Задачи на вписанный угол егэ

Каталог заданий.
Центральные и вписанные углы


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Треугольник ABC вписан в окружность с центром O. Найдите угол BOC, если угол BAC равен 32°.

Источник: Демонстрационная версия ЕГЭ—2013 по математике., Проект демонстрационной версии ЕГЭ—2014 по математике.


2

Найдите центральный угол AOB, если он на 15 в степени левая круглая скобка circ правая круглая скобка больше вписанного угла ACB, опирающегося на ту же дугу. Ответ дайте в градусах.


3

Чему равен острый вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.


4

Чему равен тупой вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.


5

Найдите вписанный угол, опирающийся на дугу, которая составляет  дробь: числитель: 1, знаменатель: 5 конец дроби окружности. Ответ дайте в градусах.

Пройти тестирование по этим заданиям

6. Геометрия на плоскости (планиметрия). Часть II


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Центральные и вписанные углы окружности

(blacktriangleright) Центральный угол – угол, вершина которого лежит в центре окружности.
Центральный угол равен дуге, на которую он опирается.

(blacktriangleright) Вписанный угол – угол, вершина которого лежит на окружности.
Вписанный угол равен половине дуги, на которую он опирается.

(blacktriangleright) Таким образом, если центральный угол (alpha_{text{ц}}) и вписанный угол (alpha_{text{в}}) опираются на одну и ту же дугу, то: [Large{alpha_{text{ц}}=2cdot
alpha_{text{в}}}]

(blacktriangleright) Вписанный угол, опирающийся на полуокружность (или на диаметр), равен (90^circ).


Задание
1

#2156

Уровень задания: Равен ЕГЭ

Точки (A) и (B) делят окружность на две дуги, одна из которых равна (170^circ), а другая точкой (K) делится в отношении (11:8), считая от точки (A). Найдите (angle BAK). Ответ дайте в градусах.

Рассмотрим картинку:

Т.к. (buildrelsmileover{AK}:buildrelsmileover{KB}=11:8), то можно обозначить (buildrelsmileover{AK}=11x,
buildrelsmileover{KB}=8x)
.

Дуга (buildrelsmileover{AKB}=360^circ -170^circ=190^circ). Следовательно, (11x+8x=19x=190^circ quad Rightarrow quad
x=10^circ)
. Значит, дуга (buildrelsmileover{KB}=8x=80^circ). Угол (BAK) вписанный и опирается на эту дугу, следовательно, он равен ее половине, то есть (40^circ).

Ответ: 40


Задание
2

#2159

Уровень задания: Равен ЕГЭ

Хорды (KN) и (LM) взаимно перпендикулярны. Найдите угол (NLM), если угол (KML) равен (35^circ). Ответ дайте в градусах.

Рассмотрим картинку:

Вписанные углы (KML) и (KNL) опираются на одну и ту же дугу, следовательно, они равны, значит, (angle KNL=35^circ). Тогда (angle NLM=180^circ-90^circ-35^circ=55^circ).

Ответ: 55


Задание
3

#2155

Уровень задания: Равен ЕГЭ

Точки (A) и (C) разбивают окружность на две дуги, одна из которых равна (280^circ) и на которой отмечена точка (B). Найдите угол (BAC), если (AB=AC). Ответ дайте в градусах.

Рассмотрим картинку:

(buildrelsmileover{ABC}=280^circ), следовательно, меньшая дуга (buildrelsmileover{AC}=360^circ-280^circ=80^circ). Т.к. угол (ABC) опирается на эту дугу и является вписанным, то он равен ее половине, то есть (40^circ).
Заметим, что (triangle ABC) – равнобедренный, следовательно, (angle BAC=180^circ-2cdot 40^circ=100^circ).

Ответ: 100


Задание
4

#630

Уровень задания: Равен ЕГЭ

Точки (A), (B), (C) и (D) лежат на окружности с центром в точке (O) (так, что (ABCD) – четырёхугольник). Длина дуги (AD) (которая меньше полуокружности) составляет (0,8) длины дуги (AB) (которая меньше полуокружности). Найдите, во сколько раз (angle AOB) больше, чем (angle DCA).

Градусные меры дуг окружности относятся как их длины, тогда градусная мера дуги (AB) в (1: 0,8 = 1,25) раз больше, чем градусная мера дуги (AD).
Градусной мерой дуги называется градусная мера центрального угла, который на неё опирается.

Вписанный угол равен половине градусной меры дуги, на которую он опирается, тогда [dfrac{angle AOB}{angle DCA} = dfrac{smile AB}{0,5 smile AD} = 2 cdot dfrac{smile AB}{smile AD} = 2,5.]

Ответ: 2,5


Задание
5

#632

Уровень задания: Равен ЕГЭ

Хорды окружности (AB) и (CD) пересекаются в точке (E), причём (CE = AE). Градусная мера дуги (AC) равна (120^{circ}), градусная мера дуги (CAD) равна (210^{circ}). Найдите градусную меру дуги (BD). Ответ дайте в градусах.

Градусная мера дуги (DA) равна (210^{circ} — 120^{circ} = 90^{circ}).
Соединим (CA).

Треугольник (AEC) – равнобедренный, тогда (angle DCA = angle BAC), тогда дуги, на которые опираются эти вписанные углы, равны, следовательно градусная мера дуги (BC) равна (90^{circ}).

