Задачи на планиметрию егэ с решением профиль


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

В треугольнике АВС проведена биссектриса АМ. Прямая, проходящая через вершину В перпендикулярно АМ, пересекает сторону АС в точке N. АВ = 6; ВС = 5; АС = 9.

а)  докажите, что биссектриса угла С делит отрезок МN пополам

б)  пусть Р  — точка пересечения биссектрис треугольника АВС. Найдите отношение АР : РN.

Источник: ЕГЭ по математике 19.06.2014. Основная волна, резервная волна. Запад. Вариант 1


2

Диагональ AC прямоугольника ABCD с центром O образует со стороной AB угол 30°. Точка E лежит вне прямоугольника, причём ∠BEC = 120°.

а)  Докажите, что ∠CBE = ∠COE.

б)  Прямая OE пересекает сторону AD прямоугольника в точке K. Найдите EK, если известно, что BE = 40 и CE  =  24.


3

Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M. Известно, что AC  =  3MB.

а)  Докажите, что треугольник ABC прямоугольный.

б)  Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 12.


4

На сторонах AC и BC треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M  — середина стороны AB.

а)  Докажите, что CM= дробь: числитель: 1, знаменатель: 2 конец дроби DK.

б)  Найдите расстояние от точки M до центров квадратов, если AC  =  10, BC  =  32 и ∠ACB  =  30°.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016


5

На гипотенузу AB прямоугольного треугольника ABC опустили высоту CH. Из точки H на катеты опустили перпендикуляры HK и HE.

а)  Докажите, что точки A, B, K и E лежат на одной окружности.

б)  Найдите радиус этой окружности, если AB = 12, CH = 5.

Пройти тестирование по этим заданиям

B этой статье:

Kак научиться решать задачи ЕГЭ по планиметрии? Пошаговая методика.

Полезные факты и классические схемы для решения задач по планиметрии.

Приемы и секреты решения задач по планиметрии.

«B учебнике нет, а на экзамене есть». На какие теоремы стоит обратить внимание.

Решения заданий № 16 Профильного ЕГЭ по математике.

Mногие старшеклассники считают, что могут обойтись без знания планиметрии. Что, занимаясь только алгеброй, смогут сдать ЕГЭ на высокие баллы и поступить в выбранный вуз.

Работает ли эта стратегия?

Oтвет преподавателей-экспертов: нет, не работает. На ЕГЭ вам может встретиться сложное неравенство (задание 15) и тем более — сложная «экономическая» задача. Так было в 2018 году. И всё, баллов фатально не хватает! Тех самых баллов, которые можно было легко получить за планиметрическую задачу, не хватает для поступления!

Cтоит учесть, что задачи вариантов ЕГЭ по планиметрии и стереометрии бывают намного проще, чем по алгебре.

И сейчас — самое главное о задаче 16 (Планиметрия).

1) Cамое важное — правильная методика подготовки. Не нужно начинать с реальных задач ЕГЭ. Cначала — теория. Cвойства геометрических фигур. Oпределения и теоремы. Bсе это вы найдете в нашем ЕГЭ-Cправочнике. Ничего лишнего там нет. Учите наизусть.

Лучшая тренировка на этом этапе — задания №3 и №6 из первой части ЕГЭ по математике

2) Задача 16 Профильного ЕГЭ по математике оценивается в 3 первичных балла и состоит из двух пунктов. Первый пункт — доказательство. Здесь нам помогут наши «домашние заготовки» — полезные факты, которые мы учимся доказывать задолго до экзамена. A на ЕГЭ остается только вспомнить и записать решение.

Bот список из 32 полезных фактов — и их доказательства. Да, это первый этап освоения планиметрии. Доказав все эти полезные факты, вы обнаружите, что пункт (а) задачи 16 перестал быть для вас проблемой.

3) Oказывается, многие задачи по планиметрии строятся по одной из так называемых классических схем. Учите их наизусть! И конечно, доказывайте! Лучше всего начинать именно с задач на доказательство.

4) Есть такие теоремы, которые вроде и входят в школьную программу — а попробуй их найди в учебнике. Например, теорема о секущей и касательной или свойство биссектрисы. A вы их знаете? Если нет — выучите.

5) Любая задача из варианта ЕГЭ решается без сложных формул. И если вы не помните теорему Чевы, теорему Mенелая и другую экзотику — вам это и не понадобится. Только то, что есть в нашем ЕГЭ-Cправочнике. Зато знать это надо наизусть.

6) Геометрия, конечно, это не алгебра, и готовых алгоритмов здесь намного меньше. Зато, когда вы отлично знаете все теоремы, формулы, свойства геометрических фигур, — у вас в голове выстраивается цепочка ассоциаций. Например, в условии задачи дан радиус вписанной окружности. B каких формулах он встречается? — Правильно, в теореме синусов и в одной из формул для площади треугольника.

7) Если вы вдруг не можете решить пункт (а), но решили пункт (б), вы получите за него один балл. A это лучше, чем ничего. Но вообще пункт (а), как правило, бывает простым. Иногда вопрос в пункте (а) очень простой. И это не только для того, чтобы вы получили «утешительный» балл. Помните, что пункт (а) часто содержит подсказку, идею для решения пункта (б). Так, например, было на Досрочном ЕГЭ. Простейший пункт (а), и в нем «спрятана» идея: в пункте (б) ищите вписанные в окружность четырехугольники.

Перейдем к практике. Разберем несколько реальных задач Профильного ЕГЭ под номером 16. Больше планиметрии — на интенсивах ЕГЭ-Cтудии и на Oнлайн-курсе.

Начнем с интересного приема. Бывает, что в задаче значимые отрезки пересекаются вот такой буквой Ж. Или вот такой буквой Х. Хорошо, если мы можем перестроить это Ж или Х в треугольник. Например, провести какие-нибудь отрезки, параллельные и равные (или пропорциональные) нашим.

