17. Сложные задачи прикладного характера
1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Задачи про банковский кредит: дифференцированный платеж
Дифференцированный платеж – это такая система выплат, при которой сама сумма долга уменьшается равномерно, то есть на одну и ту же величину каждый год (месяц).
При этом платежи каждый год разные.
Таким образом, если кредит взят на (n) лет, то это значит, что сумму кредита (A) разделили на (n) равных частей и что каждый год после платежа сумма долга уменьшается на (dfrac1n A) по сравнению с долгом на начало года.
Пример: Александр взял в банке кредит на (50,000) рублей на (3) месяца, причем выплачивать кредит он должен ежемесячными выплатами так, чтобы сумма долга каждый месяц уменьшалась на одну и ту же величину. Сколько рублей составит переплата Александра по кредиту, если процентная ставка в банке (10%)?
Т.к. кредит взят на (3) месяца, то после первой выплаты долг должен составить (A-frac13A=frac23 A), после второй (frac23A-frac13A=frac13A), а после третьей — (frac13A-frac13A=0) рублей. Составим таблицу, производя все вычисления в тыс. рублей: [begin{array}{|l|c|c|c|c|}
hline text{Месяц}&text{Сумма долга}&text{Сумма долга}&text{Сумма долга}&text{Выплата}\
&text{до начисления} %&text{после начисления }%&text{после выплаты}&\
hline 1&50&50+0,1cdot 50&frac23cdot 50&0,1cdot 50+frac13cdot 50\
hline 2&frac23cdot 50&frac23cdot 50+0,1cdotfrac23cdot 50&frac13cdot 50&0,1cdot frac23cdot 50+frac13cdot50\
hline 3&frac13cdot 50&frac13cdot 50+0,1cdot frac13cdot
50&0&0,1cdot frac13cdot 50+frac13cdot 50\
hline
end{array}]
Таким образом, всего Александр заплатил банку (big(0,1cdot
50+dfrac13cdot 50big)+big(0,1cdot dfrac23cdot
50+dfrac13cdot50big)+big(0,1cdot dfrac13cdot 50+dfrac13cdot
50big)) тыс.рублей.
Перегруппируем слагаемые и вынесем за скобки общие множители:
(0,1cdot 50 left(1+dfrac23+dfrac13right)+3cdot dfrac13cdot
50=0,1cdot 50cdot 2+50)
Для того, чтобы найти переплату по кредиту, необходимо из того, что он в итоге заплатил банку, отнять сумму кредита:
(big(0,1cdot 50cdot 2+50big)-50=10) тыс. рублей.
Таким образом, его переплата составила (10,000) рублей.
Заметим,
I. что каждая выплата состоит из двух частей:
первая часть — это сумма “набежавших” процентов на текущий долг (в первый год это (0,1cdot 50), во второй — (0,1cdot big(frac23cdot
50big)) и т.д.)
вторая часть всегда фиксирована — это та часть, на которую должен уменьшаться долг каждый год (в нашем примере это (frac13cdot 50)).
Действительно, когда клиент выплачивает “набежавшие” проценты, сумма его долга становится равна той, которая была до начисления процентов (например, в первый год становится равна (A)). А далее он еще вносит (frac 1n) часть от этого долга. И таким образом сумма долга уменьшается на (frac 1n) часть, что и подразумевает дифференцированная система платежей.
II. переплата по кредиту всегда равна сумме “набежавших” процентов на долг в первый год, во второй год, в третий год и т.д.
В нашем примере переплата как раз равна (0,1cdot 50+0,1cdot
frac23cdot 50+0,1cdot frac13cdot 50).
Формула для выплаты в (i)-ый год: [{Large{x_i=dfrac{r}{100}cdot dfrac{n-i+1}{n}A+dfrac1n A}}] где (n) – количество лет, на которое взят кредит, (A) – сумма кредита, (r%) – процентная ставка.
Задание
1
#1194
Уровень задания: Легче ЕГЭ
(16) августа на покупку телефона стоимостью (60,000) рублей в банке был взят кредит на (3) месяца. Условия пользования кредитом таковы:
– (10) числа каждого месяца, начиная с сентября, банк начисляет на остаток долга (10%);
– с (11) по (15) числа каждого месяца, начиная с сентября, клиент обязан внести в банк платеж;
– суммы платежей подбираются так, чтобы долг каждый месяц уменьшался на одну и ту же величину (так называемый дифференцированный платеж). Сколько рублей в итоге составит переплата по данному кредиту?