Градусная мера дуги (BD) равна (360^{circ} — 120^{circ} — 90^{circ} — 90^{circ} = 60^{circ}).

Ответ: 60


Задание
6

#3531

Уровень задания: Равен ЕГЭ

Четырехугольник (ABCD) вписан в окружность. Угол (ABD) равен (75^circ), угол (CAD) равен (35^circ). Найдите угол (ABC). Ответ дайте в градусах.

Так как вписанный угол равен половине дуги, на которую он опирается, то меньшая (buildrelsmileover{DA},=2cdot 75^circ=150^circ) (см.рис.). Аналогично меньшая дуга (buildrelsmileover{CD},=2cdot 35^circ=70^circ) (см.рис.). Следовательно, дуга (buildrelsmileover{CDA},=150^circ+70^circ=220^circ). Значит (angle ABC), как вписанный и опирающийся на дугу, равную (220^circ), сам равен (110^circ).

Ответ: 110


Задание
7

#3523

Уровень задания: Равен ЕГЭ

Чему равен тупой вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.

Обозначим хорду за (AB). Рассмотрим (triangle AOB), где (O) – центр окружности.

Так как (AB) равна радиусу окружности, то (triangle AOB) – равносторонний. Следовательно, (angle AOB=60^circ).
Следовательно, меньшая дуга (AB) окружности равна (angle
AOB=60^circ)
. Тогда большая дуга (AB) окружности равна (360^circ-60^circ=300^circ). Заметим, что (angle ACB) – вписанный угол, опирающийся на большую дугу (AB), следовательно, он равен ее половине, то есть (angle ACB=150^circ).

Ответ: 150

Чаще всего процесс подготовки к ЕГЭ по математике начинается с повторения основных определений, формул и теорем, в том числе и по теме «Центральный и вписанный в окружность угол». Как правило, данный раздел планиметрии изучается еще в средней школе. Неудивительно, что многие учащиеся сталкиваются с необходимостью повторения базовых понятий и теорем по теме «Центральный угол окружности». Разобравшись с алгоритмом решения подобных задач, школьники смогут рассчитывать на получение конкурентных баллов по итогам сдачи единого госэкзамена.

Как легко и эффективно подготовиться к прохождению аттестационного испытания?

Занимаясь перед сдачей единого государственного экзамена, многие старшеклассники сталкиваются с проблемой поиска нужной информации по теме «Центральный и вписанный углы в окружности». Далеко не всегда школьный учебник имеется под рукой. А поиск формул в Интернете порой отнимает очень много времени.

«Прокачать» навыки и улучшить знания в таком непростом разделе геометрии, как планиметрия, вам поможет наш образовательный портал. «Школково» предлагает старшеклассникам и их преподавателям по-новому выстроить процесс подготовки к сдаче единого госэкзамена. Весь базовый материал представлен нашими специалистами в максимально доступной форме. Ознакомившись с информацией в разделе «Теоретическая справка», учащиеся узнают, какими свойствами обладает центральный угол окружности, как найти его величину и т. д.

Затем для закрепления полученных знаний и отработки навыков мы рекомендуем выполнить соответствующие упражнения. Большая подборка заданий на нахождение величины угла, вписанного в окружность, внешних углов многоугольника и других параметров представлена в разделе «Каталог». Для каждого упражнения наши специалисты прописали подробный ход решения и указали правильный ответ. Перечень задач на сайте постоянно дополняется и обновляется.

Готовиться к ЕГЭ, практикуясь в выполнении упражнений, к примеру, на нахождение величины центрального угла и длины дуги окружности, старшеклассники могут в онлайн-режиме, находясь в любом российском регионе.

При необходимости выполненное задание можно сохранить в разделе «Избранное», чтобы в дальнейшем вернуться к нему и еще раз разобрать принцип его решения.

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Skip to content

ЕГЭ Профиль №3. Центральные и вписанные углы

ЕГЭ Профиль №3. Центральные и вписанные углыadmin2022-08-01T10:53:48+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №3. Центральные и вписанные углы

Задача 1. Найдите величину острого вписанного угла, опирающегося на хорду, равную радиусу окружности. Ответ дайте в градусах.

Ответ

ОТВЕТ: 30.

Задача 2. Найдите хорду, на которую опирается угол 30°, вписанный в окружность радиуса 3.

Ответ

ОТВЕТ: 3.

Задача 3. Чему равен тупой вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.

Ответ

ОТВЕТ: 150.

Задача 4. Найдите хорду, на которую опирается угол 120°, вписанный в окружность радиуса (sqrt 3 ).

Ответ

ОТВЕТ: 3.

Задача 5. Найдите вписанный угол, опирающийся на дугу, длина которой равна (frac{1}{5}) длины окружности. Ответ дайте в градусах.

Ответ

ОТВЕТ: 36.

Задача 6. Дуга окружности AC, не содержащая точки B, имеет градусную меру 200°, а дуга окружности BC, не содержащая точки A, имеет градусную меру 80°. Найдите вписанный угол ACB. Ответ дайте в градусах.

Ответ

ОТВЕТ: 40.

Задача 7. Хорда AB делит окружность на две дуги, градусные меры которых относятся как 5:7. Под каким углом видна эта хорда из точки C, принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

Ответ

ОТВЕТ: 105.

