Задачи на сложные проценты егэ профильный уровень


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word


2

В понедельник акции компании подорожали на некоторое количество процентов, а во вторник подешевели на то же самое количество процентов. В результате они стали стоить на 4 % дешевле, чем при открытии торгов в понедельник. На сколько процентов подорожали акции компании в понедельник?

Источник: Яндекс: Тренировочная работа ЕГЭ по математике. Вариант 1.


3

Четыре одинаковые рубашки дешевле куртки на 8%. На сколько процентов пять таких же рубашек дороже куртки?


4

Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 67%. Если бы стипендия дочери уменьшилась втрое, общий доход семьи сократился бы на 4%. Сколько процентов от общего дохода семьи составляет зарплата жены?


5

Цена холодильника в магазине ежегодно уменьшается на одно и то же число процентов от предыдущей цены. Определите, на сколько процентов каждый год уменьшалась цена холодильника, если, выставленный на продажу за 20 000 рублей, через два года был продан за 15 842 рублей.

Пройти тестирование по этим заданиям

«Хороший учитель обязан понимать, что никакую задачу нельзя исчерпать до конца. Этот взгляд он должен прививать и своим ученикам».
Д. Пойа.

Введение.

Особое внимание я уделяю текстовым задачам на проценты, которые часто встречаются в практике вступительных экзаменов в экономические вузы, но недостаточно полно рассматриваются в школе. Умение выполнять процентные вычисления, − безусловно, одна из самых необходимых математических компетенций. Однако не только те, кто уже давно окончили школу, робеют при виде процентов. Даже на ЕГЭ решаемость задач на проценты не превышает 20 % . Это говорит о том, что такого типа задачи следует решать не только в младших классах, где изучается эта тема, но и на протяжении всех лет обучения в школе.

1. При решении задач на проценты используются основные формулы:

1% числа а равен а.

р% от числа а равно  а.

Если известно, что некоторое число а составляет р% от х, то х можно найти из пропорции

а   − р%

х   − 100%,

откуда х= а.

Пусть имеются числа a, b, причем а<b. Тогда

Число b больше числа а на100%.

Число а меньше числаbна100%.

2. Формула сложных процентов.

Если на вклад положена сумма а денежных единиц, банк начисляет р% годовых, то через n лет сумма на вкладе составит

aден.ед.

3. Задачи на проценты.

Задача 1.

Умных людей на 45 % меньше, чем красивых, 36% умных обладают красивой внешностью. Каков процент умных людей среди красивых?

Решение: пусть х − количество красивых людей, тогда количество умных людей:

х − 0,45х = 0,55х.

Среди умных 36% составляют красивые люди, следовательно, количество умных и одновременно красивых людей:

0,36 ·0,55х= 0,198х.

Составим пропорцию:

х −  100%

0,198х −  а%.

Отсюда получим:

а = 19,8%.

Ответ: 19,8%

Учащиеся с интересом решают текстовые задачи на проценты, которые ближе к реальной жизни. Особый «прикол» представляет собой подача задач не из задачника, а прямо с газетной полосы. Тут уж не возникает мыслей о ненужности математики. А «процентная журналистика» в связи с разразившимся экономическим кризисом на страницах газет буквально процветает.

Задача 2.

Цены на путевки уже подросли: например, туры во Францию − на 20%. Можно ли сказать, на сколько процентов раньше тур во Францию был дешевле?

Решение: пусть х − старая цена, а n − новая цена.

1) Составим первую пропорцию:

х −  100%

n − 120%,

Получим n=1,2х.

2) Составим вторую пропорцию:

1,2х − 100%

х − (100-а%)

(100-а) 1,2х = 100х

Решив уравнение, получим: а ≈17%.

Ответ:17%.

4. Использование формулы сложных процентов.

Задача 3.

На банковский счет было положено 10 тыс. руб. После того, как деньги пролежали один год, со счета сняли 1 тыс. руб. Еще через год на счету стало 11 тыс. руб. Определите, какой процент годовых начисляет банк.

Решение: пусть банк начисляет р% годовых.

1) Сумма в 10000 рублей, положенная на банковский под р% годовых, через год возрастет до величины

10000+

2) Когда со счета снимут 1000 руб., там останется 9000+100р руб.

3) Еще через год последняя величина за счет начисления процентов возрастет до величины

9000+100р+

По условию эта величина равна 11000:

Решив это уравнение получим: =10, =−200 − отрицательный корень не подходит.

Ответ:10%

Задача 4. (ЕГЭ-2015)

Банк под определенный процент принял некоторую сумму. Через год четверть накопленной суммы была снята со счета. Но банк увеличил процент годовых на 40%. К концу следующего года накоплена сумма в 1,44 раза превысила первоначальный вклад. Каков процент новых годовых?

Решение: от суммы вклада ситуация не изменится. Положим в банк 4 рубля (делится на 4). Через год сумма на счету увеличится ровно в p раз и станет равной (4p) рублей.

Поделим её на 4 части, унесём домой (p) рублей, оставим в банке (3p) рублей.

Известно, что к концу следующего года в банке оказалось 4·1,44 = 5,76 рублей. Итак, число (3p) превратилось в число (5,76). Во сколько раз оно увеличилось?

 http://www.egetrener.ru/cgi-bin/mimetex.cgi?k=frac%7b5,76%7d%7b3p%7d=frac%7b1,92%7d%7bp%7d

Таким образом, найден второй повышающий коэффициент k банка.

Интересно, что произведение обоих коэффициентов равно 1,92:

 http://www.egetrener.ru/cgi-bin/mimetex.cgi?%7bp%7dcdot%7bk%7d=%7bp%7dcdot%7bfrac%7b1,92%7d%7bp%7d%7d=1,92

Из условия следует, что второй коэффициент на 0,4 больше первого.

 http://www.egetrener.ru/cgi-bin/mimetex.cgi?%7bp%7dcdot%7b(p+0,4)%7d=1,92

 http://www.egetrener.ru/cgi-bin/mimetex.cgi?%7b10p%7dcdot%7b(10p+4)%7d=192

Избавившись от запятых, сделаем замену t = 10р:

 http://www.egetrener.ru/cgi-bin/mimetex.cgi?%7bt%7dcdot%7b(t+4)%7d=192

Из такого уравнения получить 12 совсем просто.

Итак, p = 1,2, k = 1,6.

В 1,2 раза увеличилась сумма вклада первый раз, в 1,6 раз — во второй раз.

Было 100%, стало 160%. Новый процент годовых равен 160%-100% = 60%.

Ответ: 60%.

Задача 5. (ЕГЭ-2015)

В банк помещена сумма 3900 тысяч рублей под 50% годовых. В конце каждого из первых четырех лет хранения после вычисления процентов вкладчик дополнительно вносил на счет одну и ту же фиксированную сумму. К концу пятого года после начисления процентов оказалось, что 

размер вклада увеличился по сравнению с первоначальным на 725%

Какую сумму вкладчик ежегодно добавлял к вкладу?

Решение: пусть х рублей – вкладчик ежегодно добавлял ко вкладу.

50% годовых означает, что каждый год сумма на счету вкладчика увеличивается в 1,5 раза. Если вкладчик ничего бы не добавлял к первоначальной сумме, то через год на его счету было бы 3900·1,5, через два года — 3900·1,52 и так далее.

 Посчитаем, какой доход принесли все четыре добавки.

х∙1,54 + х∙1,53 + х∙1,52 +х∙1,5

Для этого вынесем х за скобку и вычислим сумму геометрической прогрессии, в которой b = 1,5 и q = 1,5.

Известно, что размер вклада увеличился по сравнению с первоначальным на 725%

Это значит, что он стал составлять 825% от начального, т.е. увеличился в 8,25 раз.