Т.к. кредит был взят на (3) месяца, то долг каждый месяц должен уменьшаться на (dfrac{1}{3}) часть.
Составим таблицу, все суммы будем вычислять в тыс.руб.: [begin{array}{|l|c|c|c|c|}
hline text{Месяц}&text{Долг до} & text{Долг после} & text{Сумма}& text{Долг после}\
& text{начисления }%& text{начисления }% &text{платежа}& text{платежа} \
hline &&&&\
1& dfrac{3}{3}cdot 60=60&60+0,1cdot 60 &0,1cdot 60+dfrac{1}{3}cdot 60& dfrac{2}{3}cdot 60\
&&&&\
hline &&&&\
2&dfrac{2}{3}cdot 60 & dfrac{2}{3}cdot 60+0,1cdot dfrac{2}{3}cdot 60&0,1cdot dfrac{2}{3}cdot 60+dfrac{1}{3}cdot 60&dfrac{1}{3}cdot 60 \
&&&&\
hline &&&&\
3&dfrac{1}{3}cdot 60 &dfrac{1}{3}cdot 60+0,1cdot dfrac{1}{3}cdot 60 &0,1cdot dfrac{1}{3}cdot 60+dfrac{1}{3}cdot 60&0 \
&&&&\
hline
end{array}]
Заметим, что каждый платеж состоит из (dfrac{1}{3}cdot 60) и из процентов, начисленных на остаток долга (т.е. все платежи – разные). Именно поэтому удобнее долг после начисления процентов записывать в виде (A+0,1cdot A), а не в виде (1,1cdot A).
Общая выплата по кредиту равна сумме всех платежей по кредиту, т.е.
(0,1cdot 60+dfrac{1}{3}cdot 60+0,1cdot dfrac{2}{3}cdot
60+dfrac{1}{3}cdot 60+0,1cdot dfrac{1}{3}cdot
60+dfrac{1}{3}cdot 60=60+0,1cdot 60cdot
(1+dfrac{2}{3}+dfrac{1}{3}))
Следовательно, переплата составит: (60+0,1cdot 60cdot
(1+frac{2}{3}+frac{1}{3})-60=0,1cdot 60cdot 2=12) тыс.руб.
Ответ:
(12,000) рублей.
Задание
2
#1196
Уровень задания: Равен ЕГЭ
(10) лет назад Григорий брал в банке кредит на (4) года, причем Григорий помнит, что выплачивал он кредит дифференцированными платежами и переплата по кредиту составила (32,5%) от кредита. Под какой годовой процент был взят тогда кредит?
Обозначим за (y) — годовой процент по кредиту, а за (A) руб. – сумму кредита. Составим таблицу: [begin{array}{|l|c|c|c|c|}
hline text{Год}&text{Долг до} & text{Долг после} & text{Сумма}& text{Долг после}\
& text{начисления }%& text{начисления }% &text{платежа}& text{платежа} \
hline &&&&\
1& A&A+dfrac{y}{100}cdot A &dfrac{y}{100}cdot A+dfrac{1}{4}cdot A& dfrac{3}{4}cdot A\
&&&&\
hline &&&&\
2&dfrac{3}{4}cdot A & dfrac{3}{4}cdot A+dfrac{y}{100}cdot dfrac{3}{4}cdot A&dfrac{y}{100}cdot dfrac{3}{4}cdot A+dfrac{1}{4}cdot A&dfrac{2}{4}cdot A \
&&&&\
hline &&&&\
3&dfrac{2}{4}cdot A &dfrac{2}{4}cdot A+dfrac{y}{100}cdot dfrac{2}{4}cdot A &dfrac{y}{100}cdot dfrac{2}{4}cdot A+dfrac{1}{4}cdot A&dfrac{1}{4}A \
&&&&\
hline &&&&\
4&dfrac{1}{4}cdot A &dfrac{1}{4}cdot A+dfrac{y}{100}cdot dfrac{1}{4}cdot A &dfrac{y}{100}cdot dfrac{1}{4}cdot A+dfrac{1}{4}cdot A&0 \
&&&&\
hline
end{array}]
Переплата по кредиту составит:
(dfrac{y}{100}cdot A +dfrac{y}{100}cdot dfrac{3}{4}cdot
A+dfrac{y}{100}cdot dfrac{2}{4}cdot A+dfrac{y}{100}cdot
dfrac{1}{4}cdot A=dfrac{y}{100}cdot Acdot
dfrac{5}{2}=dfrac{yA}{40})
Т.к. переплата в итоге составила (32,5%) от суммы кредита, то (dfrac{yA}{40}=0,325A Rightarrow y=13%)
Ответ:
(13 %).