Задача 8. Точки A, B, C расположенные на окружности, делят ее на три дуги, градусные меры которых относятся как 1:3:5. Найдите больший угол треугольника ABC. Ответ дайте в градусах.

Ответ

ОТВЕТ: 100.

Задача 9. AC и BD — диаметры окружности с центром O. Угол ACB равен 38°. Найдите угол AOD. Ответ дайте в градусах.

Ответ

ОТВЕТ: 104.

Задача 10. В окружности с центром O AC и BD — диаметры. Центральный угол AOD равен 110°. Найдите вписанный угол ACB. Ответ дайте в градусах.

Ответ

ОТВЕТ: 35.

Задача 11. Найдите угол ABC. Ответ дайте в градусах.

Ответ

ОТВЕТ: 45.

Задача 12. Найдите градусную меру дуги AC окружности, на которую опирается угол ABC. Ответ дайте в градусах.

Ответ

ОТВЕТ: 45.

23
Май 2013

Категория: Справочные материалы

Вписанные, центральные углы

Елена Репина
2013-05-23
2021-10-18

Вписанный угол – угол, вершина которого лежит на окружности, а обе стороны пересекают эту окружность.

Центральный угол — угол с вершиной в центре окружности. Центральный угол равен градусной мере дуги, на которую опирается.

вписанный угол, центральный угол

Свойства вписанных угловсвойства вписанных углов, вписанный угол, центральный угол

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Печать страницы

комментариев 11

  1. Зарема

    2014-11-14 в 11:52

    В задаче 11 заметила опечатку Центральным углом для вписанного угла АВС является угол АОС. Будем искать его градусную меру, после чего лишь придется умножить результат на 2, — получим градусную меру угла АВС. Наверное, надо не умножить . а разделить. И хотела поблагодарить Вас за такой сайт. Вы просто молодец. всё очень понятно и доступно.

    [ Ответить ]

    • egeMax

      2014-11-14 в 14:05

      Зарема, спасибо!

      [ Ответить ]

  2. арина

    2015-03-19 в 16:11

    в задаче 11 на картинке угол АВС равен 106 , а в условии 104 .

    [ Ответить ]

    • egeMax

      2015-03-19 в 17:16

      Арина, спасибо! Исправлено.

      [ Ответить ]

  3. Алиса

    2015-04-10 в 23:37

    В свойствах вписанных углов небольшая синтаксическая ошибка.
    “Угол, опирающийся на диаметр – прямой”. (перед тире запятая не ставится).

    [ Ответить ]

  4. Степан

    2015-04-14 в 23:58

    Почему в 7-ой задаче angle ADC=120^{circ}, так как является смежным с angle BDA. При этом angle BDA=60^{circ}, так как опирается на дугу ВА. Тогда разве угол ADC не должен быть равен 60 градусам?

    [ Ответить ]

    • egeMax

      2015-04-15 в 02:33

      Как же угол ADC будет равен 60°, если он смежен с углом в 60°?

      [ Ответить ]

  5. Даниил

    2015-05-13 в 17:29

    Благодарю вас за такой сайт,очень мне помог, и сделайте пожайлуста ещё одну задачу :Вписанный угол ABC=58гр.Найти хорду на которую опирается этот угол(заранее спасибо)

    [ Ответить ]

    • egeMax

      2015-05-13 в 17:54

      Даниил, с условием не все в порядке. Не хватает данных. Или радиус должен быть известен или еще что…

      [ Ответить ]

  6. Сашка

    2015-05-19 в 09:41

    В шестой задаче угол BAD разве не будет равен 65? Угол B прямой те опирается на диаметр
    Д – 25
    180 – 115= 65
    Можно ли так?

    [ Ответить ]

    • egeMax

      2015-05-19 в 13:06

      Угол B не прямой, он не опирается на диаметр!

      [ Ответить ]

Добавить комментарий

  • Материалы для подготовки к ЕГЭ
  •    

  • Рубрики
    • 01 Геометрия (13)
    • 02 Стереометрия (9)
    • 03 Теория вероятностей ч.1 (1)
    • 04 Теория вероятностей ч.2 (1)
    • 05 Простейшие уравнения (5)
    • 06 Вычисления (5)
    • 07 Производная, ПО (4)
    • 08 «Прикладные» задачи (5)
    • 09 Текстовые задачи (7)
    • 10 Графики функций (7)
    • 11 Исследование функции (2)
    • 12 (С1) Уравнения (78)
    • 13 (С2) Стереометр. задачи (94)
    • 14 (С3) Неравенства (89)
    • 15 (С4) Практич. задачи (71)
    • 16 (С5) Планиметр. задачи (86)
    • 17 (С6) Параметры* (79)
    • 18 (С7) Числа, их свойства (38)
    • A1 Простейшие текст/задачи (нет в ЕГЭ-22) (3)
    • A2 Читаем графики (нет в ЕГЭ-22) (1)
    • Видеоуроки (44)
    • ГИА (11)
      • II часть (11)
    • ЕГЭ (диагностич. работы) (70)
    • Иррациональные выражения, уравнения и неравенства (15)
    • Логарифмы (39)
    • МГУ (12)
    • Метод интервалов (4)
    • Метод рационализации (18)
    • Модуль (9)
    • Параметр (40)
    • Переменка (5)
    • Планиметрия (60)
    • Показательные выражения, уравнения и неравенства (8)
    • Разложение на множители (1)
    • Рациональные выражения, уравнения и неравенства (10)
    • Справочные материалы (92)
    • Стереометрия (52)
    • Т/P A. Ларина (443)
    • Текстовые задачи (12)
    • Теория чисел (2)
    • Тесты по темам (80)
    • Тригонометрические выражения, уравнения и неравенства (43)
    • Функции и графики (10)
  • Дружественные сайты