Сумма всех слагаемых последнего столбика в 8,25 раз больше, чем 3900 тыс.руб.

http://www.egetrener.ru/cgi-bin/mimetex.cgi?3900cdot%7b1,5%5e5%7d+frac%7b%7b%7b3x%7dcdot65%7d%7d%7b2%5e4%7d=3900cdot%7b8,25%7d

http://www.egetrener.ru/cgi-bin/mimetex.cgi?frac%7b%7b%7b3x%7dcdot65%7d%7d%7b2%5e4%7d=3900cdot%7b8,25%7d-3900cdot%7b1,5%5e5%7d

http://www.egetrener.ru/cgi-bin/mimetex.cgi?frac%7b%7b%7bx%7dcdot65%7d%7d%7b2%5e4%7d=1300cdot(%7bfrac%7b33%7d%7b4%7d-frac%7b3%5e5%7d%7b2%5e5%7d%7d)

http://www.egetrener.ru/cgi-bin/mimetex.cgi?frac%7bx%7d%7b2%5e4%7d=20cdot(%7bfrac%7b33%7d%7b4%7d-frac%7b3%5e5%7d%7b2%5e5%7d%7d)

http://www.egetrener.ru/cgi-bin/mimetex.cgi?frac%7bx%7d%7b2%5e4%7d=10cdot(frac%7b33%7d%7b2%7d-frac%7b3%5e5%7d%7b2%5e4%7d)

http://www.egetrener.ru/cgi-bin/mimetex.cgi?x=10cdot(33cdot%7b2%5e3%7d-3%5e5)

http://www.egetrener.ru/cgi-bin/mimetex.cgi?x=10cdot3(11cdot%7b2%5e3%7d-3%5e4)

http://www.egetrener.ru/cgi-bin/mimetex.cgi?x=10cdot3cdot7

http://www.egetrener.ru/cgi-bin/mimetex.cgi?x=210

Ответ: 210 тысяч рублей.

5. Литература.

  1. С.Я. Криволапов. Пособие по математике для абитуриентов. М., 2004.
  2. Математика в школе. №6, 2009.
  3. Типовые варианты ЕГЭ-2015.

«Простые и сложные проценты»

Подборка прототипов задания №19 ЕГЭ по математике 2015 года профильного уровня.

Актуальность темы.

Понимание процентов и умение производить процентные расчеты в настоящее время необходимы каждому человеку: прикладное значение этой темы очень велико и затрагивает финансовую, демографическую, экологическую, социологическую и другие стороны нашей жизни.

Материал актуален для всех, у кого в этом году есть 11 классы.

Когда Ященко, имеющий к составлению КИМов по математике непосредственное отношение, приезжал к нам на семинар в октябре, он сказал, что все прототипы задания 19 будут выложены в открытом банке, так как задание новое.

Задание, решаемое для моего не очень сильного класса, и натаскать на него можно, было бы на чём.

Немного теории…

“Проценты”.

Задание1

а) Что называется процентом? (Процентом называется одна сотая часть какого-либо числа)

б) Как обозначается 1%? (1%? = 0,01)

в) Как называется 1% от центнера? (кг.) Метра? (см.) Гектара? (ар или сотый)

г) Что называется 1% процентом данного числа а? (Процентом данного числа а называется число 0,01•а, т.е. 1% (а) = 0,01*а ) 

д) Как определить р% от данного числа а? (найти число 0,01•р•а, т.е. р% = 0,01*р*а )

е) Как перевести десятичную дробь в проценты? (умножить на 100). А как проценты в десятичную дробь? (разделить на сто, т.е. умножить на 0,01)

ж) Как найти часть от числа в процентах? (Чтобы найти часть в от числа х в процентах, нужно эту часть разделить на число и умножить на 100, т.е. а(%)=(в/х)*100)

д) Как находится число по его проценту ? (Если известно, что а% числа х равно в, то х можно найти по формуле х = (в/а)*100)

Задание 2

Представьте данные десятичные дроби в процентах:

 а)1; 0,5; 0,763; 1,7; 256.

б) Представьте проценты десятичными дробями: 2%; 12%; 12,5%; 0,1%; 200%. 

Задание 3

Найдите % от числа:

в) 0,1% от числа 1200? (1,2)

г) 15% от числа 2? (0,30)

Задание 4

Найдите число по его проценту:

д) Сколько центнеров весит мешок сахарного песка, если 13% составляет 6,5 кг.? (50 кг.= 0,5 ц.)

в) Сколько процентов от 10 составляет 9?

Ответы: а) 9%, б) 0,09%, в) 90%; г) 900%?

Простые и сложные проценты.

Эти термины чаще всего встречаются в банковских делах, в финансовых задачах. 

Банки привлекают средства (вклады) за определенные процентные ставки. В зависимости от процентной ставки вычисляется доход.

На практике применяются два подхода к оценке процентного дохода – простые и сложные проценты.

При применении простых процентов доход рассчитывается от первоначальной суммы вложенных средств не зависимо от срока вложения. В финансовых операциях простые проценты используются преимущественно при краткосрочных финансовых сделках.

Пусть некоторая величина подвержена поэтапному изменению. При этом каждый раз ее изменение составляет определенное число процентов от значения, которое эта величина имела на начальном этапе. Так вычисляются простые проценты. 

При применении сложных процентов накопленная сумма процентов добавляется во вклад по окончании очередного периода начислений. При этом каждый раз ее изменение составляет определенное число процентов от значения, которое эта величина имела на предыдущем этапе. В этом случае имеем дело со “сложными процентами” (т.е. используются начисления “процентов на проценты”)

Первоначальная сумма и полученные проценты в совокупности называются накопленной (наращенной) суммой.

Так, если банковская ставка равна 10%, а первоначальная сумма 100 руб., то накопленная сумма за пять лет при применении простых и сложных процентов будет иметь вид:

Таблица 1. Накопленная сумма с использованием простых и сложных процентов.

На начало

1-й год

2-й год

3-й год

4-й год

5-й год

Простые проценты

100

110

120

130

140

150

Сложные проценты

100

110

121

133

146

161

Формулы простых и сложных процентов.

I. Пусть некоторая величина A увеличивается n раз (n год) и каждый раз на р%.

Вводим обозначения: A0 – первоначальное значение величины A;

р – постоянное количество процентов;

a процентная ставка; a=р/100 = 0,01*р

An – накопленная сумма за n раз (к концу n-го года) — по формуле простых процентов;

Sn — накопленная сумма за n раз (к концу n-го года) — по формуле сложных процентов.

Тогда ее значение A1 для простых процентов после первого увеличения (к концу первого года) вычисляется по формуле: A1 = A0 + A0 * (0,01р) = A0 (1 + (0,01р) = A0 (1 + p)

В конце второго этапа A2= A1 + A0 * (0,01р) = A0 (1 + a) + A0 * a = A0 (1 + 2a).

В конце третьего этапа A3= A2 + A0 * (0,01р) = A0 (1 + 2a) + A0 * a = A0 (1 + 3a).

Тогда для простых процентов сумма по годам равна:

An = A0 (1 + 0.01р*n) или An = A0 (1 + ?* n) (1)

Для сложных процентов это выглядит иначе:

Пусть некоторая величина S0 увеличивается n раз (n год) и каждый раз на р%.

Тогда ее значение S1 для сложных процентов после первого увеличения (к концу первого года) вычисляется по формуле:

S1 = S0 + S0 (0,01р) = S0 * (1 + 0,01р) = S0 * (1 + ?).

В конце второго этапа S2= S1 + S1 (0,01р) = S1 * (1 + 0,01р) = S0 (1 + ????р)2 = S0 (1 + ?)2.

В конце третьего этапа S3= S2 + S2 (0,01р) = S2 * (1 +0,01р) = S0(1 +0,01р)2*(1 +0,01р)=S0(1 +0,01р)3 = S0 (1 + a)3.

Тогда для сложных процентов сумма по годам равна:

Sn = S0 (1 + 0,01р)n  или Sn = S0 (1 + a)n (2)

Пример 1.

В банке открыт срочный депозит на сумму 50 тыс. руб. по 12% на 3 года. Рассчитать накопленную сумму если проценты:

а) простые; б) сложные.

Решение 1.

По формуле простых процентов

Sn=(1+3*0.12)*50 000 = 68000 руб. (отв. 68000 руб.)

По формуле простых процентов

Sn=(1+0.12)3*50 000 = 70246 руб. (отв. 70246 руб.)