Задание
3
#2890
Уровень задания: Равен ЕГЭ
Родион хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на 15 лет под (6%) годовых, второй – на 6 лет под (14%) годовых, причем в обоих банках дифференцированная система платежей. Определите, в какой банк выгоднее обратиться Родиону и сколько процентов от кредита составляет эта выгода.
Выгоднее будет предложение от того банка, по которому будет меньше переплата. Пусть (A) – сумма, которую Родион хочет взять в кредит. Заметим, что так как система выплат дифференцированная, то переплата по кредиту равна сумме “набежавших” на долг процентов на начало каждого года.
1) Первый банк предлагает кредит на 15 лет, следовательно, каждый год после платежа основной долг уменьшается на (frac1{15}) часть. То есть если в начале 1-ого года долг равен (A), то в начале 2-ого — (A-frac1{15}A=frac{14}{15}A), в начале 3-его — (frac{13}{15}A), в начале 4-ого — (frac{12}{15}A) и т.д. Значит, “набежавшие” в 1-ый год проценты — это (0,06cdot A), во 2-ой год — это (0,06cdot frac{14}{15}A), в 3-ий — это (0,06cdot
frac{13}{15}A) и т.д. Следовательно, переплата: [begin{aligned}&Per_1=0,06cdot A+0,06cdot frac{14}{15}A+dots+
0,06cdot frac2{15}A+0,06cdot frac1{15}A=\[2ex] &=0,06Acdot
left(1+frac{14}{15}+dots+frac2{15}+frac1{15}right)=0,06Acdot
8=0,48Aend{aligned}]
2) Второй банк предлагает кредит на 6 лет, следовательно, применяя те же рассуждения, получим: [Per_2=0,14Acdot left(1+frac56+frac46+frac36+frac26+frac16right)=
0,14Acdot 3,5=0,49A]
Следовательно, в первом банке переплата меньше, значит, обратиться в этот банк будет более выгодно.
Выгода равна (0,49A-0,48A=0,01A), значит, она составляет (1%) от суммы кредита.
Ответ: 1
Задание
4
#3147
Уровень задания: Равен ЕГЭ
Банк выдает кредит на следующих условиях:
— раз в год банк начисляет на текущий долг некоторый процент годовых;
— раз в год после начисления процентов клиент обязан внести платеж в счет погашения кредита, причем платежи вносятся таким образом, чтобы сумма долга уменьшалась каждый год на одну и ту же величину;
— отношение наибольшего платежа к наименьшему платежу равно (17:9).
Сколько процентов составит переплата от кредита, если взять такой кредит на 9 лет?
Из условия следует, что кредит должен выплачиваться дифференцированными платежами.
Пусть в банке взято (A) рублей в кредит. Если (r%) – процентная ставка в банке, то обозначим величину (0,01r=p). Тогда можно составить таблицу: [begin{array}{|l|c|c|c|}
hline text{Год} & text{Долг до начисления проц.} & text{Долг
после
начисления проц.} & text{Платеж}\
hline 1 & A & A+pA & pA+frac19A\
hline 2 & frac89A & frac89A+pcdot frac89A & pcdot
frac89A+frac19A\
hline … &… & … & …\
hline 9 & frac19A & frac19A+pcdot frac19A & pcdot
frac19A+frac19A\ hline end{array}]
Так как система выплат дифференцированная, то наибольший платеж – первый, а наименьший – последний. Следовательно, [dfrac{pA+frac19A}{pcdot frac19A+frac19A}=dfrac{17}9 quadLeftrightarrow
quad p=dfrac18] Тогда переплата по кредиту равна [pA+pcdot dfrac89A+pcdot dfrac79A+dots+pcdot dfrac19A=
pcdot Acdot left(1+dfrac89+dfrac79+dots+dfrac19right)=5pA] Следовательно, переплата составила от кредита [dfrac{5pA}{A}cdot 100%=500p%=62,5%.]