    Сайт А. Ларина
    ЕгэТренер – О. Себедаш
    Математика?Легко!
    Егэ? Ок! – И. Фельдман

  • Свежие записи
    • Тест «Гиперболы»
    • Тест. Графики функций. Комбинированные задачи
    • 10. Графики функций. Комбинированные задачи
    • Тест. Тригонометрические функции
    • 10. Тригонометрическая функция
    • Тест. Кусочно-линейная функция
    • 10. Кусочно-линейная функция
  • Архивы Архивы

Окружность на ЕГЭ и ОГЭ — сложно. Все потому, что эта фигура не похожа на остальные: у неё нет углов и сторон, зато есть совсем другие элементы. В этой статье мы подробно поговорим про элементы окружности, углы, отрезки и прямые, которые с ней связаны, а также обсудим длину окружности и площадь круга. Ну и разберем основные задания ЕГЭ и ОГЭ, конечно же!

окружность егэ

Все об окружности на ЕГЭ и ОГЭ — разбор заданий и задач

Для начала давайте разберёмся, что же такое окружность. Окружность — это замкнутая линия, состоящая из множества точек, которые равноудалены от центра окружности. Основной элемент окружности — это радиус, он соединяет центр с любой точкой на окружности.

Углы у окружности на ЕГЭ и ОГЭ

У окружности есть 2 вида углов:

  • вписанные (их вершина лежит на окружности);
  • центральные (тут всё понятно из названия, у них вершина в центре окружности).

Расположение и свойства углов в окружности можно увидеть на схеме ниже:

окружность егэ

Теория: углы в окружности на ЕГЭ и ОГЭ

Давайте отработаем это на практике:

окружность егэ

Задание на углы окружности в ЕГЭ и ОГЭ

Решение

Можно заметить, что угол АСВ — вписанный и опирается на дугу АВ, соответственно, центральный угол АОD, опирающийся на ту же дугу будет в 2 раза больше, то есть 70 градусов. Теперь рассмотрим развёрнутый угол ВОD, он состоит из углов АОВ и АОD. Градусная мера развёрнутого угла 180 градусов, следовательно искомый угол АОD будет равен 180 – 70 = 110 градусов.

Отрезки и прямые в окружности на ЕГЭ и ОГЭ

Теперь рассмотрим отрезки и прямые в окружности. Приготовьтесь, их будет много!

Есть хорда — это отрезок, который соединяет 2 любые точки на окружности. Если хорда пройдёт через центр окружности, то она превратится в диаметр. Кстати, если внимательно посмотреть, то можно увидеть, что диаметр — это 2 радиуса!

окружность огэ

Хорда, диаметр, радиус и центр окружности на схеме

Теперь продлим хорду в обе стороны за пределы окружности, получим прямую, которая переСЕКает нашу окружность, отсюда и её название — секущая. Можно заметить, что секущая имеет 2 общих точки пересечения с окружностью. А ещё мы можем провести прямую так, чтобы она имела с окружностью только 1 точку пересечения, то есть касалась её, такая прямая будет называться касательная.

Подробнее со свойствами касательной и секущей можно ознакомиться на рисунке:

окружность огэ

Свойства касательной и секущей в окружности на схеме

Рассмотрим на примерах заданий про окружность в ЕГЭ и ОГЭ:

окружность егэ

Первый пример задания на касательную в окружности на ЕГЭ и ОГЭ
окружность егэ
Второй пример задания на касательную в окружности на ЕГЭ и ОГЭ

4 теоремы про окружность в ЕГЭ и ОГЭ

Теперь я предлагаю ознакомиться с теоремами, которые появляются в комбинациях различных прямых и отрезков в окружности.

Теорема № 1: теория и задания из ЕГЭ и ОГЭ

Первая теорема про хорду и касательную звучит так: 

Угол между касательной и хордой равен половине дуге, которую стягивает хорда.

Подробнее с выведением вы можете ознакомиться на рисунке:

окружость теория

Вот так выводится теорема про хорду и касательную

Однако хочу обратить ваше внимание, что если вы просто запомните формулировку, то многие задачи на окружность в ЕГЭ и ОГЭ покажутся вам супер-простыми и будут решаться в 1 действие. Давайте в этом убедимся:

окружность задание

Пример решения задачи на окружность в ЕГЭ и ОГЭ с использованием теоремы про хорду и касательную

Вот так просто и быстро в 1 действие мы справились с задачей. Правда здорово?!

Теорема № 2: теория и задания из ЕГЭ и ОГЭ

А теперь давайте посмотрим на одну из моих самых любимых теорем. А любимая она, потому что без неё некоторые задачи кажутся практически нерешаемыми, а с ней их можно решить быстро и просто! Звучит она так:

Квадрат касательной равен произведению секущей на её внешнюю часть. 
Я советую запоминать именно словесную формулировку, так как чертежи и буквы на них могут быть разными, и есть риск всё перепутать.