Формула сложных процентов связывает четыре величины: начальный вклад, накопленную сумму (будущую стоимость вклада), годовую процентную ставку и время в годах. Поэтому, зная три величины, всегда можно найти четвертую:

Sn = S0 * (1+0,01р)n

Для определения количество процентов р необходимо:

р = 100 * ((Sn / S0 )1/n – 1) (2.1)

Операция нахождения первоначального вклада S0, если известно что через n лет он должен составить сумму Sn, называется дисконтированием:

S0 = Sn * (1 + 0,01р) –n (2.2)

Сколько лет вклад S0 должен пролежать в банке под р % годовых, чтобы достигнуть величины Sn.

n = (lnSn  lnS0) / (ln(1 + 0,01р) (2.3)

В банковской практике проценты могут начисляться чаще чем 1 раз в год. При этом банковская ставка обычно устанавливается в пересчете на год. Формула сложных процентов будет иметь вид:

Sn = (1 + ?/t )n•t S0 (3)

где t – число реинвестиций процентов в году.

Пример 2.

В банке открыт срочный депозит на сумму 50 тыс. руб. по 12% на 3 года. Рассчитать начисленную сумму если проценты начисляются ежеквартально.

Решение 2.

n = 3

t = 4 (в году – 4 квартала)

По формуле сложных процентов

S3 = (1+0.12/4)3*4*50000 = 1.0312*50000 = 71288 руб. Отв. 71288 руб.

Как следует из примеров 1 и 2, накопленная сумма будет возрастать тем быстрее, чем чаще начисляются проценты.

Приведем обобщение формулы (2), когда прирост величины S на каждом этапе свой. Пусть Sо, первоначальное значение величины S, в конце первого этапа испытывает изменение на р1%, в конце второго на р2%, а в конце третьего этапа на р3% и т.д. В конце n-го этапа значение величины S определяется формулой

Sn = S0 (1 + 0,01р1 )(1 + 0,01р2 )…(1 + 0,01рn ) (4)

Пример 3.

Торговая база закупила партию товара у изготовителя и поставила ее в магазин по оптовой цене, которая на 30% больше цены изготовителя. Магазин установил розничную цену на товар 20% выше оптовой. При распродаже магазин снизил эту цену на 10%. На сколько рублей больше заплатил покупатель по сравнению с ценой изготовителя, если на распродаже он приобрел товар за 140 руб. 40 коп.

Решение 3.

Пусть первоначальная цена составляет S руб., тогда по формуле (4) имеем:

S0 (1 + 0,01*30)(1 + 0,01*20)***(1 – 0,01*10) = 140,4

S0*1,3*1,2*0,9 = S0*1,404 = 140,4

S0 = 140,4: 1,404 = 100 (руб.)

Находим разность последней и первоначальной цены

140,4 – 100 = 40,4 Отв. 40,4 руб.

Примеры задач с решениями

Вариант 1

Задача 1. Владелец автозаправки повысил цену на бензин на 10%. Заметив, что количество клиентов резко сократилось, он понизил цену на 10 %. Как после этого изменилась начальная цена на бензин? (повысилась или понизилась и на сколько % -ов?)

Решение: Пусть S0 – начальная цена, S2 – конечная цена, х — искомое число процентов изменения, где х = (1 — S2/S0 )*100% (*)

Тогда по формуле Sn = S0 (1 + 0,01р1 )(1 + 0,01р2 )***(1 + 0,01рn ) (4), получим

S2 = S0 (1 + 0,01*10 )(1 — 0,01*10) = S0*1,1*0,9 = 0,99*S0.

S2 = 0,99*S0; 0,99 = 99%, значение S2 составляет 99% первоначальной стоимости, значит ниже на 100% — 99% = 1%.

Или по формуле (*) получаем: х = (1 – 0,99 )*100% = 1%.

Ответ: понизилась на 1%.

Задача 2. В течении года предприятие дважды увеличивало выпуск продукции на одно и то же число процентов. Найдите это число, если известно, что в начале года предприятие ежемесячно выпускало 600 изделий, а в конце года стал выпускать ежемесячно 726 изделий.

Решение: Пусть S0 – начальная цена, S2 – конечная цена, р – постоянное количество процентов.

По формуле (2.1) получаем: р = 100 * ((726 / 600 )1/2 – 1) = 10%.

Ответ: 10%

Задача 3. Цена на компьютерную технику были повышены на 44%. После этого в результате двух последовательных одинаковых процентных снижений цена на компьютеры оказалась на 19% меньше первоначальной. На сколько процентов каждый раз понижали цену?

Решение: По формуле (4), составляем уравнение

S3 = S0 (1 + 0,01*44)(1 — 0,01р )(1 — 0,01р) = S0 *1,44*(1 — 0,01р )2 = S0 * (1-0,01*19). Решая уравнение, получаем 2 корня: 175 и 25, где 175 не подходит условию задачи. Поэтому р = 25%.

Ответ: 25%

Задача 4. Для определения оптимального режима повышения цен фирма решила с 1 января повышать цену на один и тот же товар в двух магазинах двумя способами. В одном магазине – в начале каждого месяца (начиная с февраля) на 2%, в другом – через каждые два месяца, в начале третьего (начиная с марта) на одно и то же число процентов, причем такое, чтобы через полгода (1 июля) цены снова стали одинаковыми. На сколько процентов надо повышать цену товара через каждые два месяца, во втором магазине?

Решение: Пусть S0 – начальная цена, р – постоянное количество процентов.

Тогда через 6 месяцев (после шести повышений на 2%) в первом магазине цена на товар станет равна S0 (1 + 0,01*2)6, а во втором магазине (после трех повышений на р%) цена товара будет равна S0 (1 + 0,01р)3. Получаем уравнение S0 (1 + 0,01*2)6 = S0 (1 + 0,01р)3. Решая его, получаем

(1 + 0,01*2)2 = (1 + 0,01р); 1,022= (1 + 0,01р); р = 4,04

Ответ: 4,04%

Вариант 2.

Задача 1. Автомобиль ехал по магистрали с определенной скоростью. Выезжая на проселочную дорогу, он снизил скорость на 20%, а затем на участке крутого подъема он уменьшил скорость на 30%. На сколько процентов эта новая скорость ниже первоначальной?

Решение: Пусть V0 – начальная скорость, V – новая скорость, которая получается после двух разных изменений, р – искомое количество процента.

Тогда по формуле (4), составляем уравнение V0(1 — 0,01*20)(1 — 0,01*30) = V0(1 — 0,01р). Решая его получаем V0*0,8*0,7 = V0(1 — 0,01р); р = 44

Ответ: 44%

Задача 2. Предположим, что в комнатной температуре за день вода испаряется на 3%. Сколько литров воды останется через 2 дня от 100 литров? А сколько воды испарится?

Решение: n=2; р=3%; S0= 100л. Тогда по формуле (2), получаем

S2 = S0 (1 — 0,01р )2 = 100*(1-0,01*3)2 = 100*0,972 = 94,09; S0 – S2= 100 — 94,09 = 5,91

Ответ: 94,09л.; 5,91л.

Задача 3. Вклад, положенный в банк 2 года назад, достиг 11449 рублей. Каков был первоначальный вклад при 7% годовых? Какова прибыль?

Решение: n=2; р=7%; S2= 11449; S0= ?

В формулу (2.2) S0 = Sn * (1 + 0,01р) –n подставляем данные значения, получаем:

S0 = 11449* (1 + 0,01*7) –2 = 11449/ (1,07)2=11449/ 1,1449 = 10000.

11449 – 10000 = 1449

Ответ: 10000 руб.; 1449 руб.

Задача 4. Сберкасса начисляет ежегодно 3% от суммы вклада. Через сколько лет сумма удвоится?

Решение: р=3%; S0 – начальная сумма; n=?

Составим уравнение: 2*S0 = S0 (1 + 0,01р )n; 2*S0 = S0 (1 + 0,03)n; 2 = 1,03n n=log1,032; n ?23.

Самостоятельная работа

1-уровень. После реконструкции завод увеличил выпуск продукции на 10%, а после замены оборудования еще на 30%. На сколько процентов увеличился первоначальный выпуск продукции?

(Ответ: на 43%)

2-уровень. Число 50 трижды увеличили на одно и то же число процентов, а потом уменьшили на это же число процентов. В результате получили число 69,12. На сколько процентов увеличивали, а потом уменьшали данное число?

(Ответ: на 20%)

3-уровень. Банк начисляет ежегодно 7% от суммы вклада. Найдите наименьшее число лет, за которое вклад вырастает более чем на 20%.

(Ответ: 3 года)

№1. Сберегательный банк начисляет по вкладам ежегодно 5,5% годовых. Вкладчик внес в банк 150 тысяч рублей. Какой станет сумма вклада через 2 года?

