Задачи по алгебре 11 класс егэ

Skip to content

ЕГЭ по математике — Профиль 2022. Открытый банк заданий с ответами.

ЕГЭ по математике — Профиль 2022. Открытый банк заданий с ответами.admin2022-08-27T23:17:48+03:00

1

При температуре 0^circ {rm{C}} рельс имеет длину l_0 =10 м. При возрастании температуры происходит тепловое расширение рельса, и его длина, выраженная в метрах, меняется по закону l(t^circ ) = l_0 (1 + alpha  cdot t^circ ), где alpha= 1,2cdot 10^{ - 5}(^circ {rm{C}})^{-1}  — коэффициент теплового расширения, t^circ  — температура (в градусах Цельсия). При какой температуре рельс удлинится на 3 мм? Ответ выразите в градусах Цельсия.

25

2

Некоторая компания продает свою продукцию по цене p=500 руб. за единицу, переменные затраты на производство одной единицы продукции составляют v=300 руб., постоянные расходы предприятия f= 700000 руб. в месяц. Месячная операционная прибыль предприятия (в рублях) вычисляется по формуле pi(q)=q(p-v)-f. Определите месячный объём производства q(единиц продукции), при котором месячная операционная прибыль предприятия будет равна 300000 руб.

5000

3

После дождя уровень воды в колодце может повыситься. Мальчик измеряет время t падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле h=5t^2, где h — расстояние в метрах, t — время падения в секундах. До дождя время падения камешков составляло 0,6 с. На сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на 0,2 с? Ответ выразите в метрах.

1

4

Зависимость объёма спроса q (единиц в месяц) на продукцию предприятия-монополиста от цены p (тыс. руб. за ед.) задаётся формулой q=100-10p. Выручка предприятия r (в тыс. руб. за месяц) вычисляется по формуле r(p)=qcdot p. Определите наибольшую цену p, при которой месячная выручка r(p) составит не менее 240 тыс. руб. Ответ приведите в тыс. руб. за ед.

6

5

Высота над землeй подброшенного вверх мяча меняется по закону , где h- высота в метрах, t — время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее трeх метров?    

1,2

6

Если достаточно быстро вращать ведeрко с водой на верeвке в вертикальной плоскости, то вода не будет выливаться. При вращении ведeрка сила давления воды на дно не остаeтся постоянной: она максимальна в нижней точке и минимальна в верхней. Вода не будет выливаться, если сила еe давления на дно будет положительной во всех точках траектории кроме верхней, где она может быть равной нулю. В верхней точке сила давления, выраженная в ньютонах, равна , где m — масса воды в килограммах, v — скорость движения ведeрка в м/с, L — длина верeвки в метрах, g — ускорение свободного падения (считайте ). С какой наименьшей скоростью надо вращать ведeрко, чтобы вода не выливалась, если длина верeвки равна 40 см? Ответ выразите в м/с      

2

7

В боковой стенке высокого цилиндрического бака у самого дна закреплeн кран. После его открытия вода начинает вытекать из бака, при этом высота столба воды в нeм, выраженная в метрах, меняется по закону  , где t — время в секундах, прошедшее с момента открытия крана, H0 = 20 м — начальная высота столба воды,  — отношение площадей поперечных сечений крана и бака, а g — ускорение свободного падения (). Через сколько секунд после открытия крана в баке останется четверть первоначального объeма воды?

50

8

В боковой стенке высокого цилиндрического бака у самого дна закреплeн кран. После его открытия вода начинает вытекать из бака, при этом высота столба воды в нeм, выраженная в метрах, меняется по закону , где м — начальный уровень воды,  м/мин2, и м/мин — постоянные, t — время в минутах, прошедшее с момента открытия крана. В течение какого времени вода будет вытекать из бака? Ответ приведите в минутах        

20

9

Камнеметательная машина выстреливает камни под некоторым острым углом к горизонту. Траектория полeта камня описывается формулой , где  м-1, — постоянные параметры, x (м) — смещение камня по горизонтали, y (м) — высота камня над землeй. На каком наибольшем расстоянии (в метрах) от крепостной стены высотой 8 м нужно расположить машину, чтобы камни пролетали над стеной на высоте не менее 1 метра?  

90

10

Для нагревательного элемента некоторого прибора экспериментально была получена зависимость температуры (в кельвинах) от времени работы:T(t) = T_0  + bt + at^2 , где t — время в минутах, T_0  = 1400 К, a = - 10 К/мин{}^2b = 200 К/мин. Известно, что при температуре нагревательного элемента свыше 1760 К прибор может испортиться, поэтому его нужно отключить. Найдите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ дайте в минутах.

2

11

Для сматывания кабеля на заводе используют лебeдку, которая равноускоренно наматывает кабель на катушку. Угол, на который поворачивается катушка, изменяется со временем по закону , где t — время в минутах, — начальная угловая скорость вращения катушки, а — угловое ускорение, с которым наматывается кабель. Рабочий должен проверить ход его намотки не позже того момента, когда угол намотки  достигнет 12000. Определите время после начала работы лебeдки, не позже которого рабочий должен проверить еe работу. Ответ выразите в минутах.  

20

12

Мотоциклист, движущийся по городу со скоростью  км/ч, выезжает из него и сразу после выезда начинает разгоняться с постоянным ускорением а = 12 км/ч{}^2. Расстояние от мотоциклиста до города, измеряемое в километрах, определяется выражением . Определите наибольшее время, в течение которого мотоциклист будет находиться в зоне функционирования сотовой связи, если оператор гарантирует покрытие на расстоянии не далее чем в 30 км от города. Ответ выразите в минутах        

30

13

Автомобиль, движущийся в начальный момент времени со скоростью  м/с, начал торможение с постоянным ускорением а = 5 м/с{}^2. За t секунд после начала торможения он прошёл путь  (м). Определите время, прошедшее от момента начала торможения, если известно, что за это время автомобиль проехал 30 метров. Ответ выразите в секундах.  

2

14

Деталью некоторого прибора является вращающаяся катушка. Она состоит из трeх однородных соосных цилиндров: центрального массой m = 8 кг и радиуса R = 10 см, и двух боковых с массами M= 1 кг и с радиусами R + h. При этом момент инерции катушки относительно оси вращения, выражаемый в кг . см2, даeтся формулой . При каком максимальном значении h момент инерции катушки не превышает предельного значения 625 кг . см2? Ответ выразите в сантиметрах.  

5

15

На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая сила, выражаемая в ньютонах, будет определяться по формуле: , где l — длина ребра куба в метрах, — плотность воды, а g — ускорение свободного падения (считайте g=9,8 Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше, чем 78400Н? Ответ выразите в метрах  

2

16

На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет форму сферы, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле: , где  — постоянная, r — радиус аппарата в метрах,  — плотность воды, а g — ускорение свободного падения (считайте g=10 Н/кг). Каков может быть максимальный радиус аппарата, чтобы выталкивающая сила при погружении была не больше, чем 336000 Н? Ответ  в метрах    

2

17

Для определения эффективной температуры звeзд используют закон Стефана–Больцмана, согласно которому мощность излучения нагретого тела P, измеряемая в ваттах, прямо пропорциональна площади его поверхности и четвeртой степени температуры: , где  — постоянная, площадь S измеряется в квадратных метрах, а температура T — в градусах Кельвина. Известно, что некоторая звезда имеет площадь  м2, а излучаемая ею мощность P не менее  Вт. Определите наименьшую возможную температуру этой звезды. Приведите ответ в градусах Кельвина    

4000

18

Для получения на экране увеличенного изображения лампочки в лаборатории используется собирающая линза с главным фокусным расстоянием  см.Расстояние  от линзы до лампочки может изменяться в пределах от 30 до 50 см, а расстояние  от линзы до экрана — в пределах от 150 до 180 см. Изображение на экране будет четким, если выполнено соотношение . Укажите, на каком наименьшем расстоянии от линзы можно поместить лампочку, чтобы еe изображение на экране было чeтким. Ответ выразите в сантиметрах  

36

19

Перед отправкой тепловоз издал гудок с частотой Гц. Чуть позже издал гудок подъезжающий к платформе тепловоз. Из-за эффекта Доплера частота второго гудка f больше первого: она зависит от скорости тепловоза по закону  (Гц), где c — скорость звука в воздухе (в м/с). Человек, стоящий на платформе, различает сигналы по тону, если они отличаются не менее чем на 10 Гц. Определите, с какой минимальной скоростью приближался к платформе тепловоз, если человек смог различить сигналы, а с=315 м/с. Ответ выразите в м/с        