Наглядно познакомиться с теоремой можно на рисунке ниже:

окружность теория

Теорема: квадрат касательной равен произведению секущей на её внешнюю часть

И конечно же давайте отработаем на практике!

окружность задание

Пример задания на теорему № 2

Если бы мы не знали ту теорему, которую только что прошли, то было бы много версий, как можно решить задачу. Кто-то начал бы строить радиус к касательной и рассматривать треугольники, а кто-то просто не стал бы решать, однако у нас есть формула: давайте её используем!

Решение:

Вот так просто решается это задание!

Теорема № 3: теория и задания из ЕГЭ и ОГЭ

Если вы ещё не устали от теорем, то давайте познакомимся с ещё одной, которая связывает хорду с диаметром (радиусом).

Эта теорема интересна тем, что работает в обе стороны:

окружность теория

Вот так хорду можно связать с диаметром (радиусом)

Конечно же я не могу оставить вас без тренировки, поэтому посмотрим на следующую задачу:

окружность задание

Задание на нашу теорему и его решение

Теорема № 4: пересекающиеся хорды

Последнее, с чем я вас познакомлю в контексте прямых и отрезков в окружности будет свойство пересекающихся хорд: 

Произведения отрезков пересекающихся хорд равны.

свойство пересекающихся хорд

Свойство пересекающихся хорд на рисунке

Для наглядности отрезки выделены разными цветами, так вам будет проще запомнить свойство.

А теперь отработаем его на практике:

окружность задание

Задание на свойство пересекающихся хорд и его решение

Длина окружности и площадь круга

Вот мы и подошли с вами к самому интересному, формулам длины окружности и площади круга, давайте их запишем:

формулы окружность

Формулы длины окружности и площади круга

Эти формулы очень походы, в них есть двойка, число Pi и радиус, однако можно заметить, что у формулы длины окружности двойка слева, а у площади круга справа в степени.

Так как же их не путать? Очень просто: запомните, что вторая степень (или квадрат) должна быть у площади, значит двойка слева будет у длины.

Давайте это закрепим:

окружность задание

Задание на длину окружности и площадь круга в ЕГЭ и ОГЭ

Вот так просто и быстро мы закрепили сразу обе формулы.

Как находить площадь и длину дуги сектора круга: задачи

А теперь перейдём к самому интересному — нахождению площади и длины дуги сектора круга. Многие ученики думаю, что это сложно, но на самом деле это не так. Я предлагаю записать 2 коротких алгоритма, с помощью которых вы сможете легко найти площадь или длину дуги сектора.

площадь круга егэ огэ

2 алгоритма для поиска площади и длины дуги сектора

И конечно же давайте закрепим эти алгоритмы на практике:

окружность задание

Задача на поиск площади сектора круга в ЕГЭ и ОГЭ

Теперь вы умеете решать задания на поиск площади сектора. Согласитесь, что с алгоритмом всё намного понятнее и проще?

Что нужно иметь в виду для ЕГЭ и ОГЭ

На самом деле это всё, что я хотела вам рассказать в данной статье. Давайте ещё раз повторим, что вы узнали.

  1. Сначала мы познакомились с понятием окружность, потом посмотрели, какие бывают углы в окружности.
  2. Затем увидели множество отрезков и прямых в окружности, записали их свойства, а также несколько теорем с ними.
  3. В завершение мы поговорили про длину окружности, площадь круга, а также поиск площади и длины дуги сектора.

Самое ценное, что всю теорию мы закрепили на реальных заданиях из ОГЭ и ЕГЭ. Конечно, это далеко не всё, что вам может встретиться. Если вы хотите хорошо разбираться в окружности и в других темах, которые встречаются на экзаменах, записывайтесь на наши курсы подготовки к ОГЭ и ЕГЭ. На них мы подробно изучаем всю теорию, решаем много заданий, запоминаем удобные лайфхаки и решаем пробные экзамены, чтобы не стрессовать на реальном. Присоединяйтесь!

Окружность. Центральный и вписанный угол

Центральный угол — это угол, вершина которого находится в центре окружности.

Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают ее.

Отрезок, соединяющий две точки окружности, называется хорда.

Самая большая хорда проходит через центр окружности и называется диаметр.

На рисунках — центральные и вписанные углы, а также их важнейшие свойства.

Угол, вершина которого лежит в центре окружности, называется центральным. Величина центрального угла равна угловой величине дуги, на которую он опирается. Угол beta тоже можно назвать центральным. Только он опирается на дугу, которая больше 180^circ .

Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным. Величина вписанного угла равна половине центрального угла, опирающегося на ту же дугу.

Вписанные углы, опирающиеся на одну и ту же дугу, равны.

Вписанный угол, опирающийся на диаметр, — прямой.

Величина центрального угла равна угловой величине дуги, на которую он опирается. Значит, центральный угол величиной в 90 градусов будет опираться на дугу, равную 90^circ, то есть displaystyle frac{1}{4} круга. Центральный угол, равный 60^circ, опирается на дугу в 60 градусов, то есть на шестую часть круга.

Докажем, что величина вписанного угла в два раза меньше центрального, опирающегося на ту же дугу.

Пусть угол AOC — центральный и опирается на дугу АС, тогда ОА и ОС — радиусы окружности.