(Ответ: 166953,75 руб.)

№3. Банк предлагает два варианта депозита

1) под 120% с начислением процентов в конце года;

2) под 100% с начислением процентов в конце каждого квартала.

Определить более выгодный вариант размещения депозитов на один год.

Решение.

Более выгодным считается тот вариант, при котором наращенная за год сумма будет больше. Для оценки вариантов начальную сумму примем равную 100 руб.

По первому варианту накопленная сумма будет равна (1+1,2)*100 руб. = 220 руб.

По второму варианту проценты начисляются ежеквартально. По окончании первого квартала накопленная сумма равна (1+1,0/4)*100 руб. = 125 руб.

По окончании 2-го квартала (1+1,0/4)2*100 руб. = 156 руб.

За год накопленная сумма равна (1+1,0/4)4*100 руб. = 244 руб.

Как следует из расчетов второй вариант значительно выгоднее (244 > 220). Правда, только при условии применения сложных процентов.

Подборка прототипов задания №19 ЕГЭ по математике 2015 года профильного уровня.

19. 31 декабря 2012 года Екатерина взяла в банке 850000 рублей в кредит под 15% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 15%), затем Екатерина переводит в банк определенную сумму ежегодного платежа. Какой должна быть сумма ежегодного платежа, чтобы Екатерина выплатила долг тремя равными ежегодными платежами?

19. Молодой семье на покупку квартиры банк выдает кредит под 20 % годовых.

Схема выплаты кредита следующая: ровно через год после выдачи кредита банк

начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 20%),

затем эта семья в течение следующего года переводит в банк определенную

(фиксированную) сумму ежегодного платежа. Семья Ивановых планирует погашать

кредит равными платежами в течение 4 лет. Какую сумму может предоставить им

банк, если ежегодно Ивановы имеют возможность выплачивать по кредиту 810 000

рублей?

19. В 8-литровой колбе находится смесь азота и кислорода, содержащая 32% кислорода. Из колбы выпустили некоторое количество смеси и добавили столько же азота; затем снова выпустили такое же, как и в первый раз, количество новой смеси и добавили столько же азота. В итоге процентное содержание кислорода в смеси составило 12,5%. Сколько литров смеси выпускали каждый раз?

19. В банк был положен вклад под банковский процент 10%. Через год хозяин вклада снял со счета 2000 рублей, а еще через год снова внес 2000 рублей. Однако, вследствие этих действий через три года со времени первоначального вложения вклада он получил сумму меньше запланированной (если бы не было промежуточных операций со вкладом). На сколько рублей меньше запланированной суммы получил в итоге вкладчик?

19. В первый рабочий день месяца с заводского конвейера сошло некоторое число тракторов. Каждый следующий рабочий день их выпуск возрастал на 3 трактора ежедневно, и месячный план 55 тракторов был выполнен досрочно, причем за целое число дней. После этого ежедневно выпускалось 11 тракторов. Определите, сколько тракторов было выпущено в первый рабочий день, и на сколько процентов был перевыполнен месячный план, если известно, что в месяце было 26 рабочих дней, а плановая работа длилась не менее 3 и не более 10 дней.

19. 8 марта Леня Голубков взял в банке 53 680 рублей в кредит на 4 года под 20% годовых, чтобы купить своей жене Рите новую шубу. Схема выплаты кредита следующая: утром 8 марта следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 20%), а вечером того же дня Леня переводит в банк определенную сумму ежегодного платежа (все четыре года эта сумма одинакова). Какую сумму сверх взятых 53 680 рублей должен будет выплатить банку Леня Голубков за эти четыре года?

19. Семён Кузнецов планировал вложить все свои сбережения на сберегательный счёт в банк «Навроде» под 500%, рассчитывая через год забрать А рублей. Однако крах банка «Навроде» изменил его планы, предотвратив необдуманный поступок. В результате часть денег г-н Кузнецов положил в банк «Первый Муниципальный», а остальные – в банку из-под макарон. Через год «Первый Муниципальный» повысил процент выплат в два с половиной раза, и г-н Кузнецов решил оставить вклад ещё на год. В итоге размер суммы, полученной в «Первом Муниципальном», составил А рублей. Определите, какой процент за первый год начислил банк «Первый Муниципальный», если в банку из-под макарон Семён «вложил» А рублей.

19. Банк планирует вложить на 1 год 30% имеющихся у него средств клиентов в акции золотодобывающего комбината, а остальные 70% – в строительство торгового комплекса. В зависимости от обстоятельств первый проект может принести банку прибыль в размере от 32% до 37% годовых, а второй проект – от 22% до 27% годовых. В конце года банк обязан вернуть деньги клиентам и выплатить им проценты по заранее установленной ставке, уровень которой должен находиться в пределах от 10% до 20% годовых. Определите, какую наименьшую и наибольшую чистую прибыль в процентах годовых от суммарных вложений в покупку акций и строительство торгового комплекса может при этом получить банк.

http://alexlarin.net/ege/matem/22/2.gif

http://alexlarin.net/ege/matem/22/1.gif

7 августа 2017

В закладки

Обсудить

Жалоба

Задачи на сложные проценты

Подготовка к задаче №17 профильного уровня.

→ I тип задач: на какой минимальный срок взят кредит.
→ II тип задач: под какой процент был взят кредит.
→ III тип задач: какую сумму взяли в кредит или сумма выплат по кредиту.

→ Задачи на нахождение наибольшего или наименьшего значения.

Автор: Белая Надежда Владимировна.

sb-r17.pdf

Рекомендуем посмотреть: пособие для подготовки к экономическим задачам.

1. Прикладные задачи (задачи из повседневной жизни)


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Решение задач на проценты

Основные моменты:

(blacktriangleright) Процент – это число, равное (frac{1}{100}) части от данного числа.

(blacktriangleright) Пример: (13%) от числа (N) равно:

Способ 1: (dfrac{N}{100}cdot 13) (где (frac{N}{100}) – сотая часть числа (N), а значит (frac{N}{100}cdot 13) – тринадцать таких частей.)

Способ 2: (0,13N) (то есть перевести процент в так называемый “десятичный вид”: (frac{13}{100}=0,13))

(blacktriangleright) Чтобы найти, сколько процентов составляет число (A) от числа (B), нужно найти (dfrac{A}{B}cdot 100
%)
.

(blacktriangleright) Чтобы найти, на сколько процентов число (A) больше (меньше) числа (B), нужно найти, сколько процентов составляет число (A) от числа (B), а затем из этого количества процентов отнять (100%) (из (100%) отнять найденное количество процентов).


Задание
1

#1477

Уровень задания: Равен ЕГЭ

Авиабилет стоит 12000 рублей. Двум пассажирам из группы в десять человек была сделана скидка в 6(%). Сколько в сумме отдали эти 10 пассажиров за перелёт?

Билет со скидкой стоит (12000 cdot (1 — 0,06) = 11280) рублей. Из группы в десять человек двое летели со скидкой, остальные восемь платили по 12000 рублей за билет. В сумме эти 10 пассажиров отдали (12000 cdot 8 + 11280 cdot 2 = 118560) рублей.

Ответ: 118560


Задание
2

#2814

Уровень задания: Равен ЕГЭ

Артём считает ворон. Он пришёл к выводу, что в данный момент около его окна кружит (55) ворон. Известно, что Артём ошибся и на самом деле количество этих самых ворон на (20%) больше, чем насчитал Артём. Сколько ворон кружит около окна Артёма в данный момент?

На самом деле искомое количество ворон равно (55cdot (1 + 0,2) = 66).

Ответ: 66


Задание
3

#2978

Уровень задания: Равен ЕГЭ

Аня купила 10 яблок и несколько груш, причем яблоки составляют 40(%) от всех фруктов. Сколько груш купила Аня?

Пусть всего было (x) груш, тогда всего фруктов (10+x). Так как яблоки составляют (40%) от всех фруктов, то получаем следующее уравнение [(10+x)cdot 0,4=10quadRightarrowquad x=15.]

Ответ: 15


Задание
4

#1483

Уровень задания: Равен ЕГЭ

Масса топлива ракеты до старта составляла 280 тонн. Через некоторое время часть топлива сгорела и масса оставшегося топлива стала 238 тонн. На сколько процентов уменьшилась масса топлива?