7

20

По закону Ома для полной цепи сила тока, измеряемая в амперах, равна , где — ЭДС источника (в вольтах),  Ом — его внутреннее сопротивление, R — сопротивление цепи (в омах). При каком наименьшем сопротивлении цепи сила тока будет составлять не более 20% от силы тока короткого замыкания ? (Ответ выразите в Омах)  

4

21

Сила тока в цепи I (в амперах) определяется напряжением в цепи и сопротивлением электроприбора по закону Ома: , где U — напряжение в вольтах, R — сопротивление электроприбора в омах. В электросеть включeн предохранитель, который плавится, если сила тока превышает 4 А. Определите, какое минимальное сопротивление должно быть у электроприбора, подключаемого к розетке в 220 вольт, чтобы сеть продолжала работать. Ответ выразите в Омах    

55

22

Амплитуда колебаний маятника зависит от частоты вынуждающей силы, определяемой по формуле , где  — частота вынуждающей силы (в c^{-1} ),  — постоянный параметр,  — резонансная частота. Найдите максимальную частоту , меньшую резонансной, для которой амплитуда колебаний превосходит величину не более чем на 12,5%. Ответ выразите в c^{-1}   

120

23

В розетку электросети подключены приборы, общее сопротивление которых составляет R_{1}=90 Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите наименьшее возможное сопротивление R_{2}этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями R_{1} Ом и R_{2} Ом их общее сопротивление даeтся формулой R_{{text{общ}}}  = frac{{R_{1} R_{2} }}{{R_{1} + R_{2}}} (Ом), а для нормального функционирования электросети общее сопротивление в ней должно быть не меньше 9 Ом. Ответ выразите в Омах  

10

24

Коэффициент полезного действия (КПД) некоторого двигателя определяется формулой , где T_1 — температура нагревателя (в градусах Кельвина), T_2 — температура холодильника (в градусах Кельвина). При какой минимальной температуре нагревателя T_1КПД этого двигателя будет не меньше 15%, если температура холодильника T_2 = 340 К? Ответ выразите в градусах Кельвина  

400

25

Коэффициент полезного действия (КПД) кормозапарника равен отношению количества теплоты, затраченного на нагревание воды массой m_textrm{в}(в килограммах) от температуры t_1до температуры t_2(в градусах Цельсия) к количеству теплоты, полученному от сжигания дров массы m_textrm{др} кг. Он определяется формулой eta = frac{c_textrm{в} m_textrm{в}(t_2  - t_1 )}{q_textrm{др} m_textrm{др}} cdot 100%, где c_textrm{в}  = {rm{4}}{rm{,2}} cdot 10^3Дж/(кгcdotК) — теплоёмкость воды, q_textrm{др}  = 8,3 cdot 10^6Дж/кг — удельная теплота сгорания дров. Определите наименьшее количество дров, которое понадобится сжечь в кормозапарнике, чтобы нагреть m_{rm} = 83кг воды от 100С до кипения, если известно, что КПД кормозапарника не больше 21%. Ответ в килограммах

18

26

Опорные башмаки шагающего экскаватора, имеющего массу m = 1260 тонн представляют собой две пустотелые балки длиной l = 18 метров и шириной s метров каждая. Давление экскаватора на почву, выражаемое в килопаскалях, определяется формулой p = frac{{mg}}{{2ls}}, где m — масса экскаватора (в тоннах), l — длина балок в метрах, s — ширина балок в метрах, g — ускорение свободного падения (считайте g=10м/с{}^2). Определите наименьшую возможную ширину опорных балок, если известно, что давление p не должно превышать 140 кПа. Ответ выразите в метрах  

2,5

27

К источнику с ЭДС varepsilon = 55 В и внутренним сопротивлением r = 0,5 Ом, хотят подключить нагрузку с сопротивлением R Ом. Напряжение на этой нагрузке, выражаемое в вольтах, даeтся формулой U = frac{{varepsilon R}}{{R + r}}. При каком наименьшем значении сопротивления нагрузки напряжение на ней будет не менее 50 В? Ответ выразите в Омах

5

28

При сближении источника и приёмника звуковых сигналов движущихся в некоторой среде по прямой навстречу друг другу частота звукового сигнала, регистрируемого приeмником, не совпадает с частотой исходного сигнала f_0 = 150 Гц и определяется следующим выражением: f =f_0 frac{{c + u}}{{c - v}}(Гц), где c — скорость распространения сигнала в среде (в м/с), а u=10 м/с и v=15 м/с — скорости приeмника и источника относительно среды соответственно. При какой максимальной скорости c (в м/с) распространения сигнала в среде частота сигнала в приeмнике f будет не менее 160 Гц

390

29

Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковые импульсы частотой 749 МГц. Скорость спуска батискафа, выражаемая в м/с, определяется по формуле v = cfrac{f - f_0 }{f + f_0 }, где c=1500 м/с — скорость звука в воде, f_0  — частота испускаемых импульсов (в МГц), f — частота отражeнного от дна сигнала, регистрируемая приeмником (в МГц). Определите наибольшую возможную частоту отраженного сигнала f, если скорость погружения батискафа не должна превышать 2 м/с

751

30

Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением a км/ч{}^2. Скорость v вычисляется по формуле v = sqrt {2la}, где l — пройденный автомобилем путь. Найдите ускорение, с которым должен двигаться автомобиль, чтобы, проехав один километр, приобрести скорость 100 км/ч. Ответ выразите в км/ч{}^2.

5000

31

При движении ракеты еe видимая для неподвижного наблюдателя длина, измеряемая в метрах, сокращается по закону l = l_0 sqrt {1 - frac{{v^2 }}{{c^2 }}}, где l_0  = 5 м — длина покоящейся ракеты, c = 3 cdot 10^5 км/с — скорость света, а v — скорость ракеты (в км/с). Какова должна быть минимальная скорость ракеты, чтобы еe наблюдаемая длина стала не более 4 м? Ответ выразите в км/с

180000

32

Наблюдатель находится на высоте h, выраженной в метрах. Расстояние от наблюдателя до наблюдаемой им линии горизонта, выраженное в километрах, вычисляется по формуле l = sqrt {frac{Rh}{500}} , где R = 6400 км — радиус Земли. На какой высоте находится наблюдатель, если он видит линию горизонта на расстоянии 4 километров? Ответ выразите в метрах.

1250

33

Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле l = sqrt {frac{Rh}{500}} , где R = 6400 км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 6,4 километров?

1,4

34

Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до видимой им линии горизонта вычисляется по формуле l = sqrt {frac{Rh}{500}} , где R = 6400 км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 км. К пляжу ведeт лестница, каждая ступенька которой имеет высоту 20 см. На какое наименьшее количество ступенек нужно подняться человеку, чтобы он увидел горизонт на расстоянии не менее 6,4 километров?

7

35

Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением a=5000 км/ч{}^2. Скорость v вычисляется по формуле v=sqrt{2la}, где l — пройденный автомобилем путь. Найдите, сколько километров проедет автомобиль к моменту, когда он разгонится до скорости 100 км/ч.

1

36

Для поддержания навеса планируется использовать цилиндрическую колонну. Давление P (в паскалях), оказываемое навесом и колонной на опору, определяется по формуле P = frac{{4mg}}{{pi D^2 }}, где m=1200 кг — общая масса навеса и колонны, D — диаметр колонны (в метрах). Считая ускорение свободного падения g=10 м/с{}^2, а pi = 3, определите наименьший возможный диаметр колонны, если давление, оказываемое на опору, не должно быть больше 400000 Па. Ответ выразите в метрах

0,2

37

Автомобиль, масса которого равна m=2160 кг, начинает двигаться с ускорением, которое в течение t секунд остаeтся неизменным, и проходит за это время путь S=500 метров. Значение силы (в ньютонах), приложенной в это время к автомобилю, равно F = frac{{2mS}}{{t^2 }}. Определите наибольшее время после начала движения автомобиля, за которое он пройдeт указанный путь, если известно, что сила F, приложенная к автомобилю, не меньше 2400 Н. Ответ в секундах  

30

38

При адиабатическом процессе для идеального газа выполняется закон pV^k = 10^5 Паcdot textrm{м}^{5}, где p — давление в газе в паскалях, V — объём газа в кубических метрах, k=dfrac{5}{3}. Найдите, какой объём V (в куб. м) будет занимать газ при давлении p, равном 3,2 cdot 10^6 Па.