Ответ: 62,5
Задание
5
#2016
Уровень задания: Равен ЕГЭ
Павлу банком был предложен кредит на следующих условиях:
– сумма кредита не должна превышать (150,000) рублей;
– раз в месяц банк начисляет на остаток долга (22%);
– после начисления процентов Павел вносит в банк некоторый платеж, причем весь кредит должен быть выплачен тремя платежами так, чтобы сумма долга уменьшалась равномерно.
Помогите посчитать Павлу, сколько процентов от первоначального долга составит переплата по данному кредиту?
Т.к. долг должен уменьшаться равномерно, то схема выплаты кредита – дифференцированные платежи. Т.к. платежей должно быть (3), значит, кредит дается на (3) месяца, следовательно, долг каждый месяц должен уменьшаться на (dfrac{1}{3}) часть. Составим таблицу, обозначив за (A) – сумму кредита:
[begin{array}{|l|c|c|c|c|}
hline text{Месяц}&text{Долг до} & text{Долг после} & text{Сумма}& text{Долг после}\
& text{начисления }%& text{начисления }% &text{платежа}& text{платежа} \
hline &&&&\
1& A&A+0,22cdot A &0,22cdot A+dfrac{1}{3}cdot A& dfrac{2}{3}cdot A\
&&&&\
hline &&&&\
2&dfrac{2}{3}cdot A & dfrac{2}{3}cdot A+0,22cdot dfrac{2}{3}cdot A&0,22cdot dfrac{2}{3}cdot A+dfrac{1}{3}cdot A&dfrac{1}{3}cdot A \
&&&&\
hline &&&&\
3&dfrac{1}{3}cdot A &dfrac{1}{3}cdot A+0,22cdot dfrac{1}{3}cdot A &0,22cdot dfrac{1}{3}cdot A+dfrac{1}{3}cdot A&0 \
&&&&\
hline
end{array}]
Таким образом, переплата по кредиту составит:
(left(0,22cdot A+dfrac{1}{3}cdot A+0,22cdot dfrac{2}{3}cdot
A+dfrac{1}{3}cdot A+0,22cdot dfrac{1}{3}cdot
A+dfrac{1}{3}cdot Aright) — A=)
(=0,22cdot Acdot
left(1+dfrac{2}{3}+dfrac{1}{3}right)=0,44A)
Следовательно, процент, который составит переплата относительно первоначального долга, равен:
(dfrac{0,44A}{A}cdot 100% = 44 %).
Заметим, что информация о том, что сумма кредита не должна превышать (150,000) рублей, на самом деле не нужна для того, чтобы ответить на вопрос задачи.
Ответ:
(44 %).
Задание
6
#2929
Уровень задания: Равен ЕГЭ
15-го января планируется взять кредит в банке на 31 месяц. Условие его возврата таковы:
— 1-го числа каждого месяца долг возрастает на (3%) по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.
Известно, что на 16-й месяц кредитования нужно сделать платеж в размере 29,6 тыс. рублей. Какую сумму нужно вернуть банку в течение всего срока кредитования?
(Задача от подписчиков)
Пусть (A) тыс. рублей – сумма, взятая в кредит. Фраза “долг должен быть на одну и ту же величину меньше” означает, что кредит выплачивается дифференцированными платежами. Каждый такой платеж состоит из двух частей: первая часть всегда одинаковая – это (dfrac1{31}) часть от (A); вторая часть состоит из процентов, “набежавших” на долг в этом месяце.
