Задачи на объем фигур егэ

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 298    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант





Источник: ЕГЭ по математике 03.06.2013. Основная волна. Восток. Вариант 402.


Источник: Пробный ЕГЭ по математике, Санкт-Петербург, 04.03.2018. Вариант 1.


Объем куба равен 12. Найдите объем четырехугольной пирамиды, основанием которой является грань куба, а вершиной  — центр куба.


Объем куба равен 96. Найдите объем четырехугольной пирамиды, основанием которой является грань куба, а вершиной  — центр куба.



Объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины, равен 2. Найдите объём куба.


Объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины, равен 4. Найдите объём куба.


Объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины, равен 9. Найдите объём куба.


Объём куба равен 24. Найдите объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины.

Источник: ЕГЭ по математике 2021 года. Досрочная волна.



Три ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 4, 6, 9. Найдите ребро равновеликого ему куба.



Объём куба равен 12. Найдите объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины.

Источник: Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 1.



Три ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 0,5 и 16. Найдите ребро равновеликого ему куба.


Три ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 4 и 16. Найдите ребро равновеликого ему куба.

Всего: 298    1–20 | 21–40 | 41–60 | 61–80 …

1)Аквариум имеет форму прямоугольного параллелепипеда с размерами 80 см × 30 см ×  40 см. Сколько литров составляет объём аквариума? В одном литре 1000 кубических сантиметров.

2)Через точку, делящую высоту конуса в отношении 1:3, считая от вершины, проведена плоскость, параллельная основанию. Найдите объём этого конуса, если объём конуса, отсекаемого от данного конуса проведённой плоскостью, равен 5.

3)Два ребра прямоугольного параллелепипеда равны 8 и 5,
а объём параллелепипеда равен 280. Найдите площадь поверхности этого параллелепипеда.

4)Даны две коробки, имеющие форму правильной четырёхугольной призмы, стоящей на основании. Первая коробка

в четыре раза ниже второй, а вторая

в полтора раза шире первой. Во сколько раз объём второй коробки больше объёма первой?

5)Сторона основания правильной треугольной призмы ABCA1B1C1 равна 2, а высота этой призмы равна 4. Найдите объём призмы АВСА1В1С1

6)Объём  конуса равен  24π, а  его  высота равна 8. Найдите радиус основания конуса.

7)Вода в сосуде цилиндрической формы находится на уровне h= 80 см. На каком уровне окажется вода, если её перелить в другой цилиндрический сосуд, у которого радиус основания вдвое больше, чем у первого? Ответ дайте

в сантиметрах.

8)В бак, имеющий форму прямой призмы, налито 12 л воды. После полного погружения в воду детали уровень воды

в баке увеличился в 1,5 раза. Найдите объём детали. Ответ дайте в кубических сантиметрах, зная, что в одном литре 1000 кубических сантиметров.

9)Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 2 и 6,

а второго — 6 и 4. Во сколько раз объём второго цилиндра больше объёма первого?

10)Даны два конуса. Радиус основания и высота первого конуса равны соответственно 3 и 2, а второго — 2 и 3. Во сколько раз объём первого конуса больше объёма второго?

11)В бак, имеющий форму прямой призмы, налито 5 л воды. После полного погружения в воду детали уровень воды

в баке поднялся в 1,4 раза. Найдите объём детали. Ответ дайте в кубических сантиметрах, зная, что в одном литре

1000 кубических сантиметров.

12)Даны два конуса. Радиус основания и образующая первого конуса равны соответственно 2 и 5,

а второго — 5 и 6. Во сколько раз площадь боковой поверхности второго конуса больше площади боковой поверхности первого

13)Даны два шара с радиусами 5 и 1. Во сколько раз объём большего шара больше объёма меньшего?

14)В сосуде, имеющем форму конуса, уровень жидкости достигает 1/2 высоты. Объём сосуда 120 мл. Чему равен объём налитой жидкости? Ответ дайте в миллилитрах.

15) undefined

15)Деталь имеет форму изображённого на рисунке многогранника (все двугранные углы прямые). Числа на рисунке обозначают длины рёбер в сантиметрах. Найдите объём этой детали. Ответ дайте в кубических сантиметрах.

16)Объём конуса равен 25π, а его высота равна 3. Найдите радиус основания конуса

11 февраля 2016

В закладки

Обсудить

Жалоба

Задачи на нахождение объёмов тел

Задание №8 профильного уровня ЕГЭ по математике (бывшее B11).

