути. Ответ дайте в км/ч.
Чтобы найти среднюю скорость на протяжении пути, нужно весь пройденный путь разделить на все время движения. Пусть путешественник проплыл расстояние на яхте равное S км, тогда его время на яхте составило ({t_1} = frac{S}{{20}}) ч, а на самолете ({t_2} = frac{S}{{480}}) ч. Тогда средняя скорость будет равна: (v = frac{{S + S}}{{{t_1} + {t_2}}} = frac{{2S}}{{frac{S}{{20}} + frac{S}{{480}}}} = frac{{2S}}{{frac{{24S + S}}{{480}}}} = frac{{2S cdot 480}}{{25,S}} = 38,4) км/ч. Ответ: 38,4. |
||||||||||||
Задача 18. Первую треть трассы автомобиль ехал со скоростью 60 км/ч, вторую треть — со скоростью 120 км/ч, а последнюю — со скоростью 110 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.
Чтобы найти среднюю скорость на протяжении пути, нужно весь пройденный путь разделить на все время движения. Пусть 3S км – весь путь автомобиля, тогда его время на первом участке ({t_1} = frac{S}{{60}}), на втором ({t_2} = frac{S}{{120}}), а на третьем ({t_3} = frac{S}{{110}}). Тогда средняя скорость будет равна: (V = frac{{S + S + S}}{{{t_1} + {t_2} + {t_3}}} = frac{{3S}}{{frac{S}{{60}} + frac{S}{{120}} + frac{S}{{110}}}} = frac{{3S}}{{frac{{2S + S}}{{120}} + frac{S}{{110}}}} = frac{{3S}}{{frac{S}{{40}} + frac{S}{{110}}}} = frac{{3S}}{{frac{{11S + 4S}}{{440}}}} = frac{{3S cdot 440}}{{15S}} = 88) км/ч. Ответ: 88. |
||||||||||||
Задача 19. Первые два часа автомобиль ехал со скоростью 50 км/ч, следующий час — со скоростью 100 км/ч, а затем два часа — со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.
Чтобы найти среднюю скорость на протяжении пути, нужно весь пройденный путь разделить на все время движения. Автомобиль был в пути время равное (2 + 1 + 2 = 5) часов и проехал за это время расстояние равное (2 cdot 50 + 1 cdot 100 + 2 cdot 75 = 350) км. Тогда его средняя скорость: (V = frac{{350}}{5} = 70) км/ч. Ответ: 70. |
||||||||||||
Задача 20. Первые 190 км автомобиль ехал со скоростью 50 км/ч, следующие 180 км — со скоростью 90 км/ч, а затем 170 км — со скоростью 100 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.
Чтобы найти среднюю скорость на протяжении пути, нужно весь пройденный путь разделить на все время движения. Первые 190 км автомобиль проехал за время ({t_1} = frac{{190}}{{50}} = frac{{19}}{5}) часа, следующие 180 км за ({t_2} = frac{{180}}{{90}} = 2) часа, а последние 170 км за ({t_3} = frac{{170}}{{100}} = frac{{17}}{{10}}) часа. Таким образом, он проехал расстояние равное (190 + 180 + 170 = 540) км за время ({t_{}} = frac{{19}}{5} + 2 + frac{{17}}{{10}} = frac{{15}}{2}) часа. Следовательно, его средняя скорость равна: (V = frac{{540}}{{frac{{15}}{2}}} = 72) км/ч. Ответ: 72. |
||||||||||||
Задача 21. Поезд, двигаясь равномерно со скоростью 80 км/ч, проезжает мимо придорожного столба за 36 секунд. Найдите длину поезда в метрах.
Проезжая мимо столба, поезд проезжает расстояние равное своей длине, то есть длина поезда равна расстоянию, которое проехал поезд. (t = 36) с ( = frac{{36}}{{3600}}) ч ( = frac{1}{{100}}) ч. (S = V cdot t = 80 cdot frac{1}{{100}} = 0,8) км. Следовательно, длина поезда равна 0,8 км = 800 м. Ответ: 800. |
||||||||||||
Задача 22. Поезд, двигаясь равномерно со скоростью 60 км/ч, проезжает мимо лесополосы, длина которой равна 400 метрам, за 1 минуту. Найдите длину поезда в метрах.
Проезжая мимо лесополосы, поезд проезжает расстояние равное сумме длин лесополосы и самого поезда, то есть длина поезда равна расстоянию, которое проехал поезд минус длина лесополосы. (t = 1) мин ( = frac{1}{{60}}) ч. (S = V cdot t = 60 cdot frac{1}{{60}} = 1) км. Следовательно, поезд проехал расстояние равное 1000 м, тогда длина поезда (1000 — 400 = 600) м. Ответ: 600. |
||||||||||||
Задача 23. По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 90 км/ч и 30 км/ч. Длина товарного поезда равна 600 метрам. Найдите длину пассажирского поезда, если время, за которое он прошел мимо товарного поезда, равно 1 минуте. Ответ дайте в метрах.