0,125

39

В ходе распада радиоактивного изотопа его масса уменьшается по закону m = m_0 cdot 2^{-frac{t}{T}}, где m_0 — начальная масса изотопа, t — время, прошедшее от начального момента, T — период полураспада. В начальный момент времени масса изотопа 40 мг. Период его полураспада составляет 10 мин. Найдите, через сколько минут масса изотопа будет равна 5 мг.

30

40

Уравнение процесса, в котором участвовал газ, записывается в виде pV^a = const, где p (Па) — давление в газе, V — объeм газа в кубических метрах, a — положительная константа. При каком наименьшем значении константы a уменьшение вдвое раз объeма газа, участвующего в этом процессе, приводит к увеличению давления не менее, чем в 4 раза?

2

41

Установка для демонстрации адиабатического сжатия представляет собой сосуд с поршнем, резко сжимающим газ. При этом объём и давление связаны соотношением p_1V_1^{1,4} = p_2V_2^{1,4}, где p_1 и p_2 — давление газа (в атмосферах) в начальном и конечном состояниях, V_1 и V_2 — объём газа (в литрах) в начальном и конечном состояниях. Изначально объём газа равен 1,6 л, а давление газа равно одной атмосфере. До какого объёма нужно сжать газ, чтобы давление в сосуде стало 128 атмосфер? Ответ дайте в литрах

0,05

42

В телевизоре ёмкость высоковольтного конденсатора C = 2 cdot 10^{-6} Ф. Параллельно с конденсатором подключён резистор с сопротивлением R = 5 cdot 10^6 Ом. Во время работы телевизора напряжение на конденсаторе U_0 = 16 кВ. После выключения телевизора напряжение на конденсаторе убывает до значения U (кВ) за время, определяемое выражением t=alpha RClog _{2} frac{{U_0 }}{U} (с), где alpha =0,7 — постоянная. Определите напряжение на конденсаторе, если после выключения телевизора прошло 21 с. Ответ дайте в киловольтах.

2

43

Для обогрева помещения, температура в котором поддерживается на уровне T_{text{п}}  = 20^circ {rm{C}}, через радиатор отопления пропускают горячую воду. Расход проходящей через трубу радиатора воды m = 0,3 кг/с. Проходя по трубе расстояние x, вода охлаждается от начальной температуры T_{text{в}}  = 60^circ {rm{C}} до температуры T, причём x = alpha frac{{cm}}{gamma }log _2 frac{{T_{text{в}}  - T_{text{п}} }}{{T - T_{text{п}} }}, где c = 4200frac{text{Вт}cdottext{с}}{{{text{кг}} cdot ^circ {rm{C}}}} — теплоёмкость воды, gamma  = 21frac{{{text{Вт}}}}{{{text{м}} cdot ^circ {rm{C}}}} — коэффициент теплообмена, а alpha=0,7 — постоянная. Найдите, до какой температуры (в градусах Цельсия) охладится вода, если длина трубы радиатора равна 84 м.

30

44

Водолазный колокол, содержащий в начальный момент времени upsilon= 3 моля воздуха объёмом V_1=8 л, медленно опускают на дно водоёма. При этом происходит изотермическое сжатие воздуха до конечного объёма V_2. Работа, совершаемая водой при сжатии воздуха, определяется выражением A = alpha upsilon Tlog _2 frac{{V_1 }}{{V_2 }}, где alpha=5,75 frac{textrm{Дж}}{textrm{моль} cdot textrm{К}} — постоянная, а T = 300 К — температура воздуха. Найдите, какой объём V_2 (в литрах) станет занимать воздух, если при сжатии воздуха была совершена работа в 10350 Дж.

2

45

        Водолазный колокол, содержащий upsilon = 2 моля воздуха при давлении p_1 = 1,5атмосферы, медленно опускают на дно водоёма. При этом происходит изотермическое сжатие воздуха до конечного давления p_2. Работа, совершаемая водой при сжатии воздуха, определяется выражением A = alpha upsilon Tlog _2 frac{{p_2 }}{{p_1 }}, где alpha=5,75 frac{textrm{Дж}}{textrm{моль} cdot textrm{К}} — постоянная, T = 300 К — температура воздуха. Найдите, какое давление p_2 (в атм) будет иметь воздух в колоколе, если при сжатии воздуха была совершена работа в 6900 Дж.

6

46

Мяч бросили под острым углом alpha к плоской горизонтальной поверхности земли. Время полёта мяча (в секундах) определяется по формуле t = frac{{2v_0 sin alpha }}{g}. При каком значении угла alpha (в градусах) время полёта составит 3 секунды, если мяч бросают с начальной скоростью v_0= 30 м/с? Считайте, что ускорение свободного падения g=10 м/с{}^2.

30

47

Деталью некоторого прибора является квадратная рамка с намотанным на неe проводом, через который пропущен постоянный ток. Рамка помещена в однородное магнитное поле так, что она может вращаться. Момент силы Ампера, стремящейся повернуть рамку, (в Нcdotм) определяется формулой M = NIBl^2 sin alpha, где I = 2{rm{A}} — сила тока в рамке, B = 3 cdot 10^{-3} Тл — значение индукции магнитного поля, l =0,5 м — размер рамки, N = 1000 — число витков провода в рамке, alpha — острый угол между перпендикуляром к рамке и вектором индукции. При каком наименьшем значении угла alpha (в градусах) рамка может начать вращаться, если для этого нужно, чтобы раскручивающий момент M был не меньше 0,75 Нcdotм?

30

48

Датчик сконструирован таким образом, что его антенна ловит радиосигнал, который затем преобразуется в электрический сигнал, изменяющийся со временем по закону U = U_0 sin (omega t + varphi ), где t — время в секундах, амплитудаU_0 = 2 В, частота omega  = 120^circ/с, фаза varphi  = -30^circ. Датчик настроен так, что если напряжение в нeм не ниже чем 1 В, загорается лампочка. Какую часть времени (в процентах) на протяжении первой секунды после начала работы лампочка будет гореть?

50

49

Очень лeгкий заряженный металлический шарик зарядом q = 2 cdot 10^{-6}  Кл скатывается по гладкой наклонной плоскости. В момент, когда его скорость составляет v = 5 м/с, на него начинает действовать постоянное магнитное поле, вектор индукции B которого лежит в той же плоскости и составляет угол alpha с направлением движения шарика. Значение индукции поля B = 4 cdot 10^{-3} Тл. При этом на шарик действует сила Лоренца, равная F_{text{л}} = qvBsin alpha (Н) и направленная вверх перпендикулярно плоскости. При каком наименьшем значении угла alpha in left[ {0^circ ;180^circ } right] шарик оторвeтся от поверхности, если для этого нужно, чтобы сила F_{text{л}} была не менее чем 2 cdot 10^{-8} Н? Ответ дайте в градусах.

30

50

Небольшой мячик бросают под острым углом alpha к плоской горизонтальной поверхности земли. Максимальная высота полeта мячика, выраженная в метрах, определяется формулой H=frac{{v_0^2 }}{{4g}}(1 - cos 2alpha ), где v_0 = 20 м/с — начальная скорость мячика, а g — ускорение свободного падения (считайте g=10 м/с{}^2). При каком наименьшем значении угла alpha (в градусах) мячик пролетит над стеной высотой 4 м на расстоянии 1 м?

30

51

Небольшой мячик бросают под острым углом alpha к плоской горизонтальной поверхности земли. Расстояние, которое пролетает мячик, вычисляется по формуле L=frac{{v_0^2 }}{g}sin 2alpha (м), где v_0=20 м/с — начальная скорость мячика, а g — ускорение свободного падения (считайте g=10 м/с{}^2). При каком наименьшем значении угла (в градусах) мячик перелетит реку шириной 20 м?

15

52

Плоский замкнутый контур площадью S = 0,5 м{}^2 находится в магнитном поле, индукция которого равномерно возрастает. При этом согласно закону электромагнитной индукции Фарадея в контуре появляется ЭДС индукции, значение которой, выраженное в вольтах, определяется формулой varepsilon_{i}  = aScos alpha, где alpha — острый угол между направлением магнитного поля и перпендикуляром к контуру, a=4 cdot 10^{-4}  Тл/с — постоянная, S — площадь замкнутого контура, находящегося в магнитном поле (в м{}^2). При каком минимальном угле alpha (в градусах) ЭДС индукции не будет превышать 10^{-4} В?