Пусть angleABC — вписанный угол, опирающийся на дугу АС,

АВ и ВС — хорды окружности.

Первый случай: Точка O лежит на BC, то есть ВС — диаметр окружности.

Треугольник AOB — равнобедренный, АО = ОВ как радиусы. Значит, angle A=angle B.

angle AOC — внешний угол triangle AOB, а внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

Получили, что angle AOC=angle A+angle B=2cdot angle B=2angle ABC.

Второй случай: Центр окружности точка О не лежит на ВС. Построим диаметр BК:

Если точка О лежит внутри вписанного угла АВС, как на рисунке слева, то

angle AOC=angle AOK+angle KOC=2angle ABK+2angle KBC=2angle ABC.

Если О лежит вне вписанного угла АВС, как на рисунке справа, то

angle AOC=angle AOK-angle COK=2angle ABK-2angle CBK=2angle ABC.

Мы получили, что в каждом из этих случаев величина центрального угла в два раза больше, чем величина вписанного угла, опирающегося на ту же дугу.

Теорема доказана.

При решении задач по геометрии также применяются следующие теоремы:

1. Равные центральные углы опираются на равные хорды.

2. Равные вписанные углы опираются на равные хорды.

3. Равные хорды стягивают равные дуги.

Докажем теорему 3.

Пусть хорды AB и CD равны. Докажем, что AMB дуги CND имеют одинаковую градусную меру, то есть равны.

Доказательство:

По условию, AB = CD. Соединим концы хорд с центром окружности. Получим: AO = BO = CO = DO = r.

triangle AOB=triangle CPD по трем сторонам, отсюда следует, что центральные углы равны, т.е. angle AOB=angle COD. Значит, и дуги, на которые они опираются, также равны, т.е. дуги AMB и CND имеют одинаковую градусную меру.

Теорема доказана.

Верна и обратная теорема:

Если две дуги окружности равны, то равны и хорды, их стягивающие.

Пусть дуги AMB и CND равны. Тогда angle AOB=angle COD как центральные углы, опирающиеся на эти дуги. Значит, треугольники triangle AOB и triangle CPD равны по двум сторонам и углу между ними, и тогда AB=CD, что и требовалось доказать.

Эти две теоремы можно объединить в одну, которая формулируется так:

Хорды окружности равны тогда и только тогда, когда равны дуги, которые они стягивают.

Разберем задачи ЕГЭ и ОГЭ по теме: Окружность, центральный угол, вписанный угол.

Задача 1, ЕГЭ. Чему равен вписанный угол, опирающийся на диаметр окружности? Ответ дайте в градусах.

Вписанный угол, опирающийся на диаметр, — прямой.

Ответ: 90.

Задача 2, ЕГЭ. Центральный угол на 36 ^circ больше острого вписанного угла, опирающегося на ту же дугу окружности. Найдите вписанный угол. Ответ дайте в градусах.

Рисунок к задаче 1

Решение:

Пусть центральный угол равен x, а вписанный угол, опирающийся на ту же дугу, равен y.

Мы знаем, что x=2y.

Отсюда 2y=36+y,

y=36.

Ответ: 36.

Задача 3, ЕГЭ. Радиус окружности равен 1. Найдите величину тупого вписанного угла, опирающегося на хорду, равную sqrt{2}. Ответ дайте в градусах.

Решение:

Пусть хорда AB равна sqrt{2}. Тупой вписанный угол, опирающийся на эту хорду, обозначим alpha. В треугольнике AOB стороны AO и OB равны 1, сторона AB равна sqrt{2}. Нам уже встречались такие треугольники. Очевидно, что треугольник AOB — прямоугольный и равнобедренный, то есть угол AOB равен 90{}^circ . Тогда дуга ACB равна 90{}^circ , а дуга AKB равна 360{}^circ - 90{}^circ = 270 {}^circ . Вписанный угол alpha опирается на дугу AKB и равен половине угловой величины этой дуги, то есть 135.

Ответ: 135.

Задача 4, ЕГЭ. Хорда AB делит окружность на две части, градусные величины которых относятся как 5 : 7. Под каким углом видна эта хорда из точки C, принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

Рисунок к задаче 3

Решение:

Главное в этой задаче — правильный чертеж и понимание условия. Как вы понимаете вопрос: «Под каким углом хорда видна из точки С?»

Представьте, что вы сидите в точке С и вам необходимо видеть всё, что происходит на хорде AB. Так, как будто хорда AB — это экран в кинотеатре :-)
Очевидно, что найти нужно угол ACB.
Сумма двух дуг, на которые хорда AB делит окружность, равна 360^circ , то есть 5x+7x=360^ circ

Отсюда x=30^ circ , и тогда вписанный угол ACB опирается на дугу, равную 210^ circ . Величина вписанного угла равна половине угловой величины дуги, на которую он опирается, значит, угол ACB равен 105^ circ .

Ответ: 105.

Задача 5, ЕГЭ.

Треугольник ABC вписан в окружность с центром O. Найдите угол BOC, если угол BAC равен 32{}^circ .

Решение:

Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

angle BAC=displaystyle frac{1}{2}angle BOC.

Значит, angle BOC=2cdot angle BAC=2cdot 32{}^circ =64{}^circ.

Ответ: 64.