Составим таблицу:
[begin{array}{|l|c|c|c|c|}
hline text{Месяц} &text{Долг до} & text{Долг после} & text{Сумма} & text{Долг после}\
& text{начисления }%& text{начисления }% &text{платежа} & text{платежа} \
hline &&&&\
1& A&A+0,03cdot A &0,03cdot A+dfrac{1}{31}cdot A& dfrac{30}{31}cdot A\
&&&&\
hline &&&&\
2&dfrac{30}{31}cdot A & dfrac{30}{31}cdot A+0,03cdot dfrac{30}{31}cdot A
&0,03cdot dfrac{30}{31}cdot A+dfrac{1}{31}cdot A&dfrac{29}{31}cdot A \
&&&&\
hline &&&&\
3&dfrac{29}{31}cdot A &dfrac{29}{31}cdot A+0,03cdot
dfrac{29}{31}cdot A
&0,03cdot dfrac{29}{31}cdot A+dfrac{1}{31}cdot A&dfrac{28}{31}cdot A \
&&&&\
hline &&&&\
…&… &… &…&… \
&&&&\
hline &&&&\
16&dfrac{16}{31}cdot A &dfrac{16}{31}cdot A+0,03cdot dfrac{16}{31}cdot A
&0,03cdot dfrac{16}{31}cdot A+dfrac{1}{31}cdot A=29,6&dfrac{15}{31}cdot A \
&&&&\
hline &&&&\
…&… &… &…&… \
&&&&\
hline &&&&\
31&dfrac{1}{31}cdot A &dfrac{1}{31}cdot A+0,03cdot dfrac{1}{31}cdot A
&0,03cdot dfrac{1}{31}cdot A+dfrac{1}{31}cdot A&0 \
&&&&\
hline
end{array}]
Из полученного уравнения (0,03cdot dfrac{16}{31}cdot
A+dfrac{1}{31}cdot A=29,6) можно найти [A=620.]
Тогда за все месяцы кредитования будет выплачено банку:
(0,03cdot A+dfrac1{31}A+0,03cdot
dfrac{30}{31}A+dfrac1{31}A+dots+0,03cdot
dfrac1{31}A+dfrac1{31}A= 31cdot dfrac1{31}A+0,03cdot Acdot
left(1+dfrac{30}{31}+dfrac{29}{31}+dots+dfrac1{31}right)=)
(=A+0,03cdot Acdot dfrac{1+frac1{31}}2cdot
31=dfrac{37}{25}A=dfrac{37}{25}cdot 620=917,6) тыс. рублей.
Ответ: 917,6
Задание
7
#3871
Уровень задания: Равен ЕГЭ
В июле планируется взять кредит в банке на сумму (14) млн. рублей на некоторый срок (целое число лет). Условия его возврата таковы:
– каждый январь долг возрастает на (25%) по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплачивать часть долга;
– в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.
На сколько лет взят кредит, если известно, что общая сумма выплат после его погашения равнялась (24,5) млн. рублей?
Пусть (n) – число лет, на которое взят кредит. Так как годовой процент в банке равен (25%), то это значит, что каждый год долг увеличивается на четверть. Из условия следует, что система выплат дифференцированная, следовательно, каждый год долг должен уменьшаться на (frac 1n) часть, то есть на (frac{14}n) млн. рублей. Составим таблицу: [begin{array}{|l|c|c|c|}
hline text{Год} & text{Долг до начисления }% & text{Долг после
начисления
} % & text{Выплата}\
hline 1 & 14 & 14+frac14cdot 14 & frac{14}n+frac14cdot 14\
hline 2 & frac{n-1}ncdot 14 & frac{n-1}ncdot 14+frac14cdot
frac{n-1}ncdot 14 & frac{14}n + frac14cdot frac{n-1}ncdot
14\
hline … & … & … & …\
hline n & frac{14}n & frac{14}n+frac14cdot frac{14}n &
frac{14}n +frac14cdot frac{14}n \
hline end{array}] Таким образом, общая сумма выплат составляет [begin{aligned}
&dfrac{14}n+dfrac14cdot 14+dfrac{14}n + dfrac14cdot
dfrac{n-1}ncdot 14+dots+dfrac{14}n +dfrac14cdot
frac{14}n=\[1ex]
&=dfrac14cdot 14cdot left(1+dfrac{n-1}n+dots+dfrac1nright)+
ncdot dfrac{14}n=\[1ex]
&=dfrac14cdot 14cdot dfrac{1+frac1n}2cdot
n+14=dfrac74(n+1)+14 end{aligned}] (в скобках мы получили сумму арифметической прогрессии, где первый член равен (frac1n), (n)-ый равен (1), соответственно, количество членов равно (n))
Таким образом, так как общая сумма выплат равна по условию (24,5) млн. рублей, то получаем: [dfrac74(n+1)+14=24,5quadLeftrightarrowquad n=5]
Ответ: 5
Курс современной математики, которая преподается будущим выпускникам в старших классах, регулярно меняется. В настоящее время учащийся, который готовится к сдаче ЕГЭ по этому предмету, должен уметь правильно решать задачи на дифференцированные платежи. В аттестационном испытании профильного уровня задания, затрагивающие сферу финансовой математики, встречаются регулярно. Решение задач ЕГЭ по дифференцированным платежам за кредит предполагает наличие у школьника базовых навыков анализа числовых данных и осуществление практических расчетов по формулам.