60

53

Трактор тащит сани с силой F=80 кН, направленной под острым углом alpha к горизонту. Работа трактора (в килоджоулях) на участке длиной S=50 м вычисляется по формуле A=FScosalpha . При каком максимальном угле alpha (в градусах) совершeнная работа будет не менее 2000 кДж?

60

54

Двигаясь со скоростью v=3 м/с, трактор тащит сани с силой F=50 кН, направленной под острым углом alpha  к горизонту. Мощность, развиваемая трактором, вычисляется по формуле N = Fvcos alpha . Найдите, при каком угле alpha(в градусах) эта мощность будет равна 75 кВт (кВт — это frac{textrm{кН}cdottextrm{м}}{textrm{с}}).

60

55

При нормальном падении света с длиной волны lambda=400 нм на дифракционную решeтку с периодом d нм наблюдают серию дифракционных максимумов. При этом угол varphi  (отсчитываемый от перпендикуляра к решeтке), под которым наблюдается максимум, и номер максимума k связаны соотношением dsin varphi= klambda. Под каким минимальным углом varphi (в градусах) можно наблюдать второй максимум на решeтке с периодом, не превосходящим 1600 нм?

30

56

Два тела, массой m=2 кг каждое, движутся с одинаковой скоростью v=10 м/с под углом 2alpha друг к другу. Энергия (в джоулях), выделяющаяся при их абсолютно неупругом соударении, вычисляется по формуле Q = mv^2 sin ^2 alpha , где m — масса в килограммах, v — скорость в м/с. Найдите, под каким наименьшим углом 2alpha (в градусах) должны двигаться тела, чтобы в результате соударения выделилось энергии не менее 50 джоулей.

60

57

Катер должен пересечь реку шириной L = 100 м и со скоростью течения u =0,5 м/с так, чтобы причалить точно напротив места отправления. Он может двигаться с разными скоростями, при этом время в пути, измеряемое в секундах, определяется выражением t = frac{L}{u}{mathop{rm ctg}nolimits}alpha, где alpha  — острый угол, задающий направление его движения (отсчитывается от берега). Под каким минимальным углом alpha  (в градусах) нужно плыть, чтобы время в пути было не больше 200 с?

45

58

Скейтбордист прыгает на стоящую на рельсах платформу, со скоростью v = 3 м/с под острым углом alpha  к рельсам. От толчка платформа начинает ехать со скоростью u = frac{m}{{m + M}}vcos alpha  (м/с), где m = 80 кг — масса скейтбордиста со скейтом, а M = 400 кг — масса платформы. Под каким максимальным углом alpha (в градусах) нужно прыгать, чтобы разогнать платформу не менее чем до 0,25 м/с?

60

59

Груз массой 0,08 кг колеблется на пружине. Его скорость v меняется по закону v=v_0sin frac{2pi t}{T}, где t — время с момента начала колебаний, T=12 с — период колебаний, v_0=0,5 м/с. Кинетическая энергия E (в джоулях) груза вычисляется по формуле E = frac{{mv^2 }}{2}, где m — масса груза в килограммах, v — скорость груза в м/с. Найдите кинетическую энергию груза через 1 секунду после начала колебаний. Ответ дайте в джоулях.

0,0025

60

Груз массой 0,08 кг колеблется на пружине. Его скорость v меняется по закону v=v_0cos frac{2pi t}{T}, где t — время с момента начала колебаний, T=2 с — период колебаний, v_0=0,5 м/с. Кинетическая энергия E (в джоулях) груза вычисляется по формуле E=frac{{mv^2 }}{2}, где m — масса груза в килограммах, v — скорость груза в м/с. Найдите кинетическую энергию груза через 1 секунду после начала колебаний. Ответ дайте в джоулях.

0,0025

61

Скорость колеблющегося на пружине груза меняется по закону v(t) = 5sin pi t (см/с), где t — время в секундах. Какую долю времени из первой секунды скорость движения превышала 2,5 см/с? Ответ выразите десятичной дробью, если нужно, округлите до сотых.

0,17

62

Независимое агентство намерено ввести рейтинг новостных изданий на основе показателей информативности In, оперативности Op и объективности Trпубликаций. Каждый отдельный показатель — целое число от -2 до 2.

Составители рейтинга считают, что информативность публикаций ценится втрое, а объективность — вдвое дороже, чем оперативность. Таким образом, формула приняла вид

 R=frac{3In+Op+2Tr}{A}.

Найдите, каким должно быть число A, чтобы издание, у которого все показатели максимальны, получило бы рейтинг 30.

0,4

63

Рейтинг R интернет-магазина вычисляется по формуле R=r_{textrm{пок}} - frac{r_{textrm{пок}} - r_{textrm{экс}}}{left(K+1right)^m}, где m=frac{0,02K}{r_{textrm{пок}}+0,1}r_{textrm{пок}} — средняя оценка магазина покупателями, r_{textrm{экс}} — оценка магазина, данная экспертами, K — число покупателей, оценивших магазин. Найдите рейтинг интернет-магазина, если число покупателей, оценивших магазин, равно 24, их средняя оценка равна 0,86, а оценка экспертов равна 0,11.

0,71

64

Независимое агентство намерено ввести рейтинг новостных интернет-изданий на основе показателей информативности In, оперативности Op, объективности Trпубликаций, а также качества Q сайта. Каждый отдельный показатель — целое число от 1 до 5.

Составители рейтинга считают, что объективность ценится втрое, а информативность публикаций — вдвое дороже, чем оперативность и качество сайта. Таким образом, формула приняла вид

 R=frac{2In+Op+3Tr+Q}{A}.

Найдите, каким должно быть число A, чтобы издание, у которого все показатели максимальны, получило бы рейтинг 1.

35

65

Независимое агентство намерено ввести рейтинг новостных интернет-изданий на основе оценок информативности In, оперативности Op, объективности Trпубликаций, а также качества Q сайта. Каждый отдельный показатель — целое число от -2 до 2.

Составители рейтинга считают, что объективность ценится втрое, а информативность публикаций — впятеро дороже, чем оперативность и качество сайта. Таким образом, формула приняла вид

 R=frac{5In+Op+3Tr+Q}{A}.

Если по всем четырём показателям какое-то издание получило одну и ту же оценку, то рейтинг должен совпадать с этой оценкой. Найдите число A, при котором это условие будет выполняться.

10

66

На рисунке изображена схема вантового моста. Вертикальные пилоны связаны провисающей цепью. Тросы, которые свисают с цепи и поддерживают полотно моста, называются вантами. Введём систему координат: ось Oy направим вертикально вдоль одного из пилонов, а ось Ox направим вдоль полотна моста, как показано на рисунке. В этой системе координат линия, по которой провисает цепь моста, задаётся формулой  y=0,005x^2-0,74x+25, где x и y измеряются в метрах. Найдите длину ванты, расположенной в 30 метрах от пилона. Ответ дайте в метрах.

vant_most.eps

7,3

НезнайкаЕГЭМатематика

Варианты Математика Профильный уровень

Математика Базовый уровень

Варианты профильного уровня ЕГЭ по математике адаптированы под новую демоверсию ЕГЭ 2016. Базовый уровень остался без изменения по сравнению с прошлым годом.

Пока у нас нет готовых решений к каждому из заданий к ЕГЭ по математике базового и профильного уровней, зато сайт позволяет удобно проверить тестовую часть. Никаких диснейлендов, все просто и понятно. Ничего лишнего. Свои решения заданий пишите в комментариях, обсуждайте их друг с другом.

Мы ведем статистку по пройденным тестам, храним каждый бит информации на сервере, так что советуем вам зарегистрироваться, чтобы следить за своим прогрессом.

Старательным Незнайка обязательно поможет!)

2 259 062

Уже готовятся к ЕГЭ, ОГЭ и ВПР.
Присоединяйся!

Мы ничего не публикуем от вашего имени

  • ЕГЭ-2022, математика (базовый уровень) для учащихся 11-х классов. 

  • На  выполнение  работы отводится 40 минут. Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь  выполнить  как  можно  больше  заданий  и  набрать наибольшее количество баллов. 