Задача 6, ЕГЭ. Найдите центральный угол AOB, если он на 15{}^circ больше вписанного угла ACB, опирающегося на ту же дугу. Ответ дайте в градусах.

Решение:

Пусть величина угла АОВ равна x градусов. Величина вписанного угла АСВ равна половине центрального угла, опирающегося на ту же дугу, то есть displaystyle frac{x}{2} градусов.

Получим уравнение: displaystyle x-frac{1}{2} x = 15{}^circ, откуда x ={30}^circ.

Ответ: 30.

Задача 7, ЕГЭ. Чему равен острый вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.

Решение.

Рассмотрим треугольник AOB. Он равносторонний, так как AO = OB = AB = R.

Поэтому угол AOB = 60. Вписанный угол ACB равен половине дуги, на которую он опирается, то есть 30{}^circ.

Ответ: 30.

Задача 8, ЕГЭ.

Дуга окружности AC, не содержащая точки B, составляет 200{}^circ. А дуга окружности BC, не содержащая точки A, составляет 80{}^circ. Найдите вписанный угол ACB. Ответ дайте в градусах.

Решение:

Вписанный угол равен половине угловой величины дуги, на которую он опирается. Дуга АВ равна 360{}^circ -200{}^circ -80{}^circ -80{}^circ . Тогда angle ACB=40{}^circ.

Ответ: 40.

Задачи ОГЭ по теме: Центральный и вписанный угол, градусная мера дуги.

Задача 9, ОГЭ. Центральный угол AOB опирается на хорду AB длиной 6. При этом угол OAB равен {60}^circ. Найдите радиус окружности.

Решение.

Рассмотрим треугольник AOB: он равнобедренный, его боковые стороны равны радиусу окружности.

Углы при основании равнобедренного треугольника равны. Пусть AOB равен x, тогда x + 60{}^circ + 60{}^circ = 180{}^circ, где x = 60{}^circ. Треугольник, у которого все углы равны, — равносторонний треугольник; значит, радиус равен 6.

Ответ: 6.

Задача 10, ОГЭ. В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен {30}^circ. Найдите величину угла OAB.

Решение.

Вписанные углы ВСD и ВАD опираются на одну и ту же дугу окружности, поэтому они равны, угол OAB ={30}^circ.

Ответ: 30.

Задача 11, ОГЭ. Найдите градусную меру центрального angle MON, если известно, что NP — диаметр, а градусная мера angle MNP равна 18{}^circ.

Решение:

Треугольник MON — равнобедренный. Тогда angle MON = 180{}^circ2cdot 18{}^circ = 144{}^circ.

Ответ: 144.

Задача 12, ОГЭ.

Найдите angle DEF, если градусные меры дуг DE и EF равны {150}^circ и {68}^circ соответственно.

Решение.

Дуга FD, не содержащая точку Е, равна {360}^circ - {150}^circ - 68{}^circ = 142{}^circ. Вписанный угол DEF, опирающийся на эту дугу, равен половине ее угловой величины, angle DEF = 71{}^circ.

Ответ: 71.

Задача 13, ОГЭ. В окружности с центром O AC и BD — диаметры. Угол ACB равен {26}^circ. Найдите угол AOD. Ответ дайте в градусах.

Решение.

Угол ACB — вписанный, он равен половине центрального угла, опирающегося на ту же дугу, то есть AОВ = 52{}^circ. Угол ВОD — развернутый, поэтому угол AOD равен {180}^circ - 52{}^circ = 128{}^circ.

Ответ: 128.

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Окружность. Центральный и вписанный угол» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Задание 1096

В трапеции АВСD (АВ||СD) угол АBС равен 130°. Окружность с центром в точке В проходит через точки А, D и С. Найдите величину угла ADC. Ответ дайте в градусах.

Ответ: 115

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

∠ ABC — центральный, а значит дуга AC, на которую он опирается, равна его величине, то есть 130°. Значит дуга CA (противоположная) равна: 360° — 130° = 230°. ∠ ADC опирается на эту дугу и он вписанный, значит равен половине величины дуги на которую он опирается, то есть 230°/2 = 115°

Задание 1925

Цен­траль­ный угол AOB опи­ра­ет­ся на хорду AB дли­ной 6. При этом угол OAB равен 60°. Най­ди­те ра­ди­ус окруж­но­сти.

Ответ: 6

Скрыть

1) Треугольник AOB — равнобедренный (AO=OB — радиусы), тогда $$angle OAB=angle OBA=frac{180-60}{2}=60^{circ}$$, следовательно, OAB — равносторонний

2) Из п.1 получаем ,что AO=OB=AB=6

Задание 1926

В окруж­но­сти с цен­тром в точке О про­ве­де­ны диа­мет­ры AD и BC, угол OCD равен 30°. Най­ди­те ве­ли­чи­ну угла OAB.

Ответ: 30

Скрыть

1) Треугольники COD и AOD равны, так как CO=OD=OA=OB (радиусы) и $$angle COD=angle AOD$$ (вертикальные углы)

2) Тогда $$angle OAB=angle CDO=angle OCD=30^{circ}$$

Задание 1927

Най­ди­те гра­дус­ную меру ∠MON, если из­вест­но, NP — диа­метр, а гра­дус­ная мера ∠MNP равна 18°.