Сгорело (280 — 238 = 42) тонны топлива. Чтобы найти, сколько процентов от 280 составляет 42, надо разделить 42 на 280 и умножить на 100(%): (42 : 280 cdot 100% = 15%).

Ответ: 15


Задание
5

#1484

Уровень задания: Равен ЕГЭ

Масса палки колбасы до того, как её заметил Артем Я., составляла 1,2 килограмма. Артем Я. кое-что сделал с колбасой, после чего масса оставшейся части палки колбасы стала 0,75 килограмма. На сколько процентов уменьшилась масса палки колбасы?

Артем Я. куда-то дел (1,2 — 0,75 = 0,45) килограмма колбасы. Чтобы найти, сколько процентов от 1,2 составляет 0,45, надо разделить 0,45 на 1,2 и умножить на 100(%): (0,45 : 1,2 cdot 100 % = 37,5%).

Ответ: 37,5


Задание
6

#1485

Уровень задания: Равен ЕГЭ

Объем воды в графине до того, как его заметил Коля, составлял 2 литра. Коля выпил часть воды так, что оставшийся объем составил 1,3 литра. На сколько процентов уменьшился объем воды в графине?

Коля выпил (2 — 1,3 = 0,7) литра воды. Чтобы найти, сколько процентов от 2 составляет 0,7, надо разделить 0,7 на 2 и умножить на 100(%): (0,7 : 2 cdot 100% = 35%).

Ответ: 35


Задание
7

#1479

Уровень задания: Равен ЕГЭ

Билет в кино стоит 500 рублей. Двум киноманам из группы в пять человек была сделана скидка в 1(%). Сколько в сумме отдали эти 5 киноманов за сеанс в кино?

Билет со скидкой стоит (500 cdot (1 — 0,01) = 495) рублей. Из группы в пять человек двое шли со скидкой, остальные трое платили по 500 рублей за билет. В сумме эти 5 киноманов отдали (500 cdot 3 + 495 cdot 2 = 2490) рублей.

Ответ: 2490

Уметь правильно и быстро решать текстовые задачи на проценты необходимо не только учащимся, которым предстоит сдача ЕГЭ по математике базового или профильного уровня, но и всем взрослым, поскольку подобные задания постоянно встречаются в повседневной жизни. Повышение цен, планирование семейного бюджета, выгодное вложение финансовых средств и множество других вопросов невозможно уладить без данных навыков. При подготовке к сдаче аттестационного испытания обязательно нужно повторить, как решать задачи на проценты: в ЕГЭ по математике они встречаются как в базовом, так и в профильном уровне.

Необходимо запомнить

Процент — это (frac{1}{100}) часть от какого-либо числа. Обозначает долю чего-либо по отношению к целому. Письменный символ — (%). При подготовке к ЕГЭ по теме «Проценты» школьникам как в Москве, так и в других точках РФ необходимо запомнить следующую формулу:

[1%= frac{1}{100}=0.01]

Как ее применить?

Для того чтобы решить простое задание с процентами в ЕГЭ по математике, нужно:

  1. Разделить имеющееся число на (100).
  2. Умножить полученное значение на то количество (%), которое нужно найти.

Например, для того чтобы вычислить (10%) от числа (300), нужно найти (1) процент, разделив (300:100=3). И полученное от предыдущего действия число (3cdot10=30). Ответ: (30).

Это простейшие задания. Учащиеся 11 класса в ЕГЭ сталкиваются с необходимостью выполнить решение сложных задач на проценты. Как правило, речь в них идет о банковских вкладах или платежах. Ознакомиться с формулами и правилами их применения вы можете, перейдя в раздел «Теоретическая справка». Здесь вы сможете не только повторить основные определения, но и познакомиться с вариантами решения сложных задач на проценты по банковскому кредиту, а также с упражнениями из других разделов алгебры, например, задачами на перевод единиц измерения, которые встречаются в ЕГЭ.

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Задачи на проценты»

Открытый банк заданий по теме задачи на проценты. Задания B11 из ЕГЭ по математике (профильный уровень)

Задание №1099

Тип задания: 11
Тема:
Задачи на проценты

Условие

Елена сделала вклад в банк в размере 5500 рублей. Проценты по вкладу начисляются раз в год и прибавляются к текущей сумме вклада. Спустя год Наталья положила такую же сумму в этот же банк и на тех же условиях. Ещё через год Елена и Наталья одновременно закрыли вклады и забрали деньги. В результате Елена получила на 739,2 рубля больше, чем получила Наталья. Найдите, какой процент годовых начислял банк по вкладам?

Показать решение

Решение

Пусть процент годовых будет x, тогда через год вклад Елены составил:

5500 + 0, 01x cdot 5500 = 5500(1 + 0,01x) рублей, а ещё через год — 5500(1 + 0,01x)^2 рублей. Вклад Натальи лежал в банке только год, потому он равен 5500(1 + 0,01x) рублей. А разность между получившимися вкладами Елены и Натальи составила 739,2 рубля.

Составим и решим уравнение:

5500(1+ 0,01x)^2-5500(1+0,01x)= 739,2,

(1+0,01x)^2-(1+0,01x)=0,1344,

x^2+100x-1344=0,

x_1=-112,enspace x_2=12.

Банк начислял 12% годовых.

Ответ

12

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1098

Тип задания: 11
Тема:
Задачи на проценты

Условие

Предприниматель Петров получил в 2005 году прибыль в размере 12,000 рублей. Каждый следующий год его прибыль увеличивалась на 110% по сравнению с предыдущим годом. Сколько рублей заработал Петров за 2008 год?

Показать решение

Решение

В 2005 году прибыль составляла 12,000 рублей, каждый следующий год она увеличивалась на 110%, то есть становилась 210% = 2,1 от предыдущего года. Через три года она будет равна 12,000 cdot 2,1^3 = 111,132 рубля.

Ответ

111132

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1097

Тип задания: 11
Тема:
Задачи на проценты

Условие

Имеется два сплава. Первый сплав содержит 12% железа, второй — 28% железа. Масса второго сплава больше массы первого на 2 кг. Из этих двух сплавов изготовили третий сплав с содержанием железа 21%. Найдите массу третьего сплава. Ответ дайте в килограммах.

Показать решение

Решение

Обозначим массу первого сплава через x кг. Тогда масса второго сплава (x + 2) кг. Содержание железа в первом сплаве равно 0,12x кг, во втором сплаве — 0,28(x + 2) кг. Третий сплав имеет массу x + x + 2 = 2x + 2 (кг), и в нём содержание железа равно 2(x + 1) cdot 0,21 = 0,42(x + 1) кг.

Составим и решим уравнение:

0,12x+ 0,28(x + 2) = 0,42(x+1),

6x + 14(x + 2) = 21(x + 1),

x = 7.

Третий сплав имеет массу 2 cdot 7 + 2 = 16 (кг).

Ответ

16

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №942

Тип задания: 11
Тема:
Задачи на проценты

Условие

Цена телевизора в магазине ежеквартально (в квартале — три месяца) уменьшается на одно и то же число процентов от предыдущей цены. Известно, что телевизор, стоимостью 50 000 рублей был продан спустя два квартала за 41 405 рублей. Найдите, на сколько процентов ежеквартально уменьшалась стоимость телевизора.

Показать решение

Решение

Цена телевизора первоначально была 50 000 руб. Через квартал она стала 50,000-50,000cdot0,01x = 50,000(1-0,01x) рублей, где x — количество процентов, на которые уменьшается ежеквартально цена телевизора. Через два квартала его цена стала

50,000(1-0,01x)(1-0,01x)=50,000(1-0,01x)^2.

Составим и решим уравнение:

50,000(1-0,01x)^2=41,405,

(1-0,01x)^2=0,8281,

1-0,01x=0,91,

x=9.

Итак, на 9 процентов уменьшалась цена телевизора ежеквартально.

Ответ

9

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №941

Тип задания: 11
Тема:
Задачи на проценты

Условие

В 2005 году в посёлке проживало 55 000 человек. В 2006 году, в результате строительства новых домов, число жителей увеличилось на 6%, а в 2007 году — на 10% по отношению к 2006 году. Найдите, число жителей посёлка в 2007 году.