В данной разработке представлены задачи от самых простых до более сложных. К задачам представлено подробное решение.

Задание 8. Из спецификации к демоверсии:

Уметь выполнять действия с геометрическими фигурами, координатами и векторами.

Автор: Тихончук Людмила Юрьевна, учитель математики.

8obemi.docx

8. Геометрия в пространстве (стереометрия)


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Вычисление объемов фигур


Задание
1

#3043

Уровень задания: Равен ЕГЭ

Радиус первого шара в (5) раз больше радиуса второго шара. Во сколько раз площадь поверхности второго шара меньше площади поверхности первого шара?

Площадь поверхности шара радиуса (R) ищется по формуле (S=4pi R^2). Следовательно, площадь поверхности первого шара относится к площади поверхности второго шара как [dfrac{S_1}{S_2}=dfrac{4pi , R_1^2}{4pi , R_2^2}] Так как радиус первого шара больше радиуса второго шара в 5 раз, то (R_1=5R_2). Следовательно, [dfrac{S_1}{S_2}=dfrac{(5R_2)^2}{R_2^2}=25.] Следовательно, площадь поверхности первого шара в 25 раз больше площади поверхности второго, значит, площадь поверхности второго в 25 раз меньше.

Ответ: 25


Задание
2

#3046

Уровень задания: Равен ЕГЭ

Даны два конуса. Радиус второго конуса в (3) раза больше радиуса первого конуса, а высота второго конуса в (6) раз меньше высоты первого конуса. Найдите объем первого конуса, если объем второго конуса равен (18).

Объем конуса с высотой (h) и радиусом основания (R) вычисляется по формуле (V=frac13pi R^2h). Следовательно, объем первого конуса относится к объему второго конуса как [dfrac{V_1}{18}=dfrac{V_1}{V_2}=
dfrac{frac13pi ,R_1^2,h_1}{frac13 pi
,R_2^2,h_2}=left(dfrac{R_1}{R_2}right)^2cdot
dfrac{h_1}{h_2}]
Так как радиус второго в 3 раза больше радиуса первого, то (R_2=3R_1). Так как высота второго в 6 раз меньше высоты первого, то (h_1=6h_2). Следовательно, [dfrac{V_1}{18}=left(dfrac{R_1}{3R_1}right)^2cdot dfrac{6h_2}{h_2}=
dfrac19cdot 6=dfrac23 quadRightarrowquad V_1=dfrac23cdot
18=12.]

Ответ: 12


Задание
3

#3048

Уровень задания: Равен ЕГЭ

Даны два конуса: (K_1) и (K_2). Площадь полной поверхности (K_1) относится к площади полной поверхности (K_2) как (4:1). Известно, что радиус (K_1) в 4 раза больше образующей (K_1) и в 2 раза больше радиуса (K_2). Найдите отношение образующей (K_2) к образующей (K_1).

Площадь полной поверхности конуса с образующей (l) и радиусом основания (R) ищется по формуле (S=pi R (R+l)). Тогда площадь полной поверхности (K_1) относится к площади полной поверхности (K_2) как [dfrac41=dfrac{pi ,R_1cdot (R_1+l_1)}{pi , R_2cdot (R_2+l_2)}] Из условия следует, что (R_1=4l_1), (R_2=frac12R_1=2l_1), следовательно, [dfrac41=dfrac{4l_1cdot (4l_1+l_1)}{2l_1cdot (2l_1+l_2)}
quadRightarrowquad dfrac{l_2}{l_1}=dfrac12=0,5]

Ответ: 0,5


Задание
4

#3044

Уровень задания: Равен ЕГЭ

Во сколько раз радиус первого шара больше радиуса второго шара, если объем первого шара в (343) раза больше объема второго шара?

Объем шара радиуса (R) ищется по формуле (V=dfrac43 pi R^3). Следовательно, объем первого шара относится к объему второго как [dfrac{343}1=dfrac{V_1}{V_2}=dfrac{frac43 pi , R_1^3}{frac43 pi , R_2^3}=
left(dfrac{R_1}{R_2}right)^3 quadRightarrowquad
dfrac{R_1}{R_2}=sqrt[3]{343}=7.]
Следовательно, радиус первого шара в 7 раз больше радиуса второго шара.

