Задачи на прогрессию егэ профильная математика


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Бригада маляров красит забор длиной 240 метров, ежедневно увеличивая норму покраски на одно и то же число метров. Известно, что за первый и последний день в сумме бригада покрасила 60 метров забора. Определите, сколько дней бригада маляров красила весь забор.


2

Рабочие прокладывают тоннель длиной 500 метров, ежедневно увеличивая норму прокладки на одно и то же число метров. Известно, что за первый день рабочие проложили 3 метра тоннеля. Определите, сколько метров тоннеля проложили рабочие в последний день, если вся работа была выполнена за 10 дней.


3

Васе надо решить 434 задачи. Ежедневно он решает на одно и то же количество задач больше по сравнению с предыдущим днем. Известно, что за первый день Вася решил 5 задач. Определите, сколько задач решил Вася в последний день, если со всеми задачами он справился за 14 дней.


4

Турист идет из одного города в другой, каждый день проходя больше, чем в предыдущий день, на одно и то же расстояние. Известно, что за первый день турист прошел 10 километров. Определите, сколько километров прошел турист за третий день, если весь путь он прошел за 6 дней, а расстояние между городами составляет 120 километров.


5

Грузовик перевозит партию щебня массой 210 тонн, ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что за первый день было перевезено 2 тонны щебня. Определите, сколько тонн щебня было перевезено за девятый день, если вся работа была выполнена за 14 дней.

Пройти тестирование по этим заданиям

Skip to content

ЕГЭ Профиль №9. Задачи на прогрессии

ЕГЭ Профиль №9. Задачи на прогрессииadmin2022-11-08T21:41:31+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №9. Задачи на прогрессии

Задача 1. Бригада маляров красит забор длиной 240 метров, ежедневно увеличивая норму покраски на одно и то же число метров. Известно, что за первый и последний день в сумме бригада покрасила 60 метров забора. Определите, сколько дней бригада маляров красила весь забор.

Пусть бригада в первый день покрасила а1 метров забора, во второй – а2, …, в последний – аn метров забора. Сумма арифметической прогрессии:  ({S_n} = frac{{{a_1} + {a_n}}}{2} cdot n.) По условию задачи: ({a_1} + {a_n} = 60,)  а  ({S_n} = 240.)  Тогда:  (240 = frac{{60}}{2} cdot n,,,, Leftrightarrow ,,,,,30n = 240,,,,, Leftrightarrow ,,,,,n = 8.)  Следовательно, бригада покрасит забор за 8 дней.

Ответ: 8.

Задача 2. Рабочие прокладывают тоннель длиной 500 метров, ежедневно увеличивая норму прокладки на одно и то же число метров. Известно, что за первый день рабочие проложили 3 метра туннеля. Определите, сколько метров туннеля проложили рабочие в последний день, если вся работа была выполнена за 10 дней.

Пусть рабочие в первый день прокладывают а1 метров тоннеля, во второй – а2, …, в последний десятый день – а10 метров тоннеля. Сумма арифметической прогрессии:  ({S_n} = frac{{{a_1} + {a_n}}}{2} cdot n.)  По условию задачи: ({a_1} = 3,)  а  ({S_{10}} = 500.)  Тогда:  (500 = frac{{3 + {a_{10}}}}{2} cdot 10,,,, Leftrightarrow ,,,,,3 + {a_{10}} = 100,,,,, Leftrightarrow ,,,,,{a_{10}} = 97.)  Следовательно, в последний день рабочие проложили 97 метров тоннеля.

Ответ: 97.

Задача 3. Васе надо решить 490 задач. Ежедневно он решает на одно и то же количество задач больше по сравнению с предыдущим днем. Известно, что за первый день Вася решил 5 задач. Определите, сколько задач решил Вася в последний день, если со всеми задачами он справился за 14 дней.

Пусть в первый день Вася решил а1 задач, во второй – а2, …, в последний четырнадцатый день – а14 задач. Сумма арифметической прогрессии:  ({S_n} = frac{{{a_1} + {a_n}}}{2} cdot n.)  По условию задачи: ({a_1} = 5,)  а  ({S_{14}} = 490.)  Тогда:  (490 = frac{{5 + {a_{14}}}}{2} cdot 14,,,, Leftrightarrow ,,,,,5 + {a_{14}} = 70,,,,, Leftrightarrow ,,,,,{a_{14}} = 65.)  Следовательно, в последний день Вася решил 65 задач.