  • Единый государственный экзамен по МАТЕМАТИКЕ.
    Тренировочный вариант
    Профильный уровень

  • Данный тест состоит из 10 заданий из курса тригонометрии. Все задания были подобраны и очень похожи на задания из ЕГЭ базового, так и профильного уровня

  • Тест по геометрии для учащихся 8 класса и старше. Тест полезен в качестве проверки знаний при подготовке к экзаменам. Контактные данные не обязательны и нужны только если вы желаете получить комментарии после проверки (ссылка на страницу VK,  электронная почта, WA). В случае неудачного прохождения научиться решать подобные задачи можно перейдя по ссылке: https://vk.com/stairway5?z=video-172013600_456239026%2F92e52302ee6bf7948a%2Fpl_wall_-172013600    Затем прохождение теста можно повторить.

  • В тесте предлагается решить 20 задач, случайным образом, выбранные из 40 предложенных задач по планиметрии для подготовки к ЕГЭ.

  • В тесте представлены задачи на движение формата ЕГЭ 2023. Задание № 9 ЕГЭ профиль и задания № 20 ЕГЭ базовый уровень

  • Тест содержит пять задач на нахождение вероятности события. ЕГЭ профиль 2023. Задание № 4.

  • Тест по теме: Чтение графиков и диаграмм.
    ЕГЭ по математике. Задание 2.

  • Данный тест проверяет умение решать простейшие тригонометрические уравнения.

  • В тесте содержатся задания на применение тригонометрических формул одного аргмента и формул приведения.

  • Будьте внимательны! У Вас есть 20 минут на прохождение теста. Система оценивания — 5 балльная. Разбалловка теста — 1 балл за каждое верно решенное задание. Порядок заданий и вариантов ответов в тесте случайный. С допущенными ошибками и верными ответами можно будет ознакомиться после прохождения теста. Удачи!

  • В этом тесте у вас будет проверка на тему вычисления значений в простейших задачах. Подготовка ЕГЭ. Желаю удачи!

  • В тесте представлены задания на применение геометрического, физического смыслов производной и при исследовании функции

  • Тест предназначен для подготовки к решению задачи № 5 базового ЕГЭ по математике. Для выполнения заданий необходимо знать определения и свойства тригонометрических функций, уметь применять основное тригонометрическое тождество и формулы приведения.

  • Тест предназначен для подготовки к решению задачи № 13 базового ЕГЭ по математике. Представлены задачи на применение формул объёма и площади поверхности прямоугольной призмы.

  • Тест на проверку знаний по теме «Проценты». Задания на нахождение  числа по проценту, процента по числу и т.д. Тест содержит 12 вопросов с одним вариантом ответа. Правильный ответ — 1 балл. Максимальное количество баллов 12.

  • Тест используется на уроках математики при изучении темы «Показательные уравнения»

  • 1-ый блок ЕНТ (обязательные предметы):
    1) Математическая грамотность (1-20);
    2) Грамотность чтения (21-40)
    3) История Казахстана (41-60)

  • Тест содержит 10 вопросов. Прежде чем решать повторите теорию по теме «Равнобедренный треугольник», а также определения синуса, косинуса и тангенса, повторите теорему Пифагора.

  • Вам предлагается решить тест из 10 вопросов. 
    Каждое правильный ответ приравнивается к одному баллу. 
    Максимальное количество баллов: 10.
    На выполнение заданий у Вас 20 минут

  • Данный тест проверяет владение тригонометрическим кругом — основной моделью для работы с тригонометрическими функциями, уравнениями и неравенствами.

  • Тест по математике для подготовки к сдаче ЕГЭ. В тесте представлены вопросы части В.

  • Тренировочная и диагностическая работа по математике для 11 класса в формате ЕГЭ.

  • Тест предназначен для подготовки к решению задачи № 13 базового ЕГЭ по математике. Для решения задач достаточно знать формулу объёма прямоугольного параллелепипеда.

  • Данный тест представляет с собой тренировочный вариант ЕГЭ по Профильной математике.  Внимание! В сокращённой версии отсутствуют задания 12-18, чтобы пройти полную версию теста скопируйте и вставьте в поисковую строку  следующую ссылку: https://onlinetestpad.com/bj3umt4eovtvm

  • В тесте представлены задачи на работу формата ЕГЭ 2023. Задание № 9

  • Тренировочная и диагностическая работа по математике для 11 класса в формате ЕГЭ, состоявшаяся 27 сентября 2011 г.

  • Тренировочная и диагностическая работа по математике для 11 класса в формате ЕГЭ, состоявшаяся 27 сентября 2011 г.

  • Тест предназначен для учащихся 10-11 классов. Может использоваться при подготовке к экзамену. Содержит 14 заданий части В.

  • Тест содержит 15 заданий. Он предназначен для проверки теоретических знаний по курсу стереометрии, по теме «Многогранники».

  • В данном тесте Вы можете потренироваться в навыках решения №1 и №2 заданий из профильной математики. Каждый правильный ответ на текстовую задачу дает 3 балла, а за верное решение графика добавляется 2 балла. Максимальное количество баллов: 28 баллов. 

  • Тес проверяет умение применять производную для исследования функции. В данных заданиях дан график функции, а нужно ответить на вопрос, касающийся производной или наоборот.

  • Тест предназначен для подготовки к решению задачи № 5 базового ЕГЭ по математике. Для выполнения заданий необходимо знать определения и свойства тригонометрических функций, уметь применять основное тригонометрическое тождество и формулы приведения.

  • Выбрали 10 заданий из ЕГЭ, в которых можно легко допустить ошибку. Попробуешь решить их правильно?

  • Тест содержит 16 задач на вычисления, проценты и пропорции. 

  • Тест предназначен для проверки уровня подготовки  учащихся 11 класса к государственной итоговой аттестации по математике.Источник: ФИПИ, навигатор самостоятельной подготовки

  • Тест состоит из 10 вопросов по заданиям группы В1 ЕГЭ по математике для учащихся 11 класса

  • Тест состоит из 10 вопросов по заданиям группы В4 ЕГЭ по математике Для каждого из заданий ответом может являться целое число или число, записанное в виде десятичной дроби.

  • Тест состоит из 10 вопросов по заданиям группы В10 ЕГЭ по математике для учащихся 11 класса

  • Тест состоит из 3 задач по заданиям группы В13 ЕГЭ по математике для учащихся 11 класса

  • Тест состоит из 10 вопросов по заданиям группы В12 ЕГЭ по математике для учащихся 11 класса

  • В  тесте  будут  представлены  14  вопросов  заданий  типа  В1.1.       

  • В тесте будут представлены 14 вопросов заданий типа В1.2.    

  • В тесте будут представлены 14 вопросов заданий типа В1.1.    

  • В тесте будут представлены 14 вопросов заданий типа В1.3.    

  • В тесте будут представлены 14 вопросов заданий типа В1.4.    

  • В тесте будут представлены 14 вопросов заданий типа В1.5.    

  • В тесте будут представлены 14 вопросов заданий типа В10.2.    

  • Тест состоит из 15 вопросов по заданиям группы В5 ЕГЭ по математике для учащихся 11 класса

  • В тесте будут представлены 14 вопросов заданий типа В10.3.    

  • В тесте будут представлены 14 вопросов заданий типа В1.1.    

  • В тесте будут представлены 14 вопросов заданий типа В2.2.    

  • В тесте будут представлены 14 вопросов заданий типа В1.1.    

  • В тесте будут представлены 14 вопросов заданий типа В5.1.    

  • В тесте будут представлены 14 вопросов заданий типа В5.1.    

  • В тесте будут представлены 14 вопросов заданий типа В5.3.    

  • В тесте будут представлены 14 вопросов заданий типа В6.1.    

  • В тесте будут представлены 14 вопросов заданий типа В6.2.    

  • В тесте будут представлены 14 вопросов заданий типа В6.3.    

  • В тесте будут представлены 14 вопросов заданий типа В6.4.    

  • В тесте будут представлены 14 вопросов заданий типа В6.5.    

  • Тест состоит из 20 вопросов по заданиям группы В7 ЕГЭ по математике для учащихся 11 класса

  • В тесте будут представлены 14 вопросов заданий типа В6.6.    

  • В тесте будут представлены 14 вопросов заданий типа В7.1.    

  • В тесте будут представлены 14 вопросов заданий типа В7.2.    

  • В тесте будут представлены 14 вопросов заданий типа В7.3.    