Ответ: 7


Задание
5

#3051

Уровень задания: Равен ЕГЭ

Объем первого прямоугольного параллелепипеда равен 105. Найдите объем второго прямоугольного параллелепипеда, если известно, что высота первого параллелепипеда в 7 раз больше высоты второго, ширина второго в 2 раза больше ширины первого, а длина первого в 3 раза больше длины второго.

Пусть буквы (a), (b) и (c) обозначают высоту, ширину и длину соответственно. Объем прямоугольного параллелепипеда ищется по формуле (V=abc). Следовательно, объем первого параллелепипеда относится к объему второго как [dfrac{105}{V_2}=dfrac{V_1}{V_2}=dfrac{a_1b_1c_1}{a_2b_2c_2}] Из условия следует, что (a_1=7a_2), (b_2=2b_1), (c_1=3c_2). Тогда [dfrac{105}{V_2}=dfrac{7a_2cdot b_1cdot 3c_2}{a_2cdot 2b_1cdot c_2}=
dfrac{7cdot 3}2 quadRightarrowquad V_2=dfrac{105cdot
2}{21}=10.]

Ответ: 10


Задание
6

#3049

Уровень задания: Равен ЕГЭ

Площадь боковой поверхности первого цилиндра равна (16). Найдите площадь боковой поверхности второго цилиндра, если его радиус в 4 раза больше радиуса первого, а высота в 5 раз меньше высоты первого цилиндра.

Площадь боковой поверхности цилиндра с высотой (H) и радиусом основания (R) ищется по формуле (S=2pi RH). Тогда площадь бок. поверхности первого цилиндра относится к площади бок. поверхности второго как [dfrac{16}{S_2}=dfrac{S_1}{S_2}=dfrac{2pi ,R_1,H_1}{2pi ,R_2,H_2}=
dfrac{R_1}{R_2}cdot dfrac{H_1}{H_2}]
Из условия следует, что (R_2=4R_1), (H_1=5H_2), значит, [dfrac{16}{S_2}=dfrac{R_1}{4R_1}cdot dfrac{5H_2}{H_2}=
dfrac14cdot 5=dfrac54]
Следовательно, [S_2=dfrac{16cdot 4}5=12,8.]

Ответ: 12,8


Задание
7

#3047

Уровень задания: Равен ЕГЭ

Площадь боковой поверхности первого конуса относится к площади боковой поверхности второго конуса как (3:7). Найдите отношение образующей первого конуса к образующей второго конуса, если радиус первого конуса относится к радиусу второго как (15:7).

Площадь боковой поверхности конуса с образующей (l) и радиусом основания (R) ищется по формуле (S=pi Rl). Тогда площадь бок. поверхности первого конуса относится к площади бок. поверхности второго как [dfrac 37=dfrac{S_1}{S_2}=dfrac{pi R_1,l_1}{pi R_2,l_2}] Так как радиус первого конуса относится к радиусу второго как (15:7), то есть (frac{R_1}{R_2}=frac{15}7), то [dfrac37=dfrac {15}7cdot dfrac{l_1}{l_2} quadRightarrowquad
dfrac{l_1}{l_2}=dfrac37cdot dfrac7{15}=dfrac15=0,2.]

Ответ: 0,2

Во время подготовки к сдаче ЕГЭ по математике повторение базовых формул из школьного курса геометрии в пространстве (стереометрии), в том числе и для вычисления объемов фигур, является одним из основных этапов. И хотя на изучение этого раздела отводится достаточно большое количество времени в рамках учебной программы, многим выпускникам требуется освежить в памяти основной материал.

Понимая, как осуществляется вычисление площадей объемных фигур, учащиеся значительно повышают свои шансы на получение достойных баллов по итогам сдачи ЕГЭ.

Базовая информация

Объем геометрической фигуры — это количественная характеристика пространства, которое занимает тело. Она определяется его формой и размерами.
Чтобы задачи на вычисление объемов геометрических фигур не вызывали затруднений, рекомендуем освежить в памяти основные формулы.

  • Объем куба равняется кубу длины его грани.
  • Для его расчета используется формула: V = a3, где V — объем куба,
    a — длина его грани.

  • Объем призмы равняется произведению площади основания фигуры на высоту.
    Чтобы его рассчитать, воспользуйтесь следующий формулой: V = So h, где V — объем призмы, So — площадь ее основания, h — ее высота.
  • Объем прямоугольного параллелепипеда равняется произведению его длины, ширины и высоты.
    Формула для его расчета: V = a · b · h, где a — длина,
    b — ширина, h — высота.
  • Объем пирамиды равняется трети от произведения площади ее основания на высоту.
  • Рассчитать его можно по формуле:

    V =
    1/3
    So· h ,

    где V — объем пирамиды, So — площадь основания пирамиды, h — длина высоты пирамиды.