Ответ: 65.

Задача 4. Турист идет из одного города в другой, каждый день проходя больше, чем в предыдущий день, на одно и то же расстояние. Известно, что за первый день турист прошел 10 километров. Определите, сколько километров прошел турист за третий день, если весь путь он прошел за 6 дней, а расстояние между городами составляет 120 километров.

Пусть в первый день турист прошёл а1 км, во второй – а2, …, в последний шестой день – а6 км. Сумма арифметической прогрессии:  ({S_n} = frac{{{a_1} + {a_n}}}{2} cdot n.)  По условию задачи: ({a_1} = 10,)  а  ({S_6} = 120.)  Тогда:  (120 = frac{{10 + {a_6}}}{2} cdot 6,,,, Leftrightarrow ,,,,,10 + {a_6} = 40,,,,, Leftrightarrow ,,,,,{a_6} = 30.)  Следовательно, в последний день турист прошёл 30 км. Чтобы определить, сколько километров турист прошёл за третий день, воспользуемся формулой n-го члена арифметической прогрессии:  ({a_n} = {a_1} + dleft( {n — 1} right),) где d это разность арифметической прогрессии. В нашем случае это на сколько километров турист проходил в день больше чем в предыдущий день. Тогда:  ({a_6} = {a_1} + 5d,,,,, Leftrightarrow ,,,,,30 = 10 + 5d,,,,, Leftrightarrow ,,,,,d = 4)   и   ({a_3} = {a_1} + 2d = 10 + 2 cdot 4 = 18.) Следовательно, за третий день турист прошёл 18 км.

Ответ: 18.

Задача 5. Грузовик перевозит партию щебня массой 210 тонн, ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что за первый день было перевезено 2 тонны щебня. Определите, сколько тонн щебня было перевезено за девятый день, если вся работа была выполнена за 14 дней.

Пусть в первый день грузовик перевёз а1 тонн, во второй – а2, …, в последний четырнадцатый день – а14 тонн. Сумма арифметической прогрессии:  ({S_n} = frac{{{a_1} + {a_n}}}{2} cdot n.)  По условию задачи: ({a_1} = 2,)  а  ({S_{14}} = 210.)  Тогда:  (210 = frac{{2 + {a_{14}}}}{2} cdot 14,,,, Leftrightarrow ,,,,,2 + {a_{14}} = 30,,,,, Leftrightarrow ,,,,,{a_{14}} = 28.)  Следовательно, в последний день грузовик перевёз 28 тонн. Чтобы определить, сколько грузовик перевёз за девятый день, воспользуемся формулой n-го члена арифметической прогрессии:  ({a_n} = {a_1} + dleft( {n — 1} right),) где d это разность арифметической прогрессии. В нашем случае это на сколько тонн грузовик перевёз в день больше чем в предыдущий день. Тогда:  ({a_{14}} = {a_1} + 13d,,,,, Leftrightarrow ,,,,,28 = 2 + 13d,,,,, Leftrightarrow ,,,,,d = 2)   и   ({a_9} = {a_1} + 8d = 2 + 8 cdot 2 = 18.) Следовательно, за девятый день грузовик перевёз 18 тонн.

Ответ: 18.

Задача 6. Улитка ползет от одного дерева до другого. Каждый день она проползает на одно и то же расстояние больше, чем в предыдущий день. Известно, что за первый и последний дни улитка проползла в общей сложности 10 метров. Определите, сколько дней улитка потратила на весь путь, если расстояние между деревьями равно 150 метрам.

Пусть в первый день улитка проползла а1 метров, во второй – а2, …, в последний день – аn метров. Сумма арифметической прогрессии:  ({S_n} = frac{{{a_1} + {a_n}}}{2} cdot n.)  По условию задачи: ({a_1} + {a_n} = 10,)  а  ({S_n} = 150.)  Тогда:  (150 = frac{{10}}{2} cdot n,,,, Leftrightarrow ,,,,,5n = 150,,,,, Leftrightarrow ,,,,,n = 30.)  Следовательно, на весь путь улитка потратила 30 дней.