  • В тесте представлены 14 вопросов заданий ЕГЭ типа В7.4.      

  • В тесте представлены 14 вопросов заданий ЕГЭ типа В7.5.        

  • В тесте представлены 14 вопросов заданий ЕГЭ типа В7.6.       

  • В тесте представлены 14 вопросов заданий ЕГЭ типа В8.2.       

  • Тест состоит из 20 вопросов по заданиям группы В1 ЕГЭ по математике для учащихся 11 класса

  • Тест состоит из 10 вопросов по заданиям группы В1 ЕГЭ по математике для учащихся 11 класса

  • Тест состоит из 15 вопросов по заданиям группы В1 ЕГЭ по математике для учащихся 11 класса

  • При ознакомлении с демонстрационным вариантом контрольных измерительных материалов ЕГЭ 2013 г. следует иметь в виду, что задания, в него включённые, не отражают всех элементов содержания, которые будут проверяться с помощью вариантов КИМ в 2013 г. Назначение демонстрационного варианта заключается в том, чтобы дать возможность любому участнику ЕГЭ и широкой общественности составить представление о структуре будущих КИМ, количестве заданий, их форме, уровне сложности.

  • Тест состоит из 10 вопросов по заданиям группы В9 ЕГЭ по математике для учащихся 11 класса

  • Тест состоит из 10 вопросов по заданиям группы В11 ЕГЭ по математике для учащихся 11 класса

  • 5 случайных заданий В1 ЕГЭ по математике.     

  • 5 случайных заданий В3 ЕГЭ по математике.     

  • 5 случайных заданий В5 ЕГЭ по математике.     

  • 5 случайных заданий В6 ЕГЭ по математике.     

  • 5 случайных заданий В8 ЕГЭ по математике.     

  • 5 случайных заданий В9 ЕГЭ по математике.     

  • 5 случайных заданий В10 ЕГЭ по математике.     

  • 5 случайных заданий В11 ЕГЭ по математике.     

  • 5 случайных заданий В12 ЕГЭ по математике.     

  • 5 случайных заданий В13 ЕГЭ по математике.     

  • 5 случайных заданий В14 ЕГЭ по математике.     

  • Тренировочная и диагностическая работа по математике для 11 класса в формате ЕГЭ, состоявшаяся 27 сентября 2011 г.

  • Тренировочная и диагностическая работа по математике для 11 класса в формате ЕГЭ.

  • Тренировочная и диагностическая работа по математике для 11 класса в формате ЕГЭ.

  • Тренировочная и диагностическая работа по математике для 11 класса в формате ЕГЭ.

  • Тренировочная и диагностическая работа по математике для 11 класса в формате ЕГЭ.

  • Тренировочная и диагностическая работа по математике для 11 класса в формате ЕГЭ.

  • Тренировочная и диагностическая работа по математике для 11 класса в формате ЕГЭ.

  • Тренировочная и диагностическая работа по математике для 11 класса в формате ЕГЭ.

  • Тренировочная и диагностическая работа по математике для 11 класса в формате ЕГЭ.

  • При ознакомлении с демонстрационным вариантом контрольных измерительных материалов ЕГЭ 2014 г. следует иметь в виду, что задания, в него включённые, не отражают всех элементов содержания, которые будут проверяться с помощью вариантов КИМ в 2014 г. Назначение демонстрационного варианта заключается в том, чтобы дать возможность любому участнику ЕГЭ и широкой общественности составить представление о структуре будущих КИМ, количестве заданий, их форме, уровне сложности.

  • Диагностический тест ориентирован на учащихся 11 классов для оценки владения простыми вычислительными навыками. Если работа выполнена без ошибок, то можно готовиться к решению более сложных задач. Если же ошибки есть, то следует поработать с задачами этого типа, чтобы восстановить утерянные навыки.
    Работа с данным тестом доступна учащимся, начиная с 6 класса.

  • Реальный вариант ЕГЭ (Сибирь) по математике 2013 года. Содержит 14 заданий части В.

Материалы для подготовки к ЕГЭ по математике базового и профильного уровня

Оглавление:

  • Поиск по материалам:

  • Полный курс для подготовки к ЕГЭ по математике

  • Профильный ЕГЭ по математике. Все задачи

  • Варианты Статград

  • Задачи из сборника И. В. Ященко, 2021 год

  • Задачи из сборника И. В. Ященко, 2020 год

  • Новые варианты для подготовки к ЕГЭ и ОГЭ с ответами и решениями:

  • Выберите раздел:

  • Необходимый минимум

  • Планиметрия

  • Алгебра

  • Тригонометрия

  • Стереометрия

  • Часть 2 (задачи 13 — 19) на ЕГЭ по математике.

  • Советы и рекомендации по подготовке к экзамену

  • Об этом сайте:

Полный спектр материалов для подготовки к ЕГЭ по математике + решение задач по всем темам ЕГЭ. В каждой теме и каждой задаче есть свои секреты. О них вам может рассказать только очень хороший учитель или репетитор. Такой, как мы. Читайте, изучайте, скачивайте то, чего не найдёте в учебниках! Вы можете скачать весь курс бесплатно сразу или найти то, что ищете, на этой странице.

Справочник для подготовки к ЕГЭ Анны Малковой
Актуальные видео по математике

к оглавлению ▴

Полный курс для подготовки к ЕГЭ по математике

  • New

    ЕГЭ-2022, математика. Все задачи с решениями

  • New

    Задачи с параметрами на ЕГЭ-2022: модули, окружности, квадратные уравнения

  • New

    Тренировочная работа от 28.09.2021, Статград. Задача №18 (Числа и их свойства)

  • New

    Новые задачи по теории вероятностей из Открытого Банка заданий ЕГЭ, 2021-2022 год

  • New

    Комплексные числа на ЕГЭ по математике

  • New

    ЕГЭ-2021, Математика. Все задачи

  • New

    Тренировочная работа № 3. Задачи 13-19

  • New

    Задача с секретом о пиратах и дукатах из сборника И. В. Ященко

  • Стрим 20 августа 2020 года. Лучшие задачи ЕГЭ-2020
  • ЕГЭ-2020 по математике. Сложные задачи, неравноценные варианты и одно неравенство для всей страны
  • Тренировочная работа 18 декабря 2019 года. Задача 19
  • Учителю и репетитору: Методика, программы подготовки к ЕГЭ, поурочные планы
  • Тесты и варианты ЕГЭ с решениями и ответами
  • Алгебра – основные понятия и формулы
  • Теория вероятностей
  • Текстовые задачи
  • Решение уравнений
  • Решение неравенств
  • Тригонометрия
  • Планиметрия
  • Стереометрия
  • Функции и графики. Производная и первообразная
  • «Экономические» задачи на ЕГЭ по математике
  • Задачи с параметрами
  • Нестандартные задачи на числа и их свойства
  • Советы и рекомендации для подготовки к ЕГЭ по математике

к оглавлению ▴

Профильный ЕГЭ по математике. Все задачи

  • Задание 1. Планиметрия
  • Задание 2. Стереометрия
  • Задание 3. Теория вероятностей. Основные понятия
  • Задание 4. Теория вероятностей, повышенный уровень сложности
  • Задание 5. Простейшие уравнения
  • Задание 6. Вычисления и преобразования
  • Задание 7. Производная и первообразная
  • Задание 8. Задачи с прикладным содержанием
  • Задание 9. Текстовые задачи
  • Задание 10. Функции и графики
  • Задание 11. Исследование функций
  • Задание 12. Уравнения на ЕГЭ по математике
  • Задание 13. Стереометрия на ЕГЭ по математике
  • Задание 14. Неравенства на ЕГЭ по математике
  • Задание 15. «Экономические» задачи на ЕГЭ по математике
  • Задание 16. Планиметрия на ЕГЭ по математике
  • Задание 17. Задачи с параметрами на ЕГЭ по математике
  • Задание 18. Задачи на числа и их свойства на ЕГЭ по математике Нестандартные задачи
  • Таблица перевода баллов ЕГЭ, Профильный уровень

Как решалась задача №17 на ЕГЭ-2018?