  • Объем цилиндра равняется произведению площади его основания на высоту.
    Формулы для его расчета:
  • V =

    π R2 h

    V =

    So h

Где V — объем цилиндра, So — площадь основания цилиндра, R — радиус цилиндра, h — высота цилиндра, π = 3.141592.

Как сделать процесс подготовки к аттестационному испытанию более легким и эффективным?

Наш образовательный портал предлагает выстроить занятия по-новому. Переходя от простого к сложному, выпускники смогут определить непонятные для себя темы и улучшить собственные знания.

Весь базовый материал по теме «Вычисление площадей и объемов фигур» собран в разделе «Теоретическая справка». Освежив в памяти эту информацию, учащиеся смогут попрактиковаться в решении задач. Большая подборка упражнений как простого, так и экспертного уровня представлена в разделе «Каталог». База заданий регулярно дополняется.

Решать задачи на вычисление объемов фигур или на построение сечения геометрических фигур школьники могут в режиме онлайн. Функционал образовательного сайта «Школково» позволяет сохранять упражнения в разделе «Избранное». Благодаря этому учащиеся смогут вернуться к задаче необходимое количество раз и обсудить ход ее решения со школьным учителем или репетитором.

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Данное занятие может быть проведено после изучения формул объемов многогранников на уроках геометрии в 11-м классе или в рамках элективного курса по подготовке к ЕГЭ. Материал также доступен и учащимся 10-го класса (во 2-м полугодии).

Цели занятия:

  • показать примеры задач, аналогичных заданиям ЕГЭ по математике базового уровня и первой части профильного уровня;
  • повторить теоретический материал, связанный с площадями фигур, со свойствами многогранников;
  • отработка навыков самоконтроля;
  • отработка навыков сотрудничества между учащимися.

Оборудование:

  • оборудование для демонстрации презентации Microsoft PowerPoint (компьютер, проектор, экран или доска);
  • раздаточный материал (тексты задач с чертежами);
  • таблица квадратов натуральных чисел.

План занятия

  1. Организационный момент
  2. Устная работа
  3. Решение задач
  4. Работа в группах
  5. Подведение итогов

Ход занятия

Занятие сопровождается демонстрацией презентации.

1. Организационный момент

Cообщение целей занятия, деление класса на группы по 4 человека (можно объединить учащихся, сидящих за соседними партами).

2. Устная работа

Условия задач и правильные ответы демонстрируются на слайдах. Задачи решаются устно, ответы можно спросить у нескольких учащихся, один из них коротко рассказывает путь решения.

Задача 1. (Слайд №4) Площадь треугольника АВС равна 120. КМ – средняя линия, параллельная стороне АВ. Найти площадь четырехугольника АКМВ. (Ответ: 90)

Рисунок 1

Задача 2. (Слайды №5,6) Площадь правильного шестиугольника АВСДЕК равна 60, О – центр шестиугольника. Найти площади треугольника АОВ, треугольника  АВС, треугольника АВЕ, четырехугольника ВСДЕ. (Ответ: 10; 10; 20; 30)

Рисунок 2

Задача 3.лайд №7) Площадь грани прямоугольного параллелепипеда равна 15. Ребро, перпендикулярное этой грани, равно 6. Найти объем параллелепипеда. (Ответ: 90)

Рисунок 3

Задача 4. (Слайд №8) Во сколько раз увеличится объем куба, если его ребро увеличить в 5 раз? (Ответ:  125)

Рисунок 4

Задача 5. (Слайд №9) В правильной треугольной пирамиде МАВС О – точка пересечения медиан основания. Площадь треугольника АВС равна 5, а объем пирамиды – 35. Найти длину отрезка МО. (Ответ: 21)

Рисунок 5

Задача 6. (Слайд №10) Как изменится объем пятиугольной пирамиды, если её высоту увеличить в 4 раза? (Ответ: увеличится в 4 раза)

Рисунок 6

Задача 7. (Слайд №11) В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды составил 20 см. На какой высоте будет находиться уровень воды, если ее перелить в другой сосуд такой же формы, у которого сторона основания в 2 раза больше, чем у первого? (Ответ: 5 см)

Рисунок 7

При подведении итогов устной работы необходимо обратить внимание на формулы для вычисления объемов призмы и пирамиды.