Ответ: 30.

Задача 7. Вере надо подписать 640 открыток. Ежедневно она подписывает на одно и то же количество открыток больше по сравнению с предыдущим днем. Известно, что за первый день Вера подписала 10 открыток. Определите, сколько открыток было подписано за четвертый день, если вся работа была выполнена за 16 дней.

Пусть в первый день Вера подписала а1 открыток, во второй – а2, …, в последний шестнадцатый день – а16 открыток. Сумма арифметической прогрессии:  ({S_n} = frac{{{a_1} + {a_n}}}{2} cdot n.)  По условию задачи: ({a_1} = 10,)  а  ({S_{16}} = 640.)  Тогда:  (640 = frac{{10 + {a_{16}}}}{2} cdot 16,,,, Leftrightarrow ,,,,,10 + {a_{16}} = 80,,,,, Leftrightarrow ,,,,,{a_{16}} = 70.)  Следовательно, в последний день Вера подписала 70 открыток. Чтобы определить, сколько открыток Вера подписала за четвёртый день, воспользуемся формулой n-го члена арифметической прогрессии:  ({a_n} = {a_1} + dleft( {n — 1} right),) где d это разность арифметической прогрессии. В нашем случае это на сколько открыток подписала Вера за день больше чем в предыдущий день. Тогда:  ({a_{16}} = {a_1} + 15d,,,,, Leftrightarrow ,,,,,70 = 10 + 15d,,,,, Leftrightarrow ,,,,,d = 4)   и   ({a_4} = {a_1} + 3d = 10 + 3 cdot 4 = 22.) Следовательно, за четвёртый день Вера подписала 22 открытки.

Ответ: 5.

Задача 8. Бизнесмен Бубликов получил в 2000 году прибыль в размере 5000 рублей. Каждый следующий год его прибыль увеличивалась на 300% по сравнению с предыдущим годом. Сколько рублей заработал Бубликов за 2003 год?

Так как прибыль каждый год увеличивалась на 300%, то она становилась 400% от прибыли предыдущего года. Поэтому в 2001 году прибыль составила:  (5,,000 cdot frac{{400}}{{100}} = 20,,000) рублей;  2002 году (20,,000 cdot frac{{400}}{{100}} = 80,,000) рублей;  в 2003 году  (80,,000 cdot frac{{400}}{{100}} = 320,,000) рублей.

Ответ: 320 000.

Задача 9. Компания «Альфа» начала инвестировать средства в перспективную отрасль в 2001 году, имея капитал в размере 5000 долларов. Каждый год, начиная с 2002 года, она получала прибыль, которая составляла 200% от капитала предыдущего года. А компания «Бета» начала инвестировать средства в другую отрасль в 2003 году, имея капитал в размере 10000 долларов, и, начиная с 2004 года, ежегодно получала прибыль, составляющую 400% от капитала предыдущего года. На сколько долларов капитал одной из компаний был больше капитала другой к концу 2006 года, если прибыль из оборота не изымалась.

Каждый год прибыль компании «Альфа» составляла 200% от капитала предыдущего года, значит, капитал каждый год составлял 300% от капитала предыдущего года. Поэтому в 2002 году её капитал составлял:  (5,,000 cdot frac{{300}}{{100}} = 15,,000)  долларов;  в 2003 году  (15,,000 cdot frac{{300}}{{100}} = 45,,000)  долларов; в 2004 году  (45,,000 cdot frac{{300}}{{100}} = 135,,000)  долларов; в 2005 году  (135,,000 cdot frac{{300}}{{100}} = 405,,000)  долларов; в 2006 году  (405,,000 cdot frac{{300}}{{100}} = 1,,215,,000)  долларов. 

Каждый год прибыль компании «Бета» составляла 400% от капитала предыдущего года, значит, капитал каждый год составлял 500% от капитала предыдущего года. Поэтому в 2004 году её капитал составлял:  (10,,000 cdot frac{{500}}{{100}} = 50,,000)  долларов;  в 2005 году  (50,,000 cdot frac{{500}}{{100}} = 250,,000)  долларов; в 2006 году  (250,,000 cdot frac{{500}}{{100}} = 1,,250,,000)  долларов.