к оглавлению ▴

Варианты Статград

New

Тренировочная работа № 3. Задачи 13-19

Тренировочная работа 29.01.20. Вариант Восток

Тренировочная работа 29.01.20. Вариант Запад

Тренировочная работа 25.09.19. Вариант Запад

Тренировочная работа 25.09.19. Вариант Восток

Тренировочная работа 24.01.19. Вариант Запад

Тренировочная работа 24.01.19. Вариант Восток

Тренировочная работа 18.12.19 Вариант Запад

Тренировочная работа 30.09.20

Диагностическая работа 16.12.20

Досрочный ЕГЭ 2020 года, Профильная математика

Новая задача 18 Профильного ЕГЭ по математике (числа и их свойства), январь, восток

Новая задача 18 Профильного ЕГЭ по математике, Параметры, 24 января 2019, запад

Новая задача 16 Профильного ЕГЭ по математике, Геометрия, январь, запад

к оглавлению ▴

Задачи из сборника И. В. Ященко, 2021 год

  • Вариант 1, Задача 13
  • Вариант 6, Задача 13
  • Вариант 11, Задача 13
  • Вариант 17, Задача 13
  • Вариант 22, Задача 13
  • Вариант 28, Задача 13
  • Вариант 1, Задача 15
  • Вариант 3, Задача 15
  • Вариант 5, Задача 15
  • Вариант 12, Задача 15
  • Вариант 17, Задача 15
  • Вариант 24, Задача 15
  • Задача 18. Пираты и дукаты

к оглавлению ▴

Задачи из сборника И. В. Ященко, 2020 год

  • Вариант 6, задача 14
  • Вариант 8, задача 15
  • Вариант 32, задача 15
  • Вариант 36, задача 15
  • Вариант 2, задача 16
  • Вариант 4, задача 16
  • Вариант 6, задача 16
  • Вариант 8, задача 16
  • Вариант 12, задача 16
  • Вариант 1, задача 17
  • Вариант 5, задача 17
  • Вариант 11, задача 17
  • Вариант 26, задача 17
  • Вариант 36, задача 17
  • Вариант 27, задача 19

к оглавлению ▴

Новые варианты для подготовки к ЕГЭ и ОГЭ с ответами и решениями:

  • ЕГЭ-2018, профильный уровень. Разбор задач 13-19
  • ЕГЭ, профильный уровень. Тренировочный вариант 1
  • ЕГЭ, профильный уровень. Тренировочный вариант 2
  • ЕГЭ, профильный уровень. Тренировочный вариант 3
  • ЕГЭ, профильный уровень. Тренировочный вариант 4
  • ЕГЭ, профильный уровень. Тренировочный вариант 5
  • ОГЭ. Тренировочный вариант 1
  • ОГЭ. Тренировочный вариант 2

к оглавлению ▴

Выберите раздел:

  • Методика подготовки к ЕГЭ по математике Анны Малковой
  • Пройди необычный тест ЕГЭ и узнай будущее!
  • Программа подготовки к ЕГЭ по математике
  • Учителям и репетиторам: программа подготовки к ЕГЭ для 10-го класса
  • Как распределить время на ЕГЭ по математике
  • Необходимый минимум
  • Тригонометрия
  • Планиметрия
  • Стереометрия
  • Алгебра
  • Задачи 13-19

к оглавлению ▴

Необходимый минимум

    • Задача 1. Решается всегда!
    • Задача 2. Чтение графика функции
  • Теория вероятностей. Основные понятия.
  • Видео бесплатно!

    Теория вероятностей на ЕГЭ по математике. Полный курс.

  • Текстовые задачи. Движение и работа
  • Текстовые задачи. Проценты, сплавы, растворы…
  • ЕГЭ без ошибок. Вычисляем без калькулятора

к оглавлению ▴

Планиметрия

  • Геометрия. Формулы площадей фигур.
  • Программа по геометрии. Список необходимых фактов и теорем.
  • Синус, косинус и тангенс острого угла прямоугольного треугольника
  • Тригонометрический круг: вся тригонометрия на одном рисунке
  • Внешний угол треугольника. Синус и косинус внешнего угла
  • Высота в прямоугольном треугольнике
  • Сумма углов треугольника
  • Углы при параллельных прямых и секущей
  • Высоты, медианы, биссектрисы треугольника
  • Четырёхугольники
  • Параллелограмм
  • Прямоугольник
  • Ромб
  • Квадрат
  • Трапеция
  • Окружность. Центральный и вписанный угол
  • Касательная к окружности
  • Вписанные и описанные треугольники. Теорема синусов
  • Вписанные и описанные четырёхугольники
  • Правильный треугольник
  • Правильный шестиугольник
  • Векторы и операции над ними
  • Геометрия в школе: засада для абитуриента
  • Геометрический парадокс: Прямой угол равен тупому
  • Геометрический парадокс: Катет равен гипотенузе

к оглавлению ▴

Алгебра

  • Числовые множества
  • Степени и корни.
  • Что такое функция?
  • Чтение графика функции
  • Парабола и квадратные неравенства.
  • Степенная функция
  • Показательная функция
  • Показательные уравнения
  • Логарифмы
  • Логарифмическая функция
  • Элементарные функции и их графики
  • Показательные и логарифмические неравенства. 1
  • Показательные и логарифмические неравенства. 2
  • Число e
  • Видео бесплатно!

    Производная функции. Геометрический смысл производной

  • Таблица производных и правила дифференцирования
  • Модуль числа
  • Уравнения и неравенства с модулем
  • Метод интервалов

к оглавлению ▴

Тригонометрия

  • Тригонометрический круг: вся тригонометрия на одном рисунке
  • Тригонометрические формулы. Необходимый минимум
  • Видео бесплатно!

    Формулы приведения

  • Тригонометрические формулы. Сводка для части 1
  • Тригонометрические формулы. Сводка для части 2
  • Тригонометрические функции
  • Простейшие тригонометрические уравнения, 1
  • Простейшие тригонометрические уравнения, 2
  • Тригонометрические уравнения

к оглавлению ▴

Стереометрия

  • Многогранники: формулы объема и площади поверхности
  • Тела вращения: формулы объема и площади поверхности
  • Задачи по стереометрии часть 1: Просто применяем формулы
  • Задачи по стереометрии часть 2: Приемы и секреты
  • Задача 14 (часть 2 ЕГЭ по математике). Программа по стереометрии
  • Плоскость в пространстве. Взаимное расположение плоскостей
  • Прямые в пространстве. Пересекающиеся, параллельные, скрещивающиеся прямые
  • Параллельность прямой и плоскости
  • Угол между прямой и плоскостью. Перпендикулярность прямой и плоскости
  • Параллельность плоскостей
  • Угол между плоскостями. Перпендикулярность плоскостей
  • Угол и расстояние между скрещивающимися прямыми. Расстояние от точки до плоскости
  • Теорема о трёх перпендикулярах
  • Параллельное проецирование
  • Как строить чертежи в задачах по стереометрии
  • Векторы и метод координат в задаче 14, часть 2 ЕГЭ по математике
  • В.М. Мамаева. «Перпендикулярность. Книга для учащихся»
  • В.М. Мамаева. «Перпендикулярность. Книга для учителя»
  • В.М. Мамаева. «Тела вращения. Книга для учащихся»
  • В.М. Мамаева. «Тела вращения. Книга для учителя»

к оглавлению ▴

Часть 2 (задачи 13 — 19) на ЕГЭ по математике.

Видео

Задача 13: Уравнения на ЕГЭ по математике. Полный курс.

Видео

Задача 14: Стереометрия на ЕГЭ по математике. Полный курс. Оба метода — классика и векторы. Более 3 часов видео.

Видео

Задача 15: Неравенства на ЕГЭ по математике. Полный курс в двух частях.

Видео

Задача 16: Геометрия на ЕГЭ по математике. Полный курс. Более 5 часов видео.

Видео

Задачи по математике с экономическим содержанием. Задача 17 на ЕГЭ по математике и задачи олимпиад по экономике.

Видео бесплатно!

Задача 18: Параметры на ЕГЭ по математике. Графический метод.

Видео

Задача 18: Параметры на ЕГЭ по математике. Полный курс. Более 5 часов видео.
Задача 19 на числа и их свойства на ЕГЭ по математике.

Задача 19 на ЕГЭ по математике 2016 года. Решение.
Задача 19 на ЕГЭ по математике 2017 года. Решение.

Видео

Впервые! Видеокурс «Ключ к С6». Нестандартные задачи на ЕГЭ по математике.