Так как поезда едут в одном направлении, то их скорость сближения равна (V = 90 — 30 = 60) км/ч. Следовательно, за 1 минуту пассажирский поезд сместится относительно товарного на 1 км. При этом он преодолеет расстояние равное сумме длин поездов. Поэтому длина пассажирского поезда равна (1000 — 600 = 400) м. Ответ: 400. |
||||||||||||
Задача 24. По двум параллельным железнодорожным путям навстречу друг другу следуют скорый и пассажирский поезда, скорости которых равны соответственно 65 км/ч и 35 км/ч. Длина пассажирского поезда равна 700 метрам. Найдите длину скорого поезда, если время, за которое он прошел мимо пассажирского поезда, равно 36 секундам. Ответ дайте в метрах.
Так как поезда едут навстречу друг другу, то их скорость сближения равна (V = 65 + 35 = 100) км/ч. За 36 секунд скорый поезд сместится относительно пассажирского на расстояние: (S = 100 cdot frac{{36}}{{3600}} = 1) км. При этом он преодолел расстояние равное сумме длин поездов. Поэтому длина скорого поезда равна (1000 — 700 = 300)м. Ответ: 300. |
||||||||||||
Задача 25. Два человека отправляются из одного и того же места на прогулку до опушки леса, находящейся в 4,4 км от места отправления. Один идёт со скоростью 2,5 км/ч, а другой — со скоростью 3 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча?
Пусть x км – расстояние, которое не дошел до опушки первый человек, оно равно расстоянию, которое прошел от опушки до места встречи второй человек. Следовательно, первый прошел расстояние равное (4,4 — x) км, а второй (4,4 + x).
Путники затратили одно и тоже время: (frac{{4,4 — x}}{{2,5}} = frac{{4,4 + x}}{3},,,,,, Leftrightarrow ,,,,,4,4 cdot 3 — 3x = 2,5 cdot 4,4 + 2,5x,, Leftrightarrow ,,,,,5,5x = 4,4 cdot 3 — 2,5 cdot 4,4,,,, Leftrightarrow ,,,)( Leftrightarrow ,,,,5,5x = 4,4left( {3 — 2,5} right),,,, Leftrightarrow ,,,,5,5 = 4,4 cdot 0,5,,,, Leftrightarrow ,,,,x = frac{{4,4 cdot 0,5}}{{5,5}} = 0,4). Следовательно, встреча произойдет от точки отправления на расстоянии (4,4 — 0,4 = 4) км. Ответ: 4. |
||||||||||||
Задача 26. Дорога между пунктами А и В состоит из подъёма и спуска, а её длина равна 8 км. Турист прошёл путь из А в В за 5 часов. Время его движения на спуске составило 1 час. С какой скоростью турист шёл на спуске, если скорость его движения на подъёме меньше скорости движения на спуске на 3 км/ч?
Пусть x км/ч – скорость туриста на спуске, тогда скорость на подъёме (x — 3) км/ч. Время на подъёме: (5 — 1 = 4) часа.
Так как весь путь равен 8 км, то: (4left( {x — 3} right), + x = 8,,,,, Leftrightarrow ,,,,,5x = 20,,,,, Leftrightarrow ,,,,,x = 4) км/ч. Ответ: 4. |
||||||||||||
Задача 27. Иван и Алексей договорились встретиться в N-ске. Иван звонит Алексею и узнаёт, что тот находится в 275 км от N-ска и едет с постоянной скоростью 75 км/ч. Иван в момент разговора находится в 255 км от N-ска и ещё должен по дороге сделать 50-минутную остановку. С какой скоростью должен ехать Иван, чтобы прибыть в N-ск одновременно с Алексеем?
Пусть x км/ч – скорость Ивана.
Поскольку Иван должен сделать 50 – минутную остановку, то его время движения будет на (frac{5}{6}) часа меньше. (frac{{275}}{{75}} — frac{{255}}{x} = frac{5}{6},,,,,,, Leftrightarrow ,,,,,,frac{{255}}{x} = frac{{11}}{3} — frac{5}{6},,,,,, Leftrightarrow ,,,,,,,frac{{255}}{x},, = frac{{17}}{6},,,,,,, Leftrightarrow ,,,,,,,x = frac{{255 cdot 6}}{{17}} = 90,) км/ч. Ответ: 90. |
Скачать материал
Скачать материал
- Сейчас обучается 76 человек из 33 регионов
- Сейчас обучается 234 человека из 62 регионов
Описание презентации по отдельным слайдам:
-
1 слайд
Выполнила
Ученица 11 «А» класса
МОУ СОШ № 37
Чеботарева Ольга
Решение заданий ЕГЭ.