1. (ЕГЭ — 2017)

Oснования трапеции равны 4 и 9, а её диагонали равны 5 и 12.

а) Докажите, что диагонали трапеции перпендикулярны.

б) Найдите высоту трапеции.

Посмотреть решение

Следующая задача — на применение одной из наших классических схем

2. B остроугольном треугольнике KMN проведены высоты KB и NA.

а) Докажите, что угол ABK равен углу ANK.

б) Найдите радиус окружности, описанной около треугольника ABM, если известно, что KN=8sqrt{2 } и angle KMN=45^circ.

Посмотреть решение

3. (ЕГЭ-2020, Демовариант).

Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.

а) Докажите, что прямые AD и BC параллельны.

б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.

Посмотреть решение

B следующей задаче больше алгебры, чем геометрии. Действительно, бывает так, что планиметрическая задача быстро сводится к уравнению или системе уравнений.

4. Параллелограмм ABCD и окружность расположены так, что сторона AB касается окружности, CD является хордой, а стороны DA и BC пересекают окружность в точках P и Q соответственно.

а) Докажите, что около четырехугольника ABQP можно описать окружность.

б) Найдите длину отрезка DQ, если известно, что AP = a, BC = b, BQ = c.

Посмотреть решение

5. B прямоугольном треугольнике ABC точки M и N — середины гипотенузы AB и катета BC соответственно. Биссектриса угла BAC пересекает прямую MN в точке L.

а) Докажите, что треугольники AML и BLC подобны.

б) Найдите отношение площадей этих треугольников, если cosangle BAC=frac{7}{25}.

Посмотреть решение

Решаем задачи из сборника И. В. Ященко, 2020. Вариант 2, задача 16

Решаем задачи из сборника И. В. Ященко, 2020. Вариант 4, задача 16

Решаем задачи из сборника И. В. Ященко, 2020. Вариант 6, задача 16

Решаем задачи из сборника И. В. Ященко, 2020. Вариант 8, задача 16

Решаем задачи из сборника И. В. Ященко, 2020. Вариант 12, задача 16

Планиметрия. Стрим 10 марта. Разбор домашнего задания

Надеемся, что статья была для вас полезной. Что вы возьметесь за планиметрию и получите на экзамене необходимые баллы. Удачи вам!

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Задание 16. Планиметрия u0026#8212; профильный ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

16. Задачи по планиметрии


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Задачи по планиметрии прошлых лет


Задание
1

#6325

Уровень задания: Равен ЕГЭ

Окружность проходит через вершины (A, B) и (D) параллелограмма (ABCD). Эта окружность пересекает (BC) в точке (E), а (CD) в точке (K).
а) Докажите, что отрезки (AE) и (AK) равны.
б) Найдите (AD), если известно, что (EC=48), (DK=20), а косинус угла (BAD) равен (0,4).

(ЕГЭ 2018, основная волна)

а)
Так как противоположные углы параллелограмма равны, то (angle
ABE=angle ADK)
. Так как равные вписанные углы опираются на равные дуги и на равные хорды, то (AE=AK), чтд.

б) Введем обозначения: (AD=x), (CK=y). Проведем отрезок (ED). Тогда (ABED) – трапеция, причем, так как она вписана в окружность, она равнобедренная. Следовательно, (ED=y+20).


Запишем теорему косинусов для (triangle ECD): [(y+20)^2=48^2+(y+20)^2-2cdot 48cdot (y+20)cdot 0,4
quadRightarrowquad y=40]
Следовательно, (AB=60).
Так как (angle B+angle C=180^circ) по свойству параллелограмма, то их косинусы противоположны, следовательно, (cos angle
B=-0,4)
.
Так как (AE=AK), то найдем (AE^2) и (AK^2) по теореме косинусов из (triangle ABE) и (triangle ADK) и приравняем: [60^2+(x-48)^2-2cdot 60cdot (x-48)cdot (-0,4)=x^2+20^2-2cdot 20cdot x
cdot (-0,4) quadRightarrowquad x=50]
Следовательно, (AD=50).

Ответ:

б) 50


Задание
2

#3983

Уровень задания: Равен ЕГЭ

Дан тупоугольный треугольник (ABC) с тупым (angle ABC). Продолжения высот этого треугольника пересекаются в точке (H). (angle AHC=60^circ).

а) Докажите, что (angle ABC=120^circ).

б) Найдите (BH), если (AB=6), (BC=10).

(ЕГЭ 2018, досрочная волна)

а) Заметим, что в тупоугольном треугольника в одной точке пересекаются продолжения высот. Рассмотрим чертеж:
Рассмотрим четырехугольник (A_1BC_1H). В нем (angle A_1=angle
C_1=90^circ)
. Следовательно, (angle A_1BC_1=180^circ-angle
A_1HC_1=180^circ-60^circ=120^circ)
.
Так как (angle A_1BC_1) и (angle ABC) – вертикальные, то они равны, значит, (angle ABC=120^circ).

б) Рассмотрим прямоугольный (triangle CHA_1). Так как (angle
CHA_1=60^circ)
, то (angle HCA_1=30^circ).
Аналогично (angle HAC_1=30^circ).
Тогда из прямоугольного (triangle C_1CB) катет (C_1B) равен половине гипотенузы (CB), так как лежит против угла в (30^circ), значит, (C_1B=5).
Аналогично (A_1B=0,5cdot AB=3).
Рассмотрим снова (triangle HCA_1). Так как [dfrac{sqrt3}3=mathrm{tg},30^circ=dfrac{HA_1}{CA_1}quadrightarrowquad
HA_1=dfrac{13}{sqrt3}]
Тогда по теореме Пифагора из прямоугольного (triangle HA_1B): [BH=sqrt{3^2+left(dfrac{13}{sqrt3}right)^2}=dfrac{14}{sqrt3}]

Ответ:

б) (frac{14}{sqrt3})


Задание
3

#4030

Уровень задания: Равен ЕГЭ

Медианы (AA_1, BB_1, CC_1) треугольника (ABC) пересекаются в точке (M). Известно, что (AC=3MB).
а) Докажите, что треугольник (ABC) прямоугольный.
б) Найдите сумму квадратов медиан (AA_1) и (CC_1), если известно, что (AC=12).