к оглавлению ▴

Советы и рекомендации по подготовке к экзамену

  • Справочники для подготовки к ЕГЭ по математике
  • Методика подготовки к ЕГЭ по математике Анны Малковой
  • ЕГЭ по математике – советы и рекомендации
  • Репетитор по математике
  • Подготовиться к ЕГЭ самостоятельно и бесплатно
  • Математика и жизнь. Из воспоминаний бывалого студента.
  • Книги и учебники для подготовки к ЕГЭ по Математике
  • Как подготовиться к ЕГЭ по математике?
  • Как распределить время на ЕГЭ по математике
  • Подготовка к ЕГЭ по Математике с нуля
  • Самостоятельная подготовка к ЕГЭ по математике

к оглавлению ▴

Об этом сайте:

  • Каждый год на этом сайте готовятся к ЕГЭ сотни тысяч учащихся. Нас рекомендуют учителя и репетиторы. Автор сайта, на котором вы находитесь, — репетитор-профессионал, ведущая курсов подготовки к ЕГЭ на высшие баллы, руководитель компании «ЕГЭ-Студия» Анна Георгиевна Малкова.
    Также вы можете выбрать базовый уровень подготовки к ЕГЭ по математике онлайн

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Материалы для подготовки к ЕГЭ по математике базового и профильного уровня» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

Задача 3. Начала теории вероятностей

Задача 3. Начала теории вероятностей

Задача 4. Вероятности сложных событий

Задача 4. Вероятности сложных событий

Задача 5. Простейшие уравнения

Задача 5. Простейшие уравнения

Задача 6. Вычисления и преобразования

Задача 6. Вычисления и преобразования

Задача 7. Производная и первообразная

Задача 7. Производная и первообразная

Задача 8. Задачи с прикладным содержанием

Задача 8. Задачи с прикладным содержанием

Задача 9. Текстовые задачи

Задача 9. Текстовые задачи

Задача 10. Графики функций

Задача 10. Графики функций

Задача 11. Наибольшее и наименьшее значение функций

Задача 11. Наибольшее и наименьшее значение функций

Пробные и тренировочные варианты по математике профильного уровня в формате ЕГЭ 2022 из различных источников.

 Тренировочные варианты ЕГЭ 2022 по математике (профиль)

egemath.ru
Вариант 1 скачать
Вариант 2 скачать
Вариант 3 скачать
Вариант 4 скачать
Вариант 5 скачать
Вариант 6 скачать
Вариант 7 скачать
variant 8 скачать
variant 9 скачать
variant 10 скачать
variant 11 скачать
variant 12 скачать
variant 13 скачать
variant 14 скачать
variant 15 скачать
variant 16 скачать
variant 17 скачать
variant 18 скачать
variant 19 скачать
variant 20 скачать
yagubov.ru
вариант 21 ege2022-yagubov-prof-var21
вариант 22 ege2022-yagubov-prof-var22
вариант 23 ege2022-yagubov-prof-var23
вариант 24 ege2022-yagubov-prof-var24
вариант 25 ege2022-yagubov-prof-var25
вариант 26 ege2022-yagubov-prof-var26
вариант 27 ege2022-yagubov-prof-var27
вариант 28 ege2022-yagubov-prof-var28
Досрочный Москва 28.03.2022 скачать
egemathschool.ru
вариант 1 ответ
вариант 2 ответ
вариант 3 ответ
вариант 4 ответ
ЕГЭ 100 баллов (с решениями) 
Вариант 1 скачать
Вариант 2 скачать
Вариант 3 скачать
Вариант 4 скачать
Вариант 5 скачать
Вариант 6 скачать
Вариант 7 скачать
Вариант 8 скачать
Вариант 9 скачать
Вариант 10 скачать
variant 11 скачать
variant 12 скачать
variant 13 скачать
variant 14 скачать
variant 15 скачать
variant 16 скачать
variant 17 скачать
variant 18 скачать
variant 20 скачать
variant 21 скачать
variant 23 скачать
variant 24 скачать
variant 25 скачать
variant 26 скачать
variant 29 скачать
variant 30 скачать
math100.ru (с ответами) 
Вариант 140 скачать
Вариант 141 скачать
Вариант 142 скачать
Вариант 143 math100-ege22-v143
Вариант 144 math100-ege22-v144
Вариант 145 math100-ege22-v145
Вариант 146 math100-ege22-v146
variant 147 math100-ege22-v147
variant 148 math100-ege22-v148
variant 149 math100-ege22-v149
variant 150 math100-ege22-v150
variant 151 math100-ege22-v151
variant 152 math100-ege22-v152
variant 153 math100-ege22-v153
variant 154 math100-ege22-v154
variant 155 math100-ege22-v155
variant 156 math100-ege22-v156
variant 157 math100-ege22-v157
variant 158 math100-ege22-v158
variant 159 math100-ege22-v159
variant 160 math100-ege22-v160
variant 161 math100-ege22-v161
variant 162 math100-ege22-v162
variant 163 math100-ege22-v163
variant 164 math100-ege22-v164
variant 165 math100-ege22-v165
variant 166 math100-ege22-v166
variant 167 math100-ege22-v167
variant 168 math100-ege22-v168
variant 169 math100-ege22-v169
variant 170 math100-ege22-v170
variant 171 math100-ege22-v171
variant 172 math100-ege22-v172
variant 173 math100-ege22-v173
variant 174 math100-ege22-v174
alexlarin.net 
Вариант 358
скачать
Вариант 359 скачать
Вариант 360 скачать
Вариант 361 скачать
Вариант 362 проверить ответы
Вариант 363 проверить ответы
Вариант 364 проверить ответы
Вариант 365 проверить ответы
Вариант 366 проверить ответы
Вариант 367 проверить ответы
Вариант 368 проверить ответы
Вариант 369 проверить ответы
Вариант 370 проверить ответы
Вариант 371 проверить ответы
Вариант 372 проверить ответы
Вариант 373 проверить ответы
Вариант 374 проверить ответы
Вариант 375 проверить ответы
Вариант 376 проверить ответы
Вариант 377 проверить ответы
Вариант 378 проверить ответы
Вариант 379 проверить ответы
Вариант 380 проверить ответы
Вариант 381 проверить ответы
Вариант 382 проверить ответы
Вариант 383 проверить ответы
Вариант 384 проверить ответы
Вариант 385 проверить ответы
Вариант 386 проверить ответы
Вариант 387 проверить ответы
Вариант 388 проверить ответы
vk.com/ekaterina_chekmareva (задания 1-12)
Вариант 1 ответы
Вариант 2
Вариант 3
Вариант 4
Вариант 5
Вариант 6
Вариант 7 ответы
Вариант 8
Вариант 9
Вариант 10
vk.com/matematicalate
Вариант 1 matematikaLite-prof-ege22-var1
Вариант 2 matematikaLite-prof-ege22-var2
Вариант 3 matematikaLite-prof-ege22-var3
Вариант 4 matematikaLite-prof-ege22-var4
Вариант 5 matematikaLite-prof-ege22-var5
Вариант 6 matematikaLite-prof-ege22-var6
Вариант 7 matematikaLite-prof-ege22-var7
Вариант 8 matematikaLite-prof-ege22-var8
vk.com/pro_matem
variant 1 pro_matem-prof-ege22-var1
variant 2 pro_matem-prof-ege22-var2
variant 3 pro_matem-prof-ege22-var3
variant 4 разбор
variant 5 разбор
vk.com/murmurmash
variant 1 otvet
variant 2 otvet
→  Купить сборники тренировочных вариантов ЕГЭ 2022 по математике

Структура варианта КИМ ЕГЭ

Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и количеству заданий:

– часть 1 содержит 11 заданий (задания 1–11) с кратким ответом в виде целого числа или конечной десятичной дроби;

– часть 2 содержит 7 заданий (задания 12–18) с развёрнутым ответом (полная запись решения с обоснованием выполненных действий).

Задания части 1 направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.

Посредством заданий части 2 осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.

Связанные страницы:

Средний балл ЕГЭ 2021 по математике

Решение задач с параметром при подготовке к ЕГЭ

Изменения в КИМ ЕГЭ 2022 года по математике

Купить сборники типовых вариантов ЕГЭ по математике

Как решать экономические задачи ЕГЭ по математике профильного уровня?

Like this post? Please share to your friends:
  • Задачи на экзамен по трудовому праву
  • Задачи на условную вероятность в егэ по математике
  • Задачи на механическое движение егэ
  • Задачи на координатной плоскости егэ
  • Задачи на количество теплоты химия егэ