В12. -
2 слайд
В задачах на движение протяженных тел требуется, как правило, определить длину одного из них. Наиболее типичная ситуация: определение длины поезда, проезжающего мимо столба или протяженной платформы. В первом случае поезд проходит мимо столба расстояние, равное длине поезда, во втором случае – расстояние, равное сумме длин поезда и платформы.
Движение протяженных тел -
3 слайд
Поезд, двигаясь равномерно со скоростью 60 км/ч, проезжает мимо придорожного столба за 30 секунд. Найдите длину поезда в метрах.
Задание Т.6.1. -
4 слайд
Скорость движения поезда:
V = 60 км/ч = 60000 м / 60 мин = 1000 м/мин.Время, за которое поезд проезжает мимо столба: t = 30 сек. = ½ мин.
Длину поезда можно найти как пройденное расстояние: S = V ∙ t = 1000 ∙ ½ = 500 м.
Решение:
Ответ: 500. -
5 слайд
Поезд, двигаясь равномерно со скоростью 54 км/ч, проезжает мимо идущего параллельно путям со скоростью 6 км/ч навстречу ему пешехода за 30 секунд. Найдите длину поезда в метрах.
Задание Т.6.2. -
6 слайд
Скорость сближения поезда и пешехода:
V = 54 + 6 = 60 км/ч = 60000 м / 60 мин =
= 1000 м/мин.Время, за которое поезд проезжает мимо столба: t = 30 сек. = ½ мин.
Длину поезда можно найти как пройденное расстояние: S = V ∙ t = 1000 ∙ ½ = 500 м.
Решение:
Ответ: 500. -
7 слайд
Поезд, двигаясь равномерно со скоростью 65 км/ч, проезжает мимо идущего в том же направлении параллельно путям со скоростью 5 км/ч пешехода за 30 секунд. Найдите длину поезда в метрах.
Задание Т.6.3. -
8 слайд
Скорость сближения поезда и пешехода:
V = 65 – 5 = 60 км/ч = 60000 м / 60 мин =
= 1000 м/мин.Время, за которое поезд проезжает мимо столба: t = 30 сек. = ½ мин.
Длину поезда можно найти как пройденное расстояние: S = V ∙ t = 1000 ∙ ½ = 500 м.
Решение:
Ответ: 500. -
9 слайд
Поезд, двигаясь равномерно со скоростью 90 км/ч, проезжает мимо лесополосы, длина которой равна 800 метрам, за 1 минуту. Найдите длину поезда в метрах.
Задание Т.6.4. -
10 слайд
Скорость движения поезда:
V = 90 км/ч = 90000 м / 60 мин = 1500 м/мин.Время, за которое поезд проезжает мимо лесополосы длиной 800 метров t = 1 мин.
Длину поезда можно найти как пройденное расстояние S = V ∙ t = 1500 ∙ 1 = 1500 м минус длина лесополосы 800 метров:
l = 1500 – 800 = 700 м.
Решение:
Ответ: 700. -
11 слайд
Человек в купе идущего со скоростью 60 км/ч пассажирского поезда, увидев идущий навстречу по параллельной колее товарный состав, засёк время, за которое тот прошёл мимо него. Найдите длину товарного состава, если это время равно 20 секундам, а скорость товарного состава равна 30 км/ч. Ответ дайте в метрах.
Задание Т.6.5. -
12 слайд
Скорость сближения поездов:
V = 60 + 30= 90 км/ч = 90000 м / 60 мин =
= 1500 м/мин.Время, за которое состав проезжает мимо поезда: t = 20 сек. = 1/3 мин.
Длину состава можно найти как пройденное расстояние: S = V ∙ t = 1500 ∙ 1/3 = 500 м.
Решение:
Ответ: 500. -
13 слайд
По двум параллельным железнодорожным путям друг навстречу другу следуют скорый и пассажирский поезда, скорости которых равны соответственно 70 км/ч и 50 км/ч. Длина пассажирского поезда равна 600 метрам. Найдите длину скорого поезда, если время, за которое он прошёл мимо пассажирского поезда, равно 30 секундам. Ответ дайте в метрах.
Задание Т.6.6. -
14 слайд
Скорость сближения поездов:
V = 70 + 50= 120 км/ч = 120000 м / 60 мин =
= 2000 м/мин.Время, за которое скорый поезд проезжает мимо пассажирского поезда длиной 600 метров
t = 30 с = ½ мин.Длину скорого поезда можно найти как пройденное расстояние
S = V ∙ t = 2000 ∙ ½ = 1000 м
минус длина пассажирского поезда 600 метров: l = 1000 – 600 = 400 м.Решение:
Ответ: 400. -
15 слайд
По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 70 км/ч и 30 км/ч. Длина товарного поезда равна 1400 метрам. Найдите длину пассажирского поезда, если время, за которое он прошёл мимо товарного поезда, равно 3 минутам. Ответ дайте в метрах.