(ЕГЭ 2018, СтатГрад, 19 апреля 2018)

а) Пусть (BM=x), тогда (AC=3x). Так как медианы точкой пересечения делятся в отношении (2:1), считая от вершины, то (MB_1=0,5x), следовательно, (BB_1=1,5x). Следовательно, (AB_1=B_1C=BB_1=1,5x). Следовательно, (triangle ABC) прямоугольный с (angle B=90^circ).

б) Обозначим (AB=2a), (BC=2b).

Тогда по теореме Пифагора [begin{aligned}
&AA_1^2=4a^2+b^2\
&CC_1^2=a^2+4b^2 end{aligned}]
Отсюда (AA_1^2+CC_1^2=5(a^2+b^2)).
Так как по теореме Пифагора из (triangle ABC): (4a^2+4b^2=12^2), то (a^2+b^2=36). Следовательно, [AA_1^2+CC_1^2=5(a^2+b^2)=5cdot 36=180]

Ответ:

б) 180


Задание
4

#3982

Уровень задания: Равен ЕГЭ

В выпуклом четырехугольнике (ABCD): (AB=3), (BC=5), (CD=5), (AD=8), (AC=7).

а) Докажите, что около этого четырехугольника можно описать окружность.

б) Найдите диагональ (BD).

(ЕГЭ 2018, досрочная волна, резерв)

а) Если в выпуклом четырехугольнике сумма противоположных углов равна (180^circ), то около него можно описать окружность. Докажем, что (angle B+angle D=180^circ).
По теореме косинусов для (triangle ABC): [cosangle B=
dfrac{AB^2+BC^2-AC^2}{2cdot ABcdot BC}=-dfrac12]
По теореме косинусов для (triangle ADC): [cosangle D=dfrac{AD^2+CD^2-AC^2}{2cdot ADcdot CD}=dfrac12] Так как (alpha+beta=180^circ) равносильно (cosalpha=-cosbeta), то из (cosangle B=-cos angle D) следует, что (angle B+angle
D=180^circ)
.

б) Если около (ABCD) можно описать окружность, то и (angle A+angle
C=180^circ)
.
Обозначим (BD=x). Тогда, также используя теорему косинусов для (triangle ABD) и (triangle CBD), можно сказать: [begin{cases}
cos angle A=dfrac{9+64-x^2}{2cdot 3cdot 8} \[2ex]
cos angle C=dfrac{25+25-x^2}{2cdot 5cdot 5} end{cases}]
Также имеем, что (cosangle A=-cosangle C), следовательно, [begin{aligned}
&dfrac{9+64-x^2}{2cdot 3cdot 8}=-dfrac{25+25-x^2}{2cdot 5cdot
5} quadLeftrightarrowquad dfrac{73-x^2}{24}=dfrac{x^2-50}{25}
quadLeftrightarrow\[2ex]
&Leftrightarrowquad 73cdot 25-25x^2=24x^2-50cdot 24
quadLeftrightarrow\[2ex]
&Leftrightarrowquad x^2=dfrac{73cdot 25+50cdot 24}{49}=
dfrac{25(73+48)}{49}=dfrac{25cdot 121}{49} end{aligned}]
Отсюда [x=dfrac{5cdot 11}{7}=dfrac{55}7]

Ответ:

б) (frac{55}7)


Задание
5

#4011

Уровень задания: Равен ЕГЭ

Окружность с центром (O) проходит через вершины (B) и (C) большей боковой стороны прямоугольной трапеции (ABCD) и касается боковой стороны (AD) в точке (K).
а) Докажите, что угол (BOC) вдвое больше угла (BKC).
б) Найдите расстояние от точки (K) до прямой (BC), если основания трапеции (AB) и (CD) равны 4 и 9 соответственно.

(ЕГЭ 2018, СтатГрад, 26 января 2018)

а) Угол (BOC) – центральный, опирающийся на дугу (BC); угол (BKC) – вписанный и опирающийся на ту же дугу, следовательно, (angle
BOC=2angle BKC)
, чтд.

б) Проведем (KHperp BC). Так как угол между касательной и хордой, выходящей из точки касания, равен половине дуги, заключенной между ними, то (angle DKC=0,5buildrelsmileover{KC}=angle KBC). Аналогично (angle AKB=angle KCB):

Следовательно, (triangle AKBsim triangle KHC, triangle KDCsim
triangle KHB)
как прямоугольные по острому углу. Тогда: [begin{aligned}
&dfrac{KB}{KC}=dfrac{KH}{CD}\[2ex]
&dfrac{KC}{KB}=dfrac{KH}{AB}end{aligned}]
Отсюда [1=dfrac{KH^2}{CDcdot AB}quadRightarrowquad KH=sqrt{CDcdot AB}=sqrt{
4cdot 9}=6]

Ответ:

б) 6


Задание
6

#3276

Уровень задания: Равен ЕГЭ

Прямая, проходящая через середину (M) гипотенузы (AB) прямоугольного треугольника (ABC), перпендикулярна (CM) и пересекает катет (AC) в точке (K). При этом (AK:KC=1:2).

а) Докажите, что (angle BAC=30^circ).

б) Пусть прямые (MK) и (BC) пересекаются в точке (P), а прямые (AP) и (BK) – в точке (Q). Найдите (KQ), если (BC=2sqrt3).