3. Решение задач

Чертежи заранее сделаны на доске, каждый ученик получает заготовку с чертежами (Приложение 1). Учащиеся у доски записывают краткие решения, сопровождая их устными пояснениями. Также можно использовать слайды №13, 14, 15.

Задача 8. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 6 и 3. Объем параллелепипеда равен 108. Найти его диагональ.

Рисунок 8

Задача 9. В сосуд, имеющий форму правильной треугольной призмы, налили 1000 см3 воды и погрузили в воду деталь. При этом  уровень воды поднялся с отметки 25 см до отметки 27 см. Найти объем детали. Ответ выразить в см3.

Рисунок 9

Задача 10. Объем треугольной пирамиды SABC равен 15. Плоскость проходит через сторону АВ основания этой пирамиды и пересекает противоположное боковое ребро в точке D, делящей ребро SC в отношении 1 : 2, считая от вершины S. Найти объем пирамиды DABC.

Рисунок 10

4. Работа в группах

Каждая группа получает набор задач (Приложение 2), к которым надо записать краткие решения. После истечения отведенного времени проверяются ответы, представители групп могут прокомментировать ход решения задач. В это время чертежи демонстрируются на слайдах №17, 18, 19. Для быстрой проверки можно использовать слайд №20. После этого листы с решениями сдаются учителю.

5. Подведение итогов

При подведении итогов следует обратить внимание на две основные формулы объемов и их частные случаи, а также на отношение объемов подобных тел (слайд 22).

Задача. (Слайд №23) Боковые ребра правильной треугольной пирамиды взаимно перпендикулярны и равны 6. Найти объем пирамиды. (Ответ: 36)

При решении этой задачи очень важно обратить внимание на метод решения. Если тетраэдр перевернуть, то задачу можно решить устно.

Задача. (Слайды №24, 25) Объем тетраэдра равен 12. Найти объем многогранника, вершинами которого являются середины сторон данного тетраэдра. (Ответ: 6)

6. Домашнее задание (Приложение 3)

Литература

  1. Ященко И. В. ЕГЭ: 4000 задач с ответами по математике. Все задания «Закрытый сегмент». Базовый и профильный уровни. – М: Издательство «Экзамен», 2020.
  2. Балаян Э. Н. Геометрия: задачи на готовых чертежах для подготовки к ЕГЭ: 10-11 классы. – Ростов н/Д: Феникс, 2018.
  3. Материалы сайта: https://math-ege.sdamgia.ru/

Список приложений

  • Приложение 1 – задачи для работы в классе
  • Приложение 2 – задачи для работы в группах
  • Приложение 3 – домашнее задание
  • Приложение 4 – ПРЕЗЕНТАЦИЯ

1)Аквариум имеет форму прямоугольного

параллелепипеда с размерами 80 см × 30 см ×

40 см. Сколько литров составляет объём

аквариума? В одном литре 1000 кубических

сантиметров.

2)Через точку, делящую высоту конуса в

отношении 1:3, считая от вершины, проведена

плоскость, параллельная основанию. Найдите

объём этого конуса, если объём конуса,

отсекаемого от данного конуса проведённой

плоскостью, равен 5.

3)Два ребра прямоугольного

параллелепипеда равны 8 и 5,

а объём параллелепипеда равен 280.

Найдите площадь поверхности этого

параллелепипеда.

4)Даны две коробки, имеющие форму

правильной четырёхугольной призмы,

стоящей на основании. Первая коробка

в четыре раза ниже второй, а вторая

в полтора раза шире первой. Во сколько раз

объём второй коробки больше объёма

первой?

5)Сторона основания правильной треугольной

призмы ABCA1B1C1 равна 2, а высота этой

призмы равна 4

3. Найдите объём призмы

АВСА

1

В

1

С

1

6)Объём конуса равен 24π, а его высота

равна 8. Найдите радиус основания конуса.

7)Вода в сосуде цилиндрической формы

находится на уровне h= 80 см. На каком

уровне окажется вода, если её перелить в

другой цилиндрический сосуд, у которого

радиус основания вдвое больше, чем у

первого? Ответ дайте

в сантиметрах.

8) В бак, имеющий форму прямой призмы,

налито 12 л воды. После полного погружения в

воду детали уровень воды

в баке увеличился в 1,5 раза. Найдите объём

детали. Ответ дайте в кубических сантиметрах,

зная, что в одном литре 1000 кубических

сантиметров.