Таким образом, капитал компании «Бета» был на (1,,250,,000 — 1,,215,,000 = 35,,000) долларов больше, чем капитал компании «Альфа».

Ответ:  35000.

Арифметическая прогрессия в задачах ЕГЭ по математике

Анна Малкова

Арифметическая прогрессия — это последовательность, каждый член которой, начиная со второго, равен сумме предыдущего члена и некоторого фиксированного числа d:

a_{n+1}=a_n+d,(n=1,2,...).

Фиксированное число d называется разностью арифметической прогрессии.

Формула n-го члена арифметической прогрессии: a_{n}=a_1+(n-1)d.

Сумма первых n членов арифметической прогрессии S_n=a_1+a_2+...+a_n вычисляется по формуле: S_n=frac{(a_1+a_n)}{2} cdot n=frac{2a_1+(n-1)d}{2}cdot n

Каждый член арифметической прогрессии, начиная со второго, есть среднее  арифметическое соседних: a_n=frac{a_{n-1}+a_{n+1}}{2}

1. Максим решил накопить на айфон последней модели и 1 марта положил в копилку 10 рублей. С этого дня Максим ежедневно опускает в копилку на 10 рублей больше, чем в предыдущий день. Сколько рублей будет в копилке 31 мая, после того как Максим, как обычно, положит туда деньги?

По условию, 1 марта в копилке у Максима 10 рублей.

2 марта Максим опускает в копилку на 10 рублей больше, чем в предыдущий день, то есть 20 рублей.

3 марта он добавляет еще 30 рублей,

4 марта 40 рублей,

5 марта 50 рублей.

Мы имеем дело с арифметической прогрессией.

В нашей прогрессии a_1=10, d=10. В марте 31 день, в апреле 30, в мае 31 день. Значит, n=31+30+31=92.

31 мая Максим положит в копилку a_{92}=a_1+(92-1)d=10+910=920 рублей.

Всего в копилке в этот день будет S_{92}=frac{(a_1+a_n)}{2}cdot 92=frac{(10+920)}{2}cdot 92=42780 рублей.

Видите, как удобно пользоваться формулами для вычисления n-ного члена и суммы арифметической прогрессии. Намного проще, чем складывать 92 слагаемых.

2. (Задача ЕГЭ) Улитка ползет от одного дерева до другого. Каждый день она проползает на одно и то же расстояние больше, чем в предыдущий день. Известно, что за первый и последний дни улитка проползла в общей сложности 10 метров. Определите, сколько дней улитка потратила на весь путь, если расстояние между деревьями равно 150 метрам.

Пусть улитка проползла в первый день a_1 метров, в последний – a_n метров, причем  a_1+a_n=10. Тогда за n дней она преодолела S_n=frac{(a_1+a_n)n}{2}=150  метров. Отсюда n=30

Ответ: 30

3. (Задача ЕГЭ) Васе надо решить 434 задачи. Ежедневно он решает на одно и то же количество задач больше по сравнению с предыдущим днем. Известно, что за первый день Вася решил 5 задач. Определите, сколько задач решил Вася в последний день, если со всеми задачами он справился за 14 дней

Это обычная задача на арифметическую прогрессию. В первый день Вася решил a_1=5 задач, в последний a_{14} задач. Запишем формулу для суммы арифметической прогрессии: S_{14}=frac{(a_1+a_{14})14}{2}=434. Отсюда a_{14}=57

4. (Задача ЕГЭ) Бригада маляров красит забор длиной 150 метров, ежедневно увеличивая норму покраски на одно и то же число метров. Известно, что за первый и последний день в сумме бригада покрасила 75 метров забора. Определите, сколько дней бригада маляров красила весь забор.

В первый день бригада покрасила a_1 метров забора, во второй a_2 метров, в последний a_n  метров.

По формуле суммы арифметической прогрессии: S_{n}=frac{(a_1+a_{n})n}{2}=150.  По условию,  a_1+a_n=75. Отсюда n = 4.