(ЕГЭ 2017, официальный пробный 21.04.2017)

а) Пусть (AK=x, KC=2x). Проведем (BLparallel MK). Тогда по теореме Фалеса [dfrac{BM}{MA}=dfrac11=dfrac{LK}{KA}
quadRightarrowquad LK=KA=x quadRightarrow quad CL=x.]

Тогда также по теореме Фалеса: [dfrac{CL}{LK}=dfrac11=dfrac{CO}{OM} quadRightarrowquad CO=OM.] Следовательно, (BO) – медиана и высота ((MKperp CM, BOparallel
MK quadRightarrowquad BOperp CM)
), следовательно, (triangle
CBM)
равнобедренный и (CB=BM). Следовательно, (CB=frac12BA). Так как катет, равный половине гипотенузы, лежит против угла в (30^circ), то (angle BAC=30^circ).

б) Рассмотрим (triangle PMC): (angle PMC=90^circ). Так как (BM=BC), то (BM=BC=BP), то есть (B) – середина (CP) ((angle
BCM=angle BMC=60^circ)
, следовательно, (angle CPM=30^circ=angle
PMB)
, следовательно, (BP=BM)).
Проведем (BSparallel AP). Тогда (BS) – средняя линия треугольника (APC). Значит, (CS=SA).

Из прямоугольного (triangle ABC): [mathrm{tg},30^circ=dfrac{BC}{AC} quadRightarrowquad AC=
BCcdot sqrt3=6.]
Следовательно, (CS=SA=3), а так как (CK:KA=2:1), то (KA=2) и (SK=1).
Заметим, что (triangle BKSsim triangle QKA) по двум углам ((angle BKS=angle QKA) как вертикальные, (angle BSK=angle QAK) как накрест лежащие при (AQparallel BS) и (SA) секущей). Следовательно, [dfrac{SK}{AK}=dfrac12=dfrac{BK}{KQ} quadRightarrowquad KQ=2BK.] Найдем (BK).
По теореме Пифагора из (triangle BKC): [BK=sqrt{BC^2+KC^2}=sqrt{(2sqrt3)^2+4^2}=2sqrt{7}] Следовательно, [KQ=4sqrt7.]

Ответ:

б) (4sqrt7)


Задание
7

#3249

Уровень задания: Равен ЕГЭ

В трапецию (ABCD) с основаниями (AD) и (BC) вписана окружность с центром в (O).

а) Докажите, что (sin angle AOD=sinangle BOC).

б) Найдите площадь трапеции, если (angle BAD=90^circ), а основания равны (5) и (7).

(ЕГЭ 2017, резервный день)

а) Так как окружность вписана в трапецию, то ее центр лежит на пересечении биссектрис углов трапеции.

Так как (angle A+angle B=180^circ), то (frac12cdot (angle
A+angle B)=90^circ)
. Следовательно, (angle
AOB=180^circ-90^circ=90^circ)
.
Аналогично доказывается, что (angle COD=90^circ).
Следовательно, (angle BOC+angle
AOD=360^circ-90^circ-90^circ=180^circ)
. Следовательно, (sin
angle BOC=sin angle AOD)
.

б) Так как в трапеции (angle A=angle B=90^circ), то (angle
BAO=angle ABO=45^circ)
, следовательно, (triangle AOB) – прямоугольный и равнобедренный.
Пусть (M, N, K, L) – точки касания окружности со сторонами (AB, BC,
CD, AD)
соответственно.
Следовательно, (OMperp AB) как радиус, проведенный в точку касания. Так как (triangle AOB) равнобедренный, то (OM) – медиана, следовательно, (AM=MB). Как отрезки касательных (AM=AL, BM=BN). Следовательно, (AL=AM=BM=BN=x). Пусть также (NC=CK=y), (DL=DK=z). Тогда (x+y=5), (x+z=7).

Тогда (AB=2x) – высота трапеции. Следовательно, нужно найти (x).
Проведем (CHperp AD). Тогда (HD=AD-BC=2), а (CH=AB=2x). Тогда по теореме Пифагора из (triangle GHD): [(2x)^2+2^2=(y+z)^2] Так как (y=5-x), (z=7-x), то получаем уравнение [4x^2+4=(12-2x)^2quadRightarrowquad x=dfrac{35}{12}] Следовательно, площадь трапеции равна [S=dfrac{5+7}2cdot 2x=35.]

Ответ:

б) 35

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Вариант 1 6. Планиметрия

1. Основания трапеции равны 3 и 2. Найдите отрезок, соединяющий середины диагоналей трапеции.

2. Периметр прямоугольника равен 8, а площадь равна 3,5. Найдите диагональ этого прямоугольника.

3. Найдите синус угла АОВ.  В ответе укажите значение синуса, умноженное на 2.

4. Основания равнобедренной трапеции равны 7 и 13, а ее площадь равна 40. Найдите периметр трапеции.

5. Острые углы прямоугольного треугольника равны 53° и 37° . Найдите угол между высотой и медианой, проведёнными из вершины прямого угла. Ответ дайте в градусах.

6. Угол между хордой AB и касательной BC к окружности равен  35°.  Найдите величину меньшей дуги, стягиваемой хордой AB. Ответ дайте в градусах.

7. Около трапеции описана окружность. Периметр трапеции равен 24, средняя линия равна 11. Найдите боковую сторону трапеции.

8. Найдите величину угла АВС.  Ответ дайте в градусах.

9. Угол ACO равен 35°, где O — центр окружности. Его сто­ро­на CA ка­са­ет­ся окружности. Най­ди­те ве­ли­чи­ну мень­шей дуги AB окружности, за­клю­чен­ной внут­ри этого угла. Ответ дайте в градусах.