Показать решение

Решение

В 2006 году число жителей посёлка выросло на 6%, т.е. стало 106%, что равно 55,000 cdot 1,06 = 58,300 (жителей). В 2007 году число жителей посёлка выросло на 10% (стало 110%) по сравнению с 2006 годом, т.е. число жителей посёлка стало 58,300 cdot 1,1 = 64,130 человек.

Ответ

64130

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №940

Тип задания: 11
Тема:
Задачи на проценты

Условие

В сосуд, содержащий 3 литра 14-процентного водного раствора некоторого вещества, добавили 4 литра воды. Найдите концентрацию (в процентах) получившегося после смешивания раствора.

Показать решение

Решение

В 3 литрах 14%-ного водного раствора содержится 3cdot0,14=0,42 л. некоторого вещества. Добавили 4 литра воды, стало 7 литров раствора. В этих 7 литрах нового раствора — 0,42 л некоторого вещества. Найдём концентрацию нового раствора: 0,42:7cdot100=6%.

Ответ

6

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №329

Тип задания: 11
Тема:
Задачи на проценты

Условие

Строительные фирмы учредили компанию с уставным капиталом 150 млн рублей. Первая фирма внесла 20% уставного капитала, вторая фирма — 22,5 млн рублей, третья — 0,3 уставного капитала, четвертая фирма внесла оставшуюся часть.

По договоренности ежегодная прибыль между фирмами будет расформирована пропорционально внесенным в уставный капитал вкладам. Какую сумму получит четвертая фирма, если прибыль составила 100 млн рублей? Ответ дайте в млн рублей.

Показать решение

Решение

Первая форма — 150cdot20:100=30 (млн руб.).

Вторая фирма — 22,5 (млн руб.).

Третья фирма — 0,3cdot150=45 (млн руб.).

Четвертая фирма — 150-(30+22,5+45)=52,5 (млн руб.).

Часть уставного капитала, который составляет взнос четвертой фирмы: frac{52,5}{150}=0,35.

Найдем сумму от прибыли, причитающуюся четвертой фирме: 100cdot0,35=35 (млн руб.).

Ответ

35

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №327

Тип задания: 11
Тема:
Задачи на проценты

Условие

В результате смешивания 25%-го и 15%-го растворов серной кислоты было получено 750 г 20%-го раствора. Сколько граммов 15%-го раствора было использовано?

Показать решение

Решение

Пусть x г было взято 15%-го раствора, тогда (750-x) г было взято 25%-го раствора.

frac{xcdot15}{100}=(0,15x) г кислоты содержал 15%-й раствор.

frac{(750-x)cdot25}{100}=(187,5-0,25x) г кислоты содержал 25%-й раствор.

В результате смешивания получили 20%-й раствор, который содержал frac{750cdot20}{100}=150 г кислоты.

Составим и решим уравнение.

0,15x+187,5-0,25x=150,

0,1x=37,5,

x=375.

375 г — масса 15%-го раствора.

Ответ

375

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №87

Тип задания: 11
Тема:
Задачи на проценты

Условие

Имеются два куска металла массой 80 г и 70 г, которые содержат различную концентрацию серебра. Если сплавить эти два металла, то на выходе получится металл, который будет содержать 63% серебра. Если же сплавить одинаковые массы этих металлов, то результатом будет сплав, содержащий 65% серебра. Найдите, сколько граммов серебра находится в первом куске металла.

Показать решение

Решение

Пусть в первом сплаве концентрация серебра составляет x1%, во втором – x2%. Соответственно в первом сплаве находится 80x1 г серебра, а во втором – 70x2 г.

При сплавлении металлов образуется третий сплав массой 150 г, который содержит x1 + x2 г серебра. По условию задачи, концентрация серебра в нем составляет 63%, т.е. масса серебра равна 0,63·150. Составим уравнение:

80x1 + 70x2 = 0,63·150

При сплавлении равных масс металлов, концентрация серебра в новом металле составляет 65%. Т.е.:

x1 + x2 = 2·0,65

Составляем и решаем систему уравнений:

begin{cases} 80 x_1 + 70 x_2 = 0,63 cdot 150\ x_1 + x_2=2 cdot 0,65end{cases}

begin{cases} 80x_1+70x_2=94,5\ x_1 + x_2= 1,3 end{cases}

Из второго уравнения выразим x2:

x2 = 1,3 − x1

Подставим это значение в первое уравнение системы:

80x1 + 70x2 = 94,5

80x1 + 70(1,3 − x1) = 94,5

80x1 + 91 − 70x1 = 94,5

10x1 = 3,5

x1 = 0,35

Как указывалось выше, в первом сплаве содержится 80x1 г серебра. Вычисляем:

80·x1 = 80·0,35 = 28 г серебра содержится в 80 г сплава.

Ответ

28

Задание №56

Тип задания: 11
Тема:
Задачи на проценты

Условие

В двух сплавах имеется различное содержание кобальта. В первом – 25%, во втором – 30% кобальта. На производстве из них был получен третий сплав общей массой 150 кг, в котором содержится 28% кобальта. Определите разницу в весе двух сплавов. Ответ дайте в килограммах.

Показать решение

Решение

Пусть x – масса первого сплава. Тогда масса второго сплава равна 150 − x. В первом сплаве содержится 25% никеля, т.е 0,25·x, а во втором 30% никеля, т.е. 0,3 cdot (150 — x). Третий сплав имеет массу 150 кг и содержит массы двух сплавов с содержанием никеля 28%, т.е. 0,28 cdot 150. Зная эти значения, можем составить уравнение:

0,25x+0,3cdot (150-x)=0,28cdot 150

0,25x+45-0,3x=42

0,3x-0,25x=45-42

0,05x=3

x=60

Масса первого сплава равна 60 кг. Масса второго равна 150 − 60 = 90 кг. Разница в весе сплавов составляет 90 − 60 = 30 кг.

Ответ

30

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928

Skip to content

ЕГЭ Профиль №9. Задачи на проценты, смеси и сплавы

ЕГЭ Профиль №9. Задачи на проценты, смеси и сплавыadmin2022-10-26T22:13:32+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №9. Задачи на проценты, смеси и сплавы

Задача 1. В 2008 году в городском квартале проживало 40000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 8%, а в 2010 году  — на 9% по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?

В 2009 году число жителей стало равно (40000 + 40000 cdot frac{8}{{100}} = 43200), а в 2010 году:  (43200 + 43200 cdot frac{9}{{100}} = 47088.)

Ответ: 47088.

Задача 2. В понедельник акции компании подорожали на некоторое количество процентов, а во вторник подешевели на то же самое количество процентов. В результате они стали стоить на 4% дешевле, чем при открытии торгов в понедельник. На сколько процентов подорожали акции компании в понедельник?

Обозначим первоначальную стоимость акций за А. Пусть в понедельник акции подорожали на х %, поэтому они стали стоить (100 + х)% от А, то есть (A cdot frac{{100 + x}}{{100}}). Во вторник они подешевели на х %, поэтому они стали стоить (100 – х) % от (A cdot frac{{100 + x}}{{100}}),  то есть  (A cdot frac{{100 + x}}{{100}} cdot frac{{100 — x}}{{100}}.)

В результате акции стали стоить 96% от А(A cdot frac{{96}}{{100}}). Таким образом, получаем уравнение:

(A cdot frac{{100 + x}}{{100}} cdot frac{{100 — x}}{{100}} = A cdot frac{{96}}{{100}},left| {,:,} right.A,,,, Leftrightarrow ,,,,frac{{{{100}^2} — {x^2}}}{{100}} = 96,,,, Leftrightarrow ,,,,10000 — {x^2} = 9600,,,, Leftrightarrow )

( Leftrightarrow ,,,,{x^2} = 400,,,, Leftrightarrow ,,,,{x_1} = 20;,,,,,{x_2} =  — 20.)

Так как (x > 0), то акции подорожали в понедельник на 20%.

Ответ: 20.

Задача 3. Четыре рубашки дешевле куртки на 8%. На сколько процентов пять рубашек дороже куртки?

Стоимость четырех рубашек составляет 100 – 8 = 92 % от куртки. Следовательно, стоимость одной рубашки составляет (frac{{92}}{4} = 23)% от стоимости куртки. Тогда стоимость пяти рубашек составляет (5 cdot 23 = 115)%, что на 115 – 100 = 15 % превышает стоимость куртки.

Ответ: 15.

Задача 4. Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 67%. Если бы стипендия дочери уменьшилась втрое, общий доход семьи сократился бы на 4%. Сколько процентов от общего дохода семьи составляет зарплата жены?