5. (Задача ОГЭ) Дана ариф­ме­ти­че­ская прогрессия: -4; -2; 0… Най­ди­те сумму пер­вых де­ся­ти её членов.

Найдем d – разность арифметической прогрессии.

d= a_2-a_1=(-2)-(-4)=2.

Найдем сумму первых 10 членов прогрессии по формуле: S_n=frac{2a_1+(n-1)d}{2}cdot n

У нас n = 10.

S_{10}=frac{2a_1+(10-1)d}{2}cdot 10=frac{-8+9cdot 2}{2}cdot 10=50.

Задачи ЕГЭ для самостоятельного решения

  1. Турист идет из одного города в другой, каждый день проходя больше, чем в предыдущий день, на одно и то же расстояние. Известно, что за первый день турист прошел 10 километров. Определите, сколько километров прошел турист за третий день, если весь путь он прошел за 6 дней, а расстояние между городами составляет 120 километров.
  1. Рабочие прокладывают тоннель длиной 99 метров, ежедневно увеличивая норму прокладки на одно и то же число метров. Известно, что за первый день рабочие проложили 7 метров туннеля. Определите, сколько метров туннеля проложили рабочие в последний день, если вся работа была выполнена за 9 дней.
  1. Грузовик перевозит партию щебня массой 210 тонн, ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что за первый день было перевезено 2 тонны щебня. Определите, сколько тонн щебня было перевезено за девятый день, если вся работа была выполнена за 14 дней.
  1. Вере надо подписать 640 открыток. Ежедневно она подписывает на одно и то же количество открыток больше по сравнению с предыдущим днем. Известно, что за первый день Вера подписала 10 открыток. Определите, сколько открыток было подписано за четвертый день, если вся работа была выполнена за 16 дней.

Ответы к задачам:

  1. Ответ: 18
  2. Ответ: 15
  3. Ответ: 18
  4. Ответ: 22.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Арифметическая прогрессия в задачах ЕГЭ по математике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.03.2023

16
Июл 2013

Категория: 09 Текстовые задачиТекстовые задачи

09. Задачи на прогрессию

2013-07-16
2022-09-11

«Арифметическая прогрессия», геометрическая прогрессия


Задача 1. Бригада маляров красит забор длиной 630 метров, ежедневно увеличивая норму покраски на одно и то же число метров. Известно, что за первый и последний день в сумме бригада покрасила 140 метров забора. Определите, сколько дней бригада маляров красила весь забор.

Решение: + показать


Задача 2. Олегу надо решить 315 задач. Ежедневно он решает на одно и то же количество задач больше по сравнению с предыдущим днем. Известно, что за первый день Олег решил 11 задач. Определите, сколько задач решил Олег в последний день, если со всеми задачами он справился за 9 дней.

Решение: + показать


Задача 3. Турист идет из одного города в другой, каждый день проходя больше, чем в предыдущий день, на одно и то же расстояние. Известно, что за первый день турист прошел 9 километров. Определите, сколько километров прошел турист за пятый день, если весь путь он прошел за 9 дней, а расстояние между городами составляет 189 километров.

Решение: + показать


Задача 4. Бизнесмен Плюшкин получил в 2000 году прибыль в размере 1000000 рублей. Каждый следующий год его прибыль увеличивалась на 7% по сравнению с предыдущим годом. Сколько рублей заработал Плюшкин за 2003 год?

Решение: + показать


Задача 5. Компания “Альфа” начала инвестировать средства в перспективную отрасль в 2001 году, имея капитал в размере 3500 долларов. Каждый год, начиная с 2002 года, она получала прибыль, которая составляла 100% от капитала предыдущего года. А компания “Бета” начала инвестировать средства в другую отрасль в 2004 году, имея капитал в размере 4500 долларов, и, начиная с 2005 года, ежегодно получала прибыль, составляющую 300% от капитала предыдущего года. На сколько долларов капитал одной из компаний был больше капитала другой к концу 2008 года, если прибыль из оборота не изымалась?

Решение: + показать


тест

Вы также можете пройти тест по задачам на прогрессию

Автор: egeMax |

комментария 2

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Арифметические и геометрические прогрессии»

Открытый банк заданий по теме арифметические и геометрические прогрессии. Задания B11 из ЕГЭ по математике (профильный уровень)

Задание №1106

Тип задания: 11
Тема:
Арифметические и геометрические прогрессии

Условие

Наташе надо изготовить 300 бумажных журавликов. Ежедневно она делает на одно и то же количество журавликов больше по сравнению с предыдущим днём. В первый день Наташа сделала 6 журавликов. Сколько журавликов было сделано в последний день, если на всю работу потребовалось 15 дней?

Показать решение

Решение

Из условия следует, что количество бумажных «журавликов» ежедневно увеличивалось на одно и тоже число. Количество ежедневно сделанных бумажных «журавликов» образует арифметическую прогрессию, при этом первый член прогрессии равен 6. По формуле суммы первых членов арифметической прогрессии имеем

a_1+a_2+a_3+…+a_{15}= frac{a_1+a_{15}}{2}cdot15= 300,

6+a_{15}=40,

a_{15}=40-6=34.

Наташа в последний день изготовила 34 бумажных «журавлика»

Ответ

34

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1104

Тип задания: 11
Тема:
Арифметические и геометрические прогрессии

Условие

Коле надо посадить 350 кустов роз. Ежедневно он сажает на одно и то же количество кустов больше по сравнению с предыдущим днём. В первый день он посадил 8 кустов роз. Сколько кустов было посажено в последний день, если на всю работу потребовалось 20 дней?

Показать решение

Решение

Из условия следует, что количество посаженных кустов роз ежедневно увеличивалось на одно и тоже число. Количество ежедневно посаженных роз образует арифметическую прогрессию, при этом первый член равен 8. По формуле суммы первых членов арифметической прогрессии получаем a_1+a_2+a_3+…+a_{20}= frac{a_1+a_{20}}{2}cdot20= 350,

8+a_{20}=35,

a_{20}=35-8=27.

Коля в последний день посадил 27 кустов роз.

Ответ

27

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №334

Тип задания: 11
Тема:
Арифметические и геометрические прогрессии

Условие

Плиточник должен уложить 320 м2 плитки. Если он будет укладывать на 6 м2 в день больше, чем запланировал, то работа будет выполнена на 12 дней раньше. Определите, сколько квадратных метров плитки в день планирует укладывать плиточник.

Показать решение

Решение

Пусть x (м2) — планируемая норма укладки в день. Тогда, согласно условию, получаем:

frac{320}{x}-frac{320}{x+6}=12,

frac{320(x+6)-320cdot x}{x(x+6)}=12,

frac{320cdot6}{x(x+6)}=12,

frac{160}{x(x+6)}=1,

x^2+6x-160=0.

x_{1,2}=-3pmsqrt{9+160}=-3pm13.

Так как x не является отрицательным числом, то x = 10.

Ответ

10

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №333

Тип задания: 11
Тема:
Арифметические и геометрические прогрессии

Условие

Грузовой автомобиль перевозит технику из одного города в другой, проезжая в каждый последующий день на одно и то же расстояние больше, чем в предыдущий день. В первый день пути водитель проехал расстояние 520 км. Известно, что расстояние между городами 3270 км и на весь путь потребовалось ровно 5 дней. Определите, сколько километров проехал водитель за третий день пути.

Показать решение

Решение

Расстояние увеличивается каждый день на одну и ту же величину d, а значит, последовательность таких расстояний — арифметическая прогрессия.

За 5 дней пройденный путь равен frac{(a_1+a_5)}{2}cdot5=3270, где a_1, a_3 и a_5 — путь, пройденный в первый, третий и пятый дни соответственно.

По свойству арифметической прогрессии a_3=a_1+2d, a_5=a_1+4d, значит, a_3=frac{a_1+a_5}{2}. Тогда a_3=3270:5=654 (км).

Ответ

654

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928

Like this post? Please share to your friends:
  • Задачи на прогрессии егэ профиль
  • Задачи на программирование егэ информатика 2022
  • Задачи на принцип суперпозиции электрических полей егэ
  • Задачи на примеси егэ химия 2022
  • Задачи на примеси егэ с решением