10. В треугольнике ABC AD — биссектриса, угол C равен 30°, угол BAD равен 22°. Найдите угол ADB. Ответ дайте в градусах.

Вариант 2 6. Планиметрия

В 1. Сторона правильного треугольника равна  Найдите радиус окружности, вписанной в этот треугольник.

2. Две стороны параллелограмма относятся как  9:11, а периметр его равен 40. Найдите большую сторону параллелограмма.

3. Найдите угол ACO, если его сторона CA касается окружности, O — центр окружности, а большая дуга AD окружности, заключенная внутри этого угла, равна 152°. Ответ дайте в градусах.

4. Отрезки AC и BD — диаметры окружности с центром O. Угол AOD равен 66°. Найдите вписанный угол ACB. Ответ дайте в градусах.

5. Радиус окружности, вписанной в правильный треугольник, равен 44. Найдите высоту этого треугольника.

6. Найдите радиус окружности, вписанной в треугольник , считая стороны квадратных клеток равными 1.

7. Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 9 и 4, считая от вершины, противолежащей основанию. Найдите периметр треугольника.

8. Площадь прямоугольного треугольника равна 24. Один из его катетов на 2 больше другого. Найдите меньший катет.

9. Около трапеции описана окружность. Периметр трапеции равен 52, средняя линия равна 21. Найдите боковую сторону трапеции.

10. Радиус окружности, вписанной в правильный треугольник, равен 31. Найдите высоту этого треугольника.

Вариант 3 6. Планиметрия

1. Четырехугольник ABCD вписан в окружность. Угол ABC равен 110°, угол ABD равен 70°. Найдите угол CAD. Ответ дайте в градусах.

2. Найдите радиус окружности, вписанной в правильный треугольник, высота которого равна 6.

3. В треугольнике АВС АС = ВС = 4 , cos ВАС = 0,25.   Найдите высоту АН.

4. В ромбе ABCD угол DAB равен 136°. Най­ди­те угол BDC. Ответ дайте в градусах.

5. В треугольнике АВС угол  С  равен 90°, СН – высота, АС = 3, cos А =  . Найдите ВН.

6. Основания равнобедренной трапеции равны 14 и 26, а ее боковые стороны равны 10. Найдите площадь трапеции.

7. В треугольнике ABC угол C равен 90°, CH — высота, BC = 25, BH = 20. Найдите 

8. Найдите площадь ромба, если его диагонали равны 4 и 12.

9. В треугольнике АВС АС = ВС = 4, угол  С  равен 30°.  Найдите высоту  АН.

10. В треугольнике ABC угол A равен 30°, угол B равен 86°, CD — биссектриса внешнего угла при вершине C, причем точка D лежит на прямой AB. На продолжении стороны AC за точку C выбрана такая точка E, что CE = CB. Найдите угол BDE. Ответ дайте в градусах

Вариант 4 6. Планиметрия

1. В треугольнике ABC угол C равен 90°, CH  — высота, АВ = 15,  tg А = . Найдите BH.

2. Угол ACB равен 42°. Градусная величина дуги AB окружности, не содержащей точек D и E, равна 124°. Найдите угол DAE. Ответ дайте в градусах.

3. Сторона ромба равна 20, острый угол равен 30°. Найдите радиус вписанной окружности этого ромба.

4.Острые углы прямоугольного треугольника равны 24° и 66°. Найдите угол между высотой и медианой, проведенными из вершины прямого угла. Ответ дайте в градусах.

5. Угол между биссектрисой и медианой прямоугольного треугольника, проведенными из вершины прямого угла, равен 20°. Найдите меньший угол прямоугольного треугольника.

6. Отрезки AC и BD — диаметры окружности с центром O. Угол AOD равен 66°. Найдите вписанный угол ACB. Ответ дайте в градусах.

7. Катеты равнобедренного прямоугольного треугольника равны 82 + 41   

Найдите радиус окружности, вписанной в этот треугольник.

8. В остроугольном треугольнике ABC угол A равен 65°. BD и CE — высоты, пересекающиеся в точке O. Найдите угол DOE. Ответ дайте в градусах.

9. В треугольнике АВС угол С равен 90°, СН – высота, ВС = 4,  ВН = 4. Найдите 

10. Радиус окружности, описанной около правильного треугольника, равен 3. Найдите высоту этого треугольника.

Вариант 5 6. Планиметрия

1. Найдите косинус угла  АОВ.  В ответе укажите значение косинуса, умноженное на 2.

2. Два угла вписанного в окружность четырехугольника равны 82° и 58°. Найдите больший из оставшихся углов. Ответ дайте в градусах.

3. В треугольнике АВС угол С равен 90°, СН — высота, ВС = 3, sin А =  . Найдите АН.

4. Хорда AB стягивает дугу окружности в 92°. Найдите угол ABC между этой хордой и касательной к окружности, проведенной через точку B. Ответ дайте в градусах.

5. Катеты равнобедренного прямоугольного треугольника равны  2+ Найдите радиус окружности, вписанной в этот треугольник.

6. Основания равнобедренной трапеции равны 43 и 7. Высота трапеции равна 27. Найдите тангенс острого угла трапеции.

7. Площадь ромба равна 6. Одна из его диагоналей в 3 раза больше другой. Найдите меньшую диагональ.

8.Больший угол равнобедренного треугольника равен 98°. Найдите меньший угол. Ответ дайте в градусах.

9. Чему равен острый вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.

10. Стороны параллелограмма равны 38 и 76. Высота, опущенная на первую сторону, равна 57. Найдите высоту, опущенную на вторую сторону параллелограмма.

Вариант 6 6. Планиметрия

1. Сторона АВ треугольника АВС равна 42. Противолежащий ей угол С равен 150° . Найдите радиус окружности, описанной около этого треугольника.

2. Через концы AB дуги окружности в  114°  проведены касательные AC и BC. Найдите угол ACB. Ответ дайте в градусах.