9)Даны два цилиндра. Радиус основания и

высота первого цилиндра равны

соответственно 2 и 6,

а второго — 6 и 4. Во сколько раз объём

второго цилиндра больше объёма первого?

10)Даны два конуса. Радиус основания и

высота первого конуса равны соответственно 3

и 2, а второго — 2 и 3. Во сколько раз объём

первого конуса больше объёма второго?

11)В бак, имеющий форму прямой призмы,

налито 5 л воды. После полного погружения в

воду детали уровень воды

в баке поднялся в 1,4 раза. Найдите объём

детали. Ответ дайте в кубических сантиметрах,

зная, что в одном литре

1000 кубических сантиметров.

12)Даны два конуса. Радиус основания и

образующая первого конуса равны

соответственно 2 и 5,

а второго — 5 и 6. Во сколько раз площадь

боковой поверхности второго конуса больше

площади боковой поверхности первого

13)Даны два шара с радиусами 5 и 1. Во

сколько раз объём большего шара больше

объёма меньшего?

14)В сосуде, имеющем форму конуса, уровень

жидкости достигает 1/2 высоты. Объём сосуда

120 мл. Чему равен объём налитой жидкости?

Ответ дайте в миллилитрах.

15)Деталь имеет форму изображённого на

рисунке многогранника (все двугранные углы

прямые). Числа на рисунке обозначают длины

рёбер в сантиметрах. Найдите объём этой

детали. Ответ дайте в кубических сантиметрах.

16)Объём конуса равен 25π, а его высота

равна 3. Найдите радиус основания конуса

Прямоугольный параллелепипед

1. Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2 и 6. Объем па­рал­ле­ле­пи­пе­да равен 48. Най­ди­те тре­тье ребро па­рал­ле­ле­пи­пе­да, вы­хо­дя­щее из той же вер­ши­ны.

За­да­ние 13 № 27079

По­яс­не­ние.

Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равен про­из­ве­де­нию его из­ме­ре­ний. По­это­му, если x — ис­ко­мое ребро, то 2  6  x = 48, от­ку­да x = 4.

Ответ: 4.

Ответ: 4

27079

4

2. Най­ди­те объем мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке (все дву­гран­ные углы пря­мые).

За­да­ние 13 № 27191

По­яс­не­ние.

Объем дан­но­го мно­го­гран­ни­ка равен раз­но­сти объ­е­мов па­рал­ле­ле­пи­пе­дов со сто­ро­на­ми 5, 2, 4 и 1, 2, 2:

.

Ответ: 36.

Ответ: 36

27191

36

3. Объем па­рал­ле­ле­пи­пе­да равен 4,5. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды .

За­да­ние 13 № 27209

По­яс­не­ние.

Ис­ко­мый объем равен раз­но­сти объ­е­мов па­рал­ле­ле­пи­пе­да со сто­ро­на­ми , и и че­ты­рех пи­ра­мид, ос­но­ва­ния ко­то­рых яв­ля­ют­ся гра­ня­ми дан­ной тре­уголь­ной пи­ра­ми­ды:

Ответ: 1,5.

Ответ: 1,5

27209

1,5

За­да­ние 13 № 245339

По­яс­не­ние.

Ос­но­ва­ни­ем пи­ра­ми­ды, объем ко­то­рой нужно найти, яв­ля­ет­ся по­ло­ви­на бо­ко­вой грани па­рел­ле­ле­пи­пе­да, а вы­со­той пи­ра­ми­ды яв­ля­ет­ся ребро па­рал­ле­ле­пи­пе­да . По­это­му

Ответ: 10.

Ответ: 10

245339

10

9. В бак, име­ю­щий форму пра­виль­ной четырёхуголь­ной приз­мы со сто­ро­ной ос­но­ва­ния, рав­ной 20 см, на­ли­та жид­кость. Для того чтобы из­ме­рить объём де­та­ли слож­ной формы, её пол­но­стью по­гру­жа­ют в эту жид­кость. Най­ди­те объём де­та­ли, если уро­вень жид­ко­сти в баке под­нял­ся на 20 см. Ответ дайте в ку­би­че­ских сан­ти­мет­рах.

За­да­ние 13 № 506456

По­яс­не­ние.

Объем вы­тес­нен­ной жид­ко­сти равен объ­е­му де­та­ли (закон Ар­хи­ме­да). Уро­вень жид­ко­сти под­нял­ся на h=20 см, сто­ро­на ос­но­ва­ния a=20 см, зна­чит вы­тес­нен­ный объем будет равен Най­ден­ный объём яв­ля­ет­ся объёмом де­та­ли.