Пусть доход мужа, жены и дочери составляет x, y и z % соответственно. Тогда первое уравнение: (x + y + z = 100.) Если зарплату мужа увеличить вдвое (зарплата станет 2х), то общий доход увеличиться на 67 %, то есть второе уравнение будет: (2x + y + z = 167.) Если стипендию дочери уменьшить втрое (стипендия станет (frac{z}{3})), то общий доход уменьшиться на 4 %, то есть третье уравнение будет иметь вид: (x + y + frac{z}{3} = 96.)

Таким образом, получаем систему уравнений:    (left{ {begin{array}{*{20}{c}}  {x + y + z = 100;} \   {2x + y + z = 167;} \   {x + y + frac{z}{3} = 96.} end{array}} right.)

Вычтем из второго уравнения первое:    (2x — x + y — y + z — z = 167 — 100,,,, Leftrightarrow ,,,,,x = 67.)

Вычтем из первого уравнения третье:   (x — x + y — y + z — frac{z}{3} = 100 — 96,,,,, Leftrightarrow ,,,,frac{{2z}}{3} = 4,,,, Leftrightarrow ,,,,z = 6.)

Подставляя найденные x и z в первое уравнение, получим:  (67 + y + 6 = 100,,,, Leftrightarrow ,,,,y = 27.)

Ответ: 27.

Задача 5. Цена холодильника в магазине ежегодно уменьшается на одно и то же число процентов от предыдущей цены. Определите, на сколько процентов каждый год уменьшалась цена холодильника, если, выставленный на продажу за 20000 рублей, через два года был продан за 15842 рубля.

Пусть цена холодильника ежегодно уменьшалась на х%, тогда после первого понижения цена составила (100 – х) % от 20000 рублей, то есть:  (20000 cdot frac{{100 — x}}{{100}} = 200 cdot left( {100 — x} right)), а после второго (100 – х) % от (200left( {100 — x} right)), то есть:  (200left( {100 — x} right) cdot frac{{100 — x}}{{100}} = 2 cdot {left( {100 — x} right)^2}), что составило 15842 рубля.

(2{left( {100 — x} right)^2} = 15842,,{left| {,:,2,,,, Leftrightarrow ,,,,left( {100 — x} right)} right.^2} = 7921.)

(100 — x = 89;,,,,,,,,100 — x =  — 89.)

({x_1} = 11,,,,,,,,,,,,,,,,,,,,,{x_2} = 189)

Так как (0 < x < 100), то холодильник ежегодно дешевел на 11 %.

Ответ: 11.

Задача 6. Митя, Антон, Гоша и Борис учредили компанию с уставным капиталом 200000 рублей. Митя внес 14% уставного капитала, Антон  — 42000 рублей, Гоша  — 0,12 уставного капитала, а оставшуюся часть капитала внес Борис. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 1000000 рублей причитается Борису? Ответ дайте в рублях.

Митя внес 14 % уставного капитала. Антон (frac{{42000}}{{200000}} cdot 100 = 21)% уставного капитала. Гоша 0,12 уставного капитала, то есть 12%. Следовательно, Борис внес (100 — 14 — 21 — 12 = 53)% уставного капитала. Таким образом, от прибыли 1000000 рублей Борису причитается:  (1000000 cdot frac{{53}}{{100}} = 530000) рублей.

Ответ: 530000.

Задача 7. В сосуд, содержащий 5 литров 12-процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора?

Будем считать, что первый сосуд содержит 5 литров 12-процентного раствора вещества, а второй 7 литров воды (0-процентного раствора) и их содержимое перелили в третий сосуд. Пусть третий сосуд содержит x-процентный раствор вещества.

Тогда количество вещества в первом сосуде (frac{{5 cdot 12}}{{100}}) литров, во втором (frac{{7 cdot 0}}{{100}}) литров, а в третьем (frac{{12 cdot x}}{{100}}) литров. При этом количество вещества в третьем сосуде равно количеству вещества в первых двух сосудах.

(frac{{5 cdot 12}}{{100}} + frac{{7 cdot 0}}{{100}} = frac{{12 cdot x}}{{100}},left| {, cdot 100,,,,} right. Leftrightarrow ,,,,,,5 cdot 12 = 12 cdot x,,,,, Leftrightarrow ,,,,,,x = 5.)

Ответ: 5.

Задача 8. Смешали некоторое количество 15-процентного раствора некоторого вещества с таким же количеством 19-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Будем считать, что первый сосуд содержит А литров 15-процентного раствора вещества, а второй А литров 19-процентного раствора вещества и их содержимое перелили в третий сосуд. Пусть третий сосуд содержит x-процентный раствор вещества.

Тогда количество вещества в первом сосуде (frac{{A cdot 15}}{{100}}) литров, во втором (frac{{A cdot 19}}{{100}}) литров, а в третьем (frac{{2A cdot x}}{{100}}) литров. При этом количество вещества в третьем сосуде равно количеству вещества в первых двух сосудах.

(frac{{A cdot 15}}{{100}} + frac{{A cdot 19}}{{100}} = frac{{2A cdot x}}{{100}},,,left| {, cdot 100,,,,} right. Leftrightarrow ,,,,,,15 cdot A + 19 cdot A = 2A cdot x,,left| {,:A} right.,,,,, Leftrightarrow ,,,,,,2x = 34,,,,, Leftrightarrow ,,,,,x = 17.)

Ответ: 17.

Задача 9. Смешали 4 литра 15-процентного водного раствора некоторого вещества с 6 литрами 25-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Будем считать, что первый сосуд содержит 4 литра 15-процентного раствора вещества, а второй 6 литров 25-процентного раствора вещества и их содержимое перелили в третий сосуд. Пусть третий сосуд содержит x-процентный раствор вещества.

Тогда количество вещества в первом сосуде (frac{{4 cdot 15}}{{100}}) литров, во втором (frac{{6 cdot 25}}{{100}}) литров, а в третьем (frac{{10 cdot x}}{{100}}) литров. При этом количество вещества в третьем сосуде равно количеству вещества в первых двух сосудах.

(frac{{4 cdot 15}}{{100}} + frac{{6 cdot 25}}{{100}} = frac{{10 cdot x}}{{100}},left| {, cdot 100,,,,} right. Leftrightarrow ,,,,,,60 + 150 = 10 cdot x,,,,, Leftrightarrow ,,,,,,x = 21.)

Ответ: 21.

Задача 10. Виноград содержит 90% влаги, а изюм — 5%. Сколько килограммов винограда требуется для получения 20 килограммов изюма?

Виноград содержит 10% «сухого» вещества, а изюм 95% соответственно. При этом масса «сухого» вещества винограда и изюма равны. Пусть для получения 20 килограммов изюма требуется x килограммов винограда. Тогда масса «сухого» вещества в винограде (frac{{10 cdot x}}{{100}}) кг, а масса «сухого» вещества в изюме (frac{{20 cdot 95}}{{100}}) кг. Следовательно:

(frac{{10 cdot x}}{{100}} = frac{{20 cdot 95}}{{100}},left| {, cdot 100,,,,,, Leftrightarrow ,,,,,10x = 20} right. cdot 95,,,,, Leftrightarrow ,,,,x = 190) кг.

Ответ: 190.

Задача 11. Имеется два сплава. Первый сплав содержит 10% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго.

Пусть x кг масса первого сплава. Так как масса третьего сплава 200 кг, то масса второго сплава (200 — x) кг.

Тогда масса никеля в первом сплаве (frac{{x cdot 10}}{{100}}) кг, во втором (frac{{left( {200 — x} right) cdot 30}}{{100}}) кг, а в третьем (frac{{200 cdot 25}}{{100}}) кг. При этом масса никеля в третьем сплаве равна массе никеля в первых двух сплавах.

(frac{{x cdot 10}}{{100}} + frac{{left( {200 — x} right) cdot 30}}{{100}} = frac{{200 cdot 25}}{{100}},left| {, cdot 100,,,,} right. Leftrightarrow ,,,,,,10x + 6000 — 30x = 5000,,,,, Leftrightarrow ,,,,,,20x = 1000,,,,, Leftrightarrow ,,,,,x = 50.)

Значит масса первого сплава 50 кг, а масса второго сплава равна 150 кг. Следовательно, масса первого сплава на 100 кг меньше массы второго.