Вместе с образовательным порталом «Школково» вы сможете восполнить пробелы в знаниях и отточить необходимое умение. Базовый теоретический и практический материал по данной теме представлен в соответствующих разделах сайта таким образом, чтобы все учащиеся могли без особых затруднений справляться с задачами ЕГЭ на дифференцированные платежи.
Основные моменты
При выполнении заданий из области финансовой математики необходимо запомнить несколько важных нюансов:
- Общая выплата по кредиту состоит из тела кредита и процентов, которые начисляются банком. Эта важная формула лежит в основе практически всех задач по данной тематике.
- В процессе расчета дифференцированного платежа общая сумма первоначального кредита должна быть поделена на равные части. Как правило, их количество соответствует числу проводимых платежей.
- Если в условии задачи фигурируют словосочетания «равными частями», «долг уменьшается на одну и ту же величину» и т. п., вероятнее всего, речь идет именно о дифференцированном платеже.
Для того чтобы выпускник мог не только усвоить теоретический материал, но и отточить навык выполнения практических заданий, рекомендуем сделать соответствующие упражнения. Для каждого из них специалисты «Школково» прописали алгоритм решения и привели правильный ответ. Тренироваться в решении задач на дифференцированные платежи при подготовке к ЕГЭ выпускники могут в режиме онлайн, находясь в Москве или любом другом городе России.
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Решение задач на дифференцированные платежи при подготовке к ЕГЭ по математике
1.Дифференцированные платежи
Кредиты играют важную роль в жизни населения со средним достатком. Тем, кто не может позволить себе единовременную оплату из собственных средств при покупке недвижимости или другого дорогостоящего имущества, кредиты просто необходимы.
Какие существуют виды платежей по кредитам?
В чём же разница между аннуитетным и дифференцированным платежами и какой платёж выгоднее?
Дифференцированные платежи
При дифференцированных платежах сумма основного долга, так называемое тело долга, делится равными частями на весь срок платежа, а проценты ежемесячно начисляются на остаток долга. Соответственно, в первый месяц суммы платежей велики, потому что проценты по кредиту существенны.
А к концу срока выплаты будут минимальны. Дифференцированные платежи удобны для тех, у кого доход не носит характер неизменной величины, и через некоторое время может появиться возможность досрочно погасить долг. В этом случае переплата по кредиту будет меньше, чем при аннуитетном расчёте.
Аннуитетные платежи
Отличие аннуитетного платежа от дифференцированного в том, что сумма ежемесячного взноса всегда неизменна, но вот структура этой суммы меняется из месяца в месяц.
Основную часть в первые месяцы составляют проценты по кредиту, а сумма тела долга — минимальна. Таким образом банк страхует риски недополучения прибыли в случае досрочного погашения кредита заёмщиком.
При дифференцированном платеже ежемесячные платежи становятся меньше, сумма основного долга в платеже всегда будет одной и той же. А вот проценты, начисляемые на остаток основного долга, будут уменьшаться по мере выплаты кредита. Ежемесячная сумма основного долга считается следующим образом: сумма кредита делится на количество платежей.
Кредиты с дифференцированными платежами выдавались в Сбербанке до 2011 года, а сейчас выдаются только с аннуитетными.
В подавляющем большинстве случаев банки предлагают своим заемщикам аннуитетную схему погашения задолженности. Однако в некоторых случаях можно выбрать дифференцированный платеж — тип выплаты кредита, при котором размер взносов постепенно уменьшается. Для заемщика пользоваться дифференцированными платежами выгоднее, чем фактически стандартной аннуитетной схемой.
Как рассчитать дифференцированный платеж?
Платеж при дифференцированной схеме делится