3. В треугольнике АВС АС=ВС, АН  – высота, АВ=5, sinВАС= .  Найдите 

4. В треугольнике ABC проведена биссектриса AD и AB = AD = CD. Найдите меньший угол треугольника ABC. Ответ дайте в градусах.

5. Отрезки AC и BD — диаметры окружности с центром O. Угол ACB равен 38°. Найдите угол AOD. Ответ дайте в градусах.

6. Основания равнобедренной трапеции равны 7 и 51. Тангенс острого угла равен  Найдите высоту трапеции.

7. В треугольнике ABC угол C равен 90°, АС = 8, cos А =   Найдите АВ.

8. Периметр треугольника равен 76, а радиус вписанной окружности равен 8. Найдите площадь этого треугольника.

9. Стороны параллелограмма равны 9 и 15. Высота, опущенная на первую сторону, равна 10. Найдите высоту, опущенную на вторую сторону параллелограмма.

10. В треугольнике ABC угол ACB равен °, угол B равен °, CD — медиана. Найдите угол ACD. Ответ дайте в градусах.

Вариант 7 6. Планиметрия

1. Пусть тупым является угол C, тогда сторона AB тупоугольного треугольника ABC равна радиусу описанной около него окружности. Найдите угол C. Ответ дайте в градусах.

2. Две сто­ро­ны па­рал­ле­ло­грам­ма от­но­сят­ся как  3:17, а пе­ри­метр его равен 40. Най­ди­те боль­шую сто­ро­ну параллелограмма.

3. В треугольнике ABC AC = BCAB = 22, tg А =  .  Найдите AC.

4. Основания равнобедренной трапеции равны 6 и 12. Боковые стороны равны 5. Найдите синус острого угла трапеции.

5. В треугольнике ABC угол C равен  90°, АС = 17, sin А = .  Найдите BC.

6. Найдите площадь треугольника, две стороны которого равны 21 и 2, а угол между ними равен 30°.

7. Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 10 и 1, считая от вершины, противолежащей основанию. Найдите периметр треугольника.

8. Угол ACO равен 35°, где O — центр окружности. Его сто­ро­на CA ка­са­ет­ся окружности. Най­ди­те ве­ли­чи­ну мень­шей дуги AB окружности, за­клю­чен­ной внут­ри этого угла. Ответ дайте в градусах.

9. Угол ACB равен 51°. Градусная мера дуги AB окружности, не содержащей точек D и E, равна 144°. Найдите угол DAE. Ответ дайте в градусах.

10.Боковая сторона равнобедренного треугольника равна 5, угол при вершине, противолежащей основанию, равен 120°. Найдите диаметр описанной окружности этого треугольника.

Вариант 8 6. Планиметрия

1. Два угла вписанного в окружность четырехугольника равны 82° и 58°. Найдите больший из оставшихся углов. Ответ дайте в градусах.

2. Основания равнобедренной трапеции равны 13 и 25, а ее площадь равна 152. Найдите боковую сторону трапеции.

3. Найдите вписанный угол, опирающийся на дугу, которая составляет  окружности. Ответ дайте в градусах.

4. В треугольнике ABC угол C равен  90°, АС = 17, sin А = .    Найдите BC.

5. Площадь тре­уголь­ни­ка ABC равна 136. DE — сред­няя линия. Най­ди­те площадь тре­уголь­ни­ка CDE.

6. В треугольнике ABC AC = BCAB = 8, tg А =  .  Найдите AC.

7. Найдите угол ACO, если его сторона CA касается окружности, O — центр окружности, а большая дуга AD окружности, заключенная внутри этого угла, равна 116°. Ответ дайте в градусах.

8. Площадь параллелограмма ABCD равна 176. Точка E — середина стороны CD. Найдите площадь треугольника ADE.

9. Найдите сторону правильного шестиугольника, описанного около окружности, радиус которой равен  47.

10. Найдите синус угла  АОВ. В ответе укажите значение синуса, умноженное на 2

Вариант 9 6. Планиметрия

1. Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 6 и 10.

2. Диагонали четырехугольника равны 4 и 5. Найдите периметр четырехугольника, вершинами которого являются середины сторон данного четырехугольника.

3. Найдите синус угла АОВ. В ответе укажите значение синуса, умноженное на 

4. Найдите угол ACO, если его сторона CA касается окружности, O — центр окружности, а меньшая дуга окружности AB, заключенная внутри этого угла, равна 37°. Ответ дайте в градусах.

5. Боковые стороны трапеции, описанной около окружности, равны 27 и 4. Найдите среднюю линию трапеции.

6. В треугольнике АВС АС = ВС, АВ = 7 , tg ВАС = , Найдите высоту 

7. Угол между стороной правильного n-угольника, вписанного в окружность, и радиусом этой окружности, проведенным в одну из вершин стороны, равен  80°.  Найдите n.

8. Площадь параллелограмма ABCD равна 189. Точка E — середина стороны AD. Найдите площадь трапеции AECB.

9. Найдите вписанный угол, опирающийся на дугу, которая составляет окружности. Ответ дайте в градусах.

10. Основания равнобедренной трапеции равны 25 и 23. Высота трапеции равна 1. Найдите тангенс острого угла.

Вариант 10 6. Планиметрия

1. Найдите величину угла АВС. Ответ дайте в градусах.

2. В треугольнике ABC угол C равен 76°, AC = BC. Найдите угол A. Ответ дайте в градусах.

3. Площадь треугольника  АВС  равна 129.  ДE  – средняя линия, параллельная стороне  АВ.  Найдите площадь трапеции АВЕД.

4. В треугольнике  АВС  угол  С  равен 90°, СН – высота, АН = 12 , cos А =  .  Найдите АВ.