Ответ: 8000.

Ответ: 8000

506456

8000

Источник: Апро­ба­ция ба­зо­во­го ЕГЭ по ма­те­ма­ти­ке, 13—17 октября: ва­ри­ант 166084.

10. Плос­кость, про­хо­дя­щая через три точки A, B и C, раз­би­ва­ет куб на два мно­го­гран­ни­ка. Сколь­ко гра­ней у мно­го­гран­ни­ка, у ко­то­ро­го боль­ше гра­ней?

За­да­ние 13 № 506659

По­яс­не­ние.

В се­че­нии по­лу­ча­ет­ся четырёхуголь­ник. У одной отсечённой фи­гу­ры 15 рёбер и 7 гра­ней, у вто­рой — 9 рёбер и 5 гра­ней. Сле­до­ва­тель­но, у ис­ко­мой фи­гу­ры 7 гра­ней.

Ответ: 7.

Ответ: 7

506659

7

Источник: Апро­ба­ция ба­зо­во­го ЕГЭ по ма­те­ма­ти­ке, 13—17 октября: ва­ри­ант 152742.

11. В бак, име­ю­щий форму пря­мой приз­мы, на­ли­то 12 л воды. После пол­но­го по­гру­же­ния в воду де­та­ли, уро­вень воды в баке под­нял­ся в 1,5 раза. Най­ди­те объём де­та­ли. Ответ дайте в ку­би­че­ских сан­ти­мет­рах, зная, что в одном литре 1000 ку­би­че­ских сан­ти­мет­ров.

6

В сосуд, име­ю­щий форму пра­виль­ной тре­уголь­ной приз­мы, на­ли­ли воду. Уро­вень воды до­сти­га­ет 80 см. На какой вы­со­те будет на­хо­дить­ся уро­вень воды, если ее пе­ре­лить в дру­гой такой же сосуд, у ко­то­ро­го сто­ро­на ос­но­ва­ния в 4 раза боль­ше, чем у пер­во­го? Ответ вы­ра­зи­те в см.

10. Через сред­нюю линию ос­но­ва­ния тре­уголь­ной приз­мы, объем ко­то­рой равен 32, про­ве­де­на плос­кость, па­рал­лель­ная бо­ко­во­му ребру. Най­ди­те объем от­се­чен­ной тре­уголь­ной приз­мы.

11

Через сред­нюю линию ос­но­ва­ния тре­уголь­ной приз­мы про­ве­де­на плос­кость, па­рал­лель­ная бо­ко­во­му ребру. Объем от­се­чен­ной тре­уголь­ной приз­мы равен 5. Най­ди­те объем ис­ход­ной приз­мы.

12. От тре­уголь­ной приз­мы, объем ко­то­рой равен 6, от­се­че­на тре­уголь­ная пи­ра­ми­да плос­ко­стью, про­хо­дя­щей через сто­ро­ну од­но­го ос­но­ва­ния и про­ти­во­по­лож­ную вер­ши­ну дру­го­го ос­но­ва­ния. Най­ди­те объем остав­шей­ся части.

17. Объем куба равен 12. Най­ди­те объем тре­уголь­ной приз­мы, от­се­ка­е­мой от него плос­ко­стью, про­хо­дя­щей через се­ре­ди­ны двух ребер, вы­хо­дя­щих из одной вер­ши­ны и па­рал­лель­ной тре­тье­му ребру, вы­хо­дя­ще­му из этой же вер­ши­ны.

За­да­ние 13 № 27183

18. Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки пра­виль­ной тре­уголь­ной приз­мы, пло­щадь ос­но­ва­ния ко­то­рой равна 2, а бо­ко­вое ребро равно 3.

 21. Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки пра­виль­ной ше­сти­уголь­ной приз­мы , пло­щадь ос­но­ва­ния ко­то­рой равна 4, а бо­ко­вое ребро равно 3.

22. Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки пра­виль­ной ше­сти­уголь­ной приз­мы , пло­щадь ос­но­ва­ния ко­то­рой равна 6, а бо­ко­вое ребро равно 3.

23. Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки пра­виль­ной ше­сти­уголь­ной приз­мы, пло­щадь ос­но­ва­ния ко­то­рой равна 6, а бо­ко­вое ребро равно 2.

24. Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки пра­виль­ной ше­сти­уголь­ной приз­мы, пло­щадь ос­но­ва­ния ко­то­рой равна 6, а бо­ко­вое ребро равно 2.

1.

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC с вер­ши­ной S бис­сек­три­сы тре­уголь­ни­ка ABC пе­ре­се­ка­ют­ся в точке O. Пло­щадь тре­уголь­ни­ка ABC равна 2; объем пи­ра­ми­ды равен 6. Най­ди­те длину от­рез­ка OS.

16. Объем па­рал­ле­ле­пи­пе­да равен 9. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды.

17

Во сколь­ко раз уве­ли­чит­ся объем пра­виль­но­го тет­ра­эд­ра, если все его ребра уве­ли­чить в два раза?

18. Во сколь­ко раз уве­ли­чит­ся объем пи­ра­ми­ды, если ее вы­со­ту уве­ли­чить в че­ты­ре раза?

19. Объем тре­уголь­ной пи­ра­ми­ды , яв­ля­ю­щей­ся ча­стью пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды , равен 1. Най­ди­те объем ше­сти­уголь­ной пи­ра­ми­ды.

20. Объем пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды равен 12. Точка D – се­ре­ди­на ребра . Най­ди­те объем тре­уголь­ной пи­ра­ми­ды .

21. От тре­уголь­ной пи­ра­ми­ды, объем ко­то­рой равен 12, от­се­че­на тре­уголь­ная пи­ра­ми­да плос­ко­стью, про­хо­дя­щей через вер­ши­ну пи­ра­ми­ды и сред­нюю линию

    Помощь по заданию    Сообщить об ошибке

26

Объем па­рал­ле­ле­пи­пе­да равен 12. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды .

27. Объем куба равен 12. Най­ди­те объем че­ты­рех­уголь­ной пи­ра­ми­ды, ос­но­ва­ни­ем ко­то­рой яв­ля­ет­ся грань куба, а вер­ши­ной — центр куба.

28. Най­ди­те объем па­рал­ле­ле­пи­пе­да , если объем тре­уголь­ной пи­ра­ми­ды равен 3.

36. Пи­ра­ми­да Сно­фру имеет форму пра­виль­ной четырёхуголь­ной пи­ра­ми­ды, сто­ро­на ос­но­ва­ния ко­то­рой равна 220 м, а вы­со­та — 104 м. Сто­ро­на ос­но­ва­ния точ­ной му­зей­ной копии этой пи­ра­ми­ды равна 44 см. Най­ди­те вы­со­ту му­зей­ной копии. Ответ дайте в сан­ти­мет­рах.

7. Три ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 4, 6, 9. Най­ди­те ребро рав­но­ве­ли­ко­го ему куба.

8. Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2, 4. Диа­го­наль па­рал­ле­ле­пи­пе­да равна 6. Най­ди­те объем па­рал­ле­ле­пи­пе­да.

9. Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2, 3. Объем па­рал­ле­ле­пи­пе­да равен 36. Най­ди­те его диа­го­наль.

30. В ос­но­ва­нии пря­мой приз­мы лежит пря­мо­уголь­ный тре­уголь­ник, один из ка­те­тов ко­то­ро­го равен 4, а ги­по­те­ну­за равна 5. Най­ди­те объём приз­мы, если её вы­со­та равна 3.

31. В ос­но­ва­нии пря­мой приз­мы лежит пря­мо­уголь­ный тре­уголь­ник, один из ка­те­тов ко­то­ро­го равен 4, а ги­по­те­ну­за равна 6. Най­ди­те объём приз­мы, если её вы­со­та равна 6.

32. В ос­но­ва­нии пря­мой приз­мы лежит пря­мо­уголь­ный тре­уголь­ник, один из ка­те­тов ко­то­ро­го равен 5, а ги­по­те­ну­за равна 5√2. Най­ди­те объём приз­мы, если её вы­со­та равна 4.

33. В ос­но­ва­нии пря­мой приз­мы лежит пря­мо­уголь­ный тре­уголь­ник, один из ка­те­тов ко­то­ро­го равен 2, а ги­по­те­ну­за равна √15. Най­ди­те объём приз­мы, если её вы­со­та равна 3.

Like this post? Please share to your friends:
  • Задачи на объем егэ 2022
  • Задачи на обратную транскрипцию у вирусов егэ
  • Задачи на обмен веществ егэ биология
  • Задачи на нуклеотиды егэ
  • Задачи на неполное разложение химия егэ