Ответ: 144

Скрыть

1) Треугольник MON — равнобедренный (MO=ON — радиусы), тогда $$angle ONM=angle OMN$$

2) $$angle MON=180-2*18=144^{circ}$$

Задание 1928

Най­ди­те ∠DEF, если гра­дус­ные меры дуг DE и EF равны 150° и 68° со­от­вет­ствен­но.

Ответ: 71

Скрыть

1) $$smile DF=360-150-68=142^{circ}$$

2) $$angle DEF=frac{142}{2}=71^{circ}$$ (по свойству вписанного угла)

Задание 1929

Най­ди­те гра­дус­ную меру ACB, если из­вест­но, что BC яв­ля­ет­ся диа­мет­ром окруж­но­сти, а гра­дус­ная мера AOC равна 96°.

Ответ: 42

Скрыть

1) Треугольник OAC — ранвобедренный (OA=AC — радиусы), тогда $$angle OAC=angle OCA$$

2) $$angle ACB=angle ACO=frac{180-96}{2}=42^{circ}$$ 

Задание 1930

Най­ди­те ∠KOM, если из­вест­но, что гра­дус­ная мера дуги MN равна 124°, а гра­дус­ная мера дуги KN равна 180°.

Ответ: 56

Скрыть

1) Меньшая дуга $$KM=KN-MN=180-124=56^{circ}$$

2) $$angle KOM=smile MM-56^{circ}$$ (по свойству центрального угла)

Задание 1931

В окруж­но­сти с цен­тром O AC и BD — диа­мет­ры. Угол ACB равен 26°. Най­ди­те угол AOD. Ответ дайте в гра­ду­сах.

Ответ: 128

Скрыть

1) $$angle AOD=angle COB$$ (по свойству вертикальных углов)

2) $$angle COB=angle OBC$$ (треугольник COB — равнобедренный, так как CO и OB — радиусы)

3) Из треугольника COB: $$angle COB=180-2*26=128^{circ}$$, тогда и $$angle AOD=128^{circ}$$

Задание 1932

Пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми 5 см и 12 см впи­сан в окруж­ность. Чему равен ра­ди­ус этой окруж­но­сти?

Ответ: 6,5

Скрыть

1) Радиус описанной окружности около прямоугольного треугольника равен половине его гипотенузы. Пусть R — радиус описанной окружности

2) По теореме Пифагора из треугольника ABC: $$AC=sqrt{12^{2}+5^{2}}=13$$, тогда $$R=frac{1}{2}AC=6,5$$

Задание 1933

Точки A и B делят окруж­ность на две дуги, длины ко­то­рых от­но­сят­ся как 9:11. Най­ди­те ве­ли­чи­ну цен­траль­но­го угла, опи­ра­ю­ще­го­ся на мень­шую из дуг. Ответ дайте в гра­ду­сах.

Ответ: 162

Скрыть

1) Пусть меньшая дуга 9х, тогда большая дуга 11х

2) $$9x+11x=360Leftrightarrow$$$$x=18$$ (по свойству градусной меры окружности), тогда меньшая дуга составляет $$9x=9*18=162$$

3) $$angle AOB=smile AOB=162^{circ}$$ (по свойству центрального угла)

Задание 1934

В угол ве­ли­чи­ной 70° впи­са­на окруж­ность, ко­то­рая ка­са­ет­ся его сто­рон в точ­ках A и B. На одной из дуг этой окруж­но­сти вы­бра­ли точку C так, как по­ка­за­но на ри­сун­ке. Най­ди­те ве­ли­чи­ну угла ACB.

Ответ: 55

Скрыть

1) OA и OB перпенидулярны сторонам угла (по свойству касательной и радиуса в точку касания)

2) Из четырехугольника AEOB: $$angle AOB=360-2*90-70=110^{circ}$$ (по свойству суммы углов выпуклого четырехугольника)

3) $$angle ACB=frac{1}{2}angle AOB=55^{circ}$$ (по свойству вписанного и центрального угла)

Задание 3503

Чему равен ост­рый впи­сан­ный угол, опи­ра­ю­щий­ся на хорду, рав­ную ра­ди­у­су окруж­но­сти? Ответ дайте в гра­ду­сах.

Ответ: 30

Задание 3504

Чему равен тупой впи­сан­ный угол, опи­ра­ю­щий­ся на хорду, рав­ную ра­ди­у­су окруж­но­сти? Ответ дайте в гра­ду­сах.

Ответ: 150

Задание 3505

Най­ди­те впи­сан­ный угол, опи­ра­ю­щий­ся на дугу, ко­то­рая со­став­ля­ет $$frac{1}{5}$$ окруж­но­сти. Ответ дайте в гра­ду­сах.

Ответ: 36

Задание 3506

Дуга окруж­но­сти AC, не со­дер­жа­щая точки B, со­став­ля­ет 200°. А дуга окруж­но­сти BC, не со­дер­жа­щая точки A, со­став­ля­ет 80°. Най­ди­те впи­сан­ный угол ACB. Ответ дайте в гра­ду­сах.

Ответ: 40

Понравилась статья? Поделить с друзьями:
  • Задачи на вклады егэ профильный уровень с решением
  • Задачи на вклады егэ профильный уровень как решать
  • Задачи на взаимодействие неаллельных генов егэ
  • Задачи на вероятность с экзаменами
  • Задачи на вероятность с процентами егэ