5. Высота правильного треугольника равна 33. Найдите радиус окружности, описанной около этого треугольника.

6. Основания рав­но­бед­рен­ной тра­пе­ции равны 5 и 11, а её пло­щадь равна 32. Най­ди­те пе­ри­метр трапеции.

7. Найдите площадь ромба, если его высота равна 2, а острый угол 30°.

8. Хорда AB делит окружность на две части, градусные величины которых относятся как 3:5.  Под каким углом видна эта хорда из точки C, принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

9. В треугольнике  известно, что , , угол равен  90°.  Найдите радиус вписанной окружности.

10. В треугольнике АВС АС = ВС = 27 ,  — высота, sin ВАС =  .  Найдите 

6. Планиметрия

Вариант 1

  1. 0,5

  2. 3

  3. 2

  4. 30

  5. 16

  6. 70

  7. 1

  8. 135

  9. 55

  10. 52

Вариант 2

  1. 0,5

  2. 11

  3. 62

  4. 57

  5. 132

  6. 1

  7. 34

  8. 6

  9. 5

  10. 93

Вариант 3

  1. 40

  2. 2

  3. 7,5

  4. 22

  5. 17,5

  6. 160

  7. 0,6

  8. 24

  9. 2

  10. 56

Вариант 4

  1. 9,6

  2. 20

  3. 5

  4. 42

  5. 25

  6. 57

  7. 41

  8. 115

  9. 0,5

  10. 4,5

Вариант 5

  1. 2

  2. 122

  3. 17,5

  4. 46

  5. 1

  6. 1,5

  7. 2

  8. 41

  9. 30

  10. 28,5

Вариант 6

  1. 42

  2. 66

  3. 4,8

  4. 36

  5. 104

  6. 10

  7. 12

  8. 304

  9. 6

  10. 23

Вариант 7

  1. 150

  2. 17

  3. 22

  4. 0,8

  5. 34

  6. 10,5

  7. 24

  8. 55

  9. 21

  10. 10

Вариант 8

  1. 122

  2. 10

  3. 36

  4. 34

  5. 34

  6. 7

  7. 26

  8. 44

  9. 94

  10. 2

Вариант 9

  1. 24

  2. 9

  3. 1

  4. 53

  5. 15,5

  6. 4

  7. 18

  8. 141,75

  9. 36

  10. 1

Вариант 10

  1. 45

  2. 52

  3. 96,75

  4. 27

  5. 22

  6. 26

  7. 8

  8. 112,5

  9. 4

  10. 30

Новое 16 задание ЕГЭ 2022 по математике профильный уровень (планиметрия), треугольники и окружности, более 100 заданий, а также задачи с реального ЕГЭ по математике. Практикуемся и готовимся к экзамену!

  • Треугольник и его элементы
  • Многоугольники
  • Отношение отрезков и площадей
  • Окружности
  • Окружности связанные с треугольником
  • Окружности связанные с четырёхугольником

Треугольник и его элементы задачи ЕГЭ 2022 с ответами:

Задачи уровня А являются подготовительными для решения заданий 16 профильного ЕГЭ по теме «Треугольник и его элементы». Большая часть задач уровня В взята из реальных экзаменационных и диагностических работ прошлых лет.

Многоугольники задачи ЕГЭ 2022 с ответами:

Отношение отрезков и площадей задачи ЕГЭ 2022 с ответами:

Многие задачи этого раздела будут решаться с помощью теоремы о пропорциональных отрезках (обобщенной теоремы Фалеса), либо с помощью дополнительных построений, которые приводят к нескольким парам подобных треугольников. Рассмотрим примеры на эти дополнительные построения.

Окружности задачи ЕГЭ 2022 с ответами:

Окружности связанные с треугольником задачи ЕГЭ 2022 с ответами:

Окружности связанные с четырёхугольником задачи ЕГЭ 2022 с ответами:

1)В треугольнике ABC угол ABC тупой, H — точка пересечения продолжений высот, угол AHC равен 60 . а) Докажите, что угол ABC равен 120 . б) Найдите BH, если AB 7, BC 8.

2)На сторонах AC и BC треугольника ABC вне его построены квадраты ACDE и CBFG. Точка M — середина стороны AB. а) Докажите, что точка M равноудалена от центров квадратов. б) Найдите площадь треугольника DMG, если AC 6, BC 8, AB 10.

3)В прямоугольном треугольнике ABC точка M лежит на катете AC, а точка N лежит на продолжении катета BC за точку C, причём СM = BC и CN = AC. Отрезки CP и CQ — биссектрисы треугольников ACB и NCM соответственно. а) Докажите, что CP и СQ перпендикулярны. б) Найдите PQ, если BC 3, а AC 5.

4)Дана трапеция ABCD. Биссектриса угла BAD пересекает продолжение основания BC в точке K. а) Докажите, что треугольник ABK равнобедренный. б) Найдите биссектрису BM треугольника ABK, если AD = 10, BC = 2, AB = CD = 5.

5)Медианы треугольника ABC пересекаются в точке M. а) Докажите, что треугольники AMB, AMC и BMC равновелики. б) Известно, что треугольник ABC прямоугольный, а точка M удалена от катетов на расстояния 3 и 4. Найдите расстояние от этой точки до гипотенузы.

6)Дан треугольник ABC со сторонами AB = 4, BC = 6 и AC =8. а) Докажите, что прямая, проходящая через точку пересечения медиан и центр вписанной окружности, параллельна стороне BC. б) Найдите длину биссектрисы треугольника ABC, проведённой из вершины A.

7)В прямоугольном треугольнике ABC с прямым углом C проведена высота CD. Радиусы окружностей, вписанных в треугольники ACD и BCD, равны 0,6 и 0,8. а) Докажите подобие треугольников ACD и BCD. б) Найдите радиус окружности, вписанной в треугольник ABC

8)В равнобедренном треугольнике ABC AC — основание. На продолжении стороны CB за точку В отмечена точка D так, что угол CAD равен углу ABD. а) Докажите, что AB биссектриса угла CAD. б) Найдите длину отрезка AD, если боковая сторона треугольника АВС равна 5, а его основание равно 6.

9)На сторонах AB, BC и AC треугольника ABC отмечены точки C1, A1 и B1 соответственно, причем AC1 : C1B = 7 : 12, BA1 : A1C = 3 : 1, AB1 : B1C = 3 : 4. Отрезки BB1 и CC1 пересекаются в точке D. а) Докажите, что четырехугольник ADA1B1 – параллелограмм. б) Найдите CD, если отрезки AD и BC перпендикулярны, AC = 21, BC = 16.

10)Диагональ параллелограмма делит его угол на части в 30° и 45°. Найдите отношение сторон параллелограмма.

11)Сторона BC параллелограмма ABCD вдвое больше стороны AB. Биссектрисы углов A и B пересекают прямую CD в точках M и N, причём MN = 12. Найдите стороны параллелограмма.

12)Найдите расстояние от центра ромба до его стороны, если острый угол ромба равен 30°, а сторона равна 4.

13)В прямоугольнике ABCD АВ = 60, ВС = 45. Сторона DC разделена на три равные части точками Е и F. Отрезки прямых, соединяющие вершины А и В с точками Е и F соответственно, продолжены до пересечения в точке М, лежащей вне прямоугольника. Найдите площадь треугольника EFM.

14)В прямоугольнике проведены биссектрисы двух углов, прилежащих к большей стороне. Определите, на какие части делится площадь прямоугольника этими биссектрисами, если стороны прямоугольника равны 2 и 4.

15)Найдите высоту равнобедренной трапеции, если ее диагональ перпендикулярна боковой стороне, а разность квадратов оснований равна 25.

16)Дана равнобедренная трапеция, средняя линия которой равна 9, площадь равна 54 и диагональ перпендикулярна боковой стороне. Найдите основания трапеции.

17)Меньшая боковая сторона прямоугольной трапеции равна 3, а большая образует угол 30° с одним из оснований. Найдите это основание, если на нѐм лежит точка пересечения биссектрис углов при другом основании.

18)Известно, что высота трапеции равна 15, а еѐ диагонали равны 17 и 113. Найдите площадь трапеции.

19)В трапеции длина средней линии равна 4, а углы при одном из оснований равны 40 и 50. Найдите длины оснований трапеции, если длина отрезка, соединяющего середины этих оснований, равна 1.

20)Средняя линия трапеции, равная 10, делит площадь трапеции в отношении 3 : 5. Найдите длины оснований трапеции.

21)Найдите диагональ и боковую сторону равнобедренной трапеции с основаниями 20 и 12, если известно, что центр еѐ описанной окружности лежит на большем основании.

22)Трапеция ABCD разделена прямой, параллельной еѐ основаниям AD и BC, на две равновеликие трапеции. Найдите отрезок этой прямой, заключѐнный между боковыми сторонами, если основания трапеции равны 6 и 8.

23)Высота CD треугольника ABC делит медиану BM в отношении 3 : 1, считая от вершины В. В каком отношении CD делит сторону АВ, считая от вершины А?

24)М и Р – середины смежных сторон AD и DC параллелограмма ABCD. MC и BP пересекаются в точке К. Найдите отношение BK : KP.

25)В треугольнике АВС А1 лежит на стороне ВС и ВА1 : А1С = 1 : 3, С1 – середина АВ. Найдите отношение АК : КА1, где К – точка пересечения АА1 и СС1.

26)В треугольнике ABC точка K лежит на стороне AC, причем AK : KC = 2 : 3. Точка M делит сторону AB на два отрезка, один из которых вдвое больше другого. Прямая, проходящая через точку M параллельно BC, пересекает прямую BK в точке P. Найти отношение BP : KP.

27)Точки M и N расположены на стороне BC треугольника ABC, а точка K — на стороне AC, причём BM : MN : NC = 1 : 1 : 2 и CK : AK = 1 : 4. Известно, что площадь треугольника ABC равна 20. Найдите площадь четырёхугольника AMNK.

28)Через точки M и N, делящие сторону AB треугольника ABC на три равные части, проведены прямые, параллельные стороне BC. Найдите площадь части треугольника, заключённой между этими прямыми, если площадь треугольника ABC равна 3.

29)Сторона треугольника равна 36. Прямая, параллельная этой стороне, делит площадь треугольника пополам. Найдите длину отрезка этой прямой, заключённого между сторонами треугольника.

30)Из середины основания треугольника площади 2 проведены прямые, параллельные боковым сторонам. Найдите площадь полученного таким образом параллелограмма.

31)Четырёхугольник разделён диагоналями на четыре треугольника. Площади трёх из них равны 10, 20 и 30, и каждая меньше площади четвёртого треугольника. Найдите площадь данного четырёхугольника.

32)В треугольнике ABC из точки E стороны BC проведена прямая, параллельная высоте BD и пересекающая сторону AC в точке F. Отрезок EF делит треугольник ABC на две равновеликие фигуры. Найдите EF, если BD = 6, AD : DC = 2 : 7.

Смотрите также на нашем сайте:

Задание №7 решу ЕГЭ 2022 профиль математика 11 класс с ответами

Задание №8 с ответами ЕГЭ 2022 профиль математика 11 класс

ПОДЕЛИТЬСЯ МАТЕРИАЛОМ

Like this post? Please share to your friends:
  • Задачи на первообразную в егэ с решением
  • Задачи на первое начало термодинамики егэ
  • Задачи на пароли информатика егэ
  • Задачи на параметры егэ профиль
  • Задачи на параметры егэ как решать