Задание Т.6.7. -
16 слайд
Скорость сближения поездов:
V = 70 – 30= 40 км/ч = 40000 м / 60 минВремя, за которое пассажирский поезд проезжает мимо товарного поезда длиной 1400 метров t = 3 мин.
Длину пассажирского поезда можно найти как пройденное расстояние
S = V ∙ t = 40000 м / 60 мин ∙ 3 мин = 2000 м минус длина товарного поезда 1400 метров:
l = 2000 – 1400 = 600 м.
Решение:
Ответ: 600. -
17 слайд
По морю параллельными курсами в одном направлении следуют две баржи: первая длиной 60 метров, вторая – длиной 40 метров. Сначала вторая баржа отстает от первой, и в некоторый момент времени расстояние от кормы первой баржи до носа второй баржи составляет 200 метров. Через 18 минут после этого уже первая баржа отстает от второй так, что расстояние от кормы второй баржи до носа первой равно 300 метрам. На сколько километров в час скорость первой баржи меньше скорости второй?
Задание Т.6.8. -
18 слайд
Будем считать, что первая баржа неподвижна, а вторая приближается к ней со скоростью V (м/мин), равной разности скоростей второй и первой барж.
Тогда за 18 минут вторая баржа проходит расстояние
S = 200 + 60 + 40 + 300 = 600 (м).Поэтому V = 600 м / 18 мин =
= 0,6 км / (18/60) ч = 0,6 ∙ 60 / 18 = 2 (км).
Решение:
Ответ: 2.
Краткое описание документа:
Тема задач «Движение протяжённых тел».Данная презентация поможет учащимся качественно подготовиться к единому государственному экзамену при решении задач по данной теме .Она содержит подробное решение 8 задач .Презентация не содержит отвлекающих анимаций и картинок, поэтому учителю удобно пользоваться ею на уроке как при объяснении нового материала в 8-9 классе и даже в 6 или 7 классе, так и при повторении текстовых задач при подготовке к единому государственному экзамену.Учитель может отдать данную презентацию учащимся для домашней работы или провести проверочную работу по задачам.
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
6 153 784 материала в базе
- Выберите категорию:
- Выберите учебник и тему
- Выберите класс:
-
Тип материала:
-
Все материалы
-
Статьи
-
Научные работы
-
Видеоуроки
-
Презентации
-
Конспекты
-
Тесты
-
Рабочие программы
-
Другие методич. материалы
-
Найти материалы
Другие материалы
- 09.02.2015
- 680
- 0
- 09.02.2015
- 636
- 0
- 09.02.2015
- 629
- 1
- 09.02.2015
- 1316
- 7
- 09.02.2015
- 663
- 0
- 09.02.2015
- 579
- 0
- 09.02.2015
- 999
- 1
10 сентября 2021
В закладки
Обсудить
Жалоба
Задачи на движение протяжённых объектов
Текстовая задача ЕГЭ по математике (№8). По материалам открытого банка ФИПИ.
1. Поезд, двигаясь равномерно со скоростью 80 км/ч, проезжает мимо придорожного столба за 36 секунд. Найдите длину поезда в метрах.
2. Поезд, двигаясь равномерно со скоростью 60 км/ч, проезжает мимо лесополосы, длина которой равна 400 метрам, за 1 минуту. Найдите длину поезда в метрах.
3. По морю параллельными курсами в одном направлении следуют два сухогруза: первый длиной 120 метров, второй — длиной 80 метров. Сначала второй сухогруз отстает от первого, и в некоторый момент времени расстояние от кормы первого сухогруза до носа второго составляет 400 метров. Через 12 минут после этого уже первый сухогруз отстает от второго так, что расстояние от кормы второго сухогруза до носа первого равно 600 метрам. На сколько километров в час скорость первого сухогруза меньше скорости второго?
4. По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 90 км/ч и 30 км/ч. Длина товарного поезда равна 600 метрам. Найдите длину пассажирского поезда, если время, за которое он прошел мимо товарного поезда, равно 1 минуте. Ответ дайте в метрах.
5. По двум параллельным железнодорожным путям друг навстречу другу следуют скорый и пассажирский поезда, скорости которых равны соответственно 65 км/ч и 35 км/ч. Длина пассажирского поезда равна 700 метрам. Найдите длину скорого поезда, если время, за которое он прошёл мимо пассажирского поезда, равно 36 секундам. Ответ дайте в метрах.
Ответы
1. 800
2. 600
3. 6
4. 400
5. 300