Ответ: 100.

Задача 12. Первый сплав содержит 10% меди, второй  — 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.


Пусть x кг масса первого сплава, тогда масса второго сплава (x + 3) кг, а масса третьего сплава (x + x + 3 = 2x + 3) кг.

Тогда масса меди в первом сплаве (frac{{x cdot 10}}{{100}}) кг, во втором (frac{{left( {x + 3} right) cdot 40}}{{100}}) кг, а в третьем (frac{{left( {2x + 3} right) cdot 30}}{{100}}) кг. При этом масса меди в третьем сплаве равна массе меди в первых двух сплавах.

(frac{{x cdot 10}}{{100}} + frac{{left( {x + 3} right) cdot 40}}{{100}} = frac{{left( {2x + 3} right) cdot 30}}{{100}},left| {, cdot 100,,,,} right. Leftrightarrow ,,,,,,10x + 40x + 120 = 60x + 90,,,,, Leftrightarrow ,,,,,,10x = 30,,,,, Leftrightarrow ,,,,,x = 30.)

Значит масса первого сплава 3 кг, а масса третьего сплава равна (2x + 3 = 2 cdot 3 + 3 = 9) кг.

Ответ: 9.

Задача 13. Смешав 30-процентный и 60-процентный растворы кислоты и добавив 10 кг чистой воды, получили 36-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 41-процентный раствор кислоты. Сколько килограммов 30-процентного раствора использовали для получения смеси?

Пусть x кг масса 30-процентного раствора, а y кг масса 60-процентрого раствора кислоты.

Тогда масса кислоты в 30-процентном растворе (frac{{x cdot 30}}{{100}}) кг, в 60-процентном (frac{{y cdot 60}}{{100}}) кг, в воде (frac{{10 cdot 0}}{{100}}) кг, а в 36-процентном (frac{{left( {x + y + 10} right) cdot 36}}{{100}}). При этом масса кислоты в 36-процентноом растворе равна массе кислоты 30-процентного, 60-процентного и воды. Таким образом, первое уравнение будет иметь вид:

(frac{{x cdot 30}}{{100}} + frac{{y cdot 60}}{{100}} + frac{{10 cdot 0}}{{100}} = frac{{left( {x + y + 10} right) cdot 36}}{{100}},,left| { cdot 100} right.,,,,, Leftrightarrow ,,,,,30x + 60y = 36left( {x + y + 10} right).)

Рассмотрим случай, когда вместо 10 кг воды добавили 10 кг 50-процентного раствора кислоты.

Рассуждая аналогично, как и в первом случае, получим второе уравнение:

(frac{{x cdot 30}}{{100}} + frac{{y cdot 60}}{{100}} + frac{{10 cdot 50}}{{100}} = frac{{left( {x + y + 10} right) cdot 41}}{{100}},,left| { cdot 100} right.,,,,, Leftrightarrow ,,,,,30x + 60y + 500 = 41left( {x + y + 10} right).)

Таким образом, получаем систему уравнений:

(left{ {begin{array}{*{20}{c}}  {30x + 60y = 36left( {x + y + 10} right);} \   {30x + 60y + 500 = 41left( {x + y + 10} right).} end{array}} right.)

Вычтем из второго уравнения первое:

(500 = 5left( {x + y + 10} right),left| {:5} right.,,,,, Leftrightarrow ,,,,,100 = x + y + 10,,,,, Leftrightarrow ,,,,,y = 90 — x.)

Подставим выраженный  y  в первое уравнение:

(30x + 60left( {90 — x} right) = 3600,,,,, Leftrightarrow ,,,,30x — 60x = 3600 — 5400,,,,, Leftrightarrow ,,,,,30x = 1800,,,,, Leftrightarrow ,,,,,x = 60.)

Следовательно, для получения смеси использовали 60 кг 30-процентного раствора.

Ответ: 60.

Задача 14. Имеются два сосуда. Первый содержит 30 кг, а второй  — 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 70% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

Будем считать, что первый сосуд содержит 30 кг x-процентного раствора кислоты, а второй 20 кг y-процентного раствора кислоты и их содержимое перелили в третий сосуд, в котором получилось 50 кг 68-процентного раствора кислоты.

Тогда масса кислоты в первом сосуде (frac{{30 cdot x}}{{100}}) кг, во втором (frac{{20 cdot y}}{{100}}) кг, а в третьем (frac{{50 cdot 68}}{{100}}) кг. При этом масса кислоты в третьем сосуде равна массе кислоты в первых двух сосудах. Таким образом, первое уравнение будет иметь вид:

(frac{{30 cdot x}}{{100}} + frac{{20 cdot y}}{{100}} = frac{{50 cdot 68}}{{100}},,left| { cdot 10} right.,,,,, Leftrightarrow ,,,,,3x + 2y = 340.)

Смешаем равные массы по m кг.

Рассуждая аналогично, как и в первом случае, получим второе уравнение:

(frac{{m cdot x}}{{100}} + frac{{m cdot y}}{{100}} = frac{{2m cdot 70}}{{100}},,left| {, cdot 100} right.,,,,, Leftrightarrow ,,,,,m cdot x + m cdot y = 140m,left| {,:m} right.,,,,,, Leftrightarrow ,,,,,,x + y = 140.) 

Таким образом, получаем систему уравнений:

(left{ {begin{array}{*{20}{c}}  {3x + 2y = 340} \   {x + y = 140} end{array},,,,,, Leftrightarrow ,,,,,left{ {begin{array}{*{20}{c}}  {3x + 2y = 340} \   {y = 140 — x} end{array}} right.} right.)

(3x + 2left( {140 — x} right) = 340,,,,,, Leftrightarrow ,,,,,3x — 2x = 340 — 280,,,,, Leftrightarrow ,,,,,x = 60.)

Следовательно, в первом сосуде содержится 60% кислоты, а масса этой кислоты равна   (frac{{30 cdot 60}}{{100}} = 18) кг.

Ответ: 18.

Задача 15. Клиент А. сделал вклад в банке в размере 7700 рублей. Проценты по вкладу начисляются раз в год и прибавляются к текущей сумме вклада. Ровно через год на тех же условиях такой же вклад в том же банке сделал клиент Б. Еще ровно через год клиенты А. и Б. закрыли вклады и забрали все накопившиеся деньги. При этом клиент А. получил на 847 рублей больше клиента Б. Какой процент годовых начислял банк по этим вкладам?

Пусть банк начисляет x% годовых. Тогда через год вклад клиента А составит (left( {100 + x} right)) процентов от 7700 рублей, то есть (7700 cdot frac{{100 + x}}{{100}}) рублей. Через год банк начислит ещё x% и его вклад станет равен (left( {100 + x} right)) процентов от (7700 cdot frac{{100 + x}}{{100}}) рублей, то есть (7700 cdot {left( {frac{{100 + x}}{{100}}} right)^2}) рублей. Клиент Б открыл такой же вклад сроком на один год. Следовательно, через год на его вкладе будет сумма равная (7700 cdot frac{{100 + x}}{{100}}) рублей. Так как клиент А получил на 847 рублей больше, то:

(7700 cdot {left( {frac{{100 + x}}{{100}}} right)^2} — 7700 cdot frac{{100 + x}}{{100}} = 847.)

Пусть (frac{{100 + x}}{{100}} = t), тогда:

(7700,{t^2} — 7700,t = 847,left| {,:,77,,,,, Leftrightarrow ,,,,,100,{t^2} — 100,t — 11 = 0;} right.)

(D = {100^2} + 4 cdot 100 cdot 11 = 14400;,,,,,sqrt D  = 120;,,,,,{t_1} = frac{{100 + 120}}{{200}} = 1,1;,,,,,{t_2} = frac{{100 — 120}}{{200}} =  — frac{1}{{10}}.)Так как (x > 0), то (t > 1).

Следовательно, (t = 1,1) и тогда (frac{{100 + x}}{{100}} = 1,1,,,,,, Leftrightarrow ,,,,,,x = 10.)

Ответ: 10.

Like this post? Please share to your friends:
  • Задачи на скидки с процентами егэ
  • Задачи на системы счисления егэ информатика
  • Задачи на синтез белка егэ биология 2022
  • Задачи на синтез белка егэ 2023
  • Задачи на силу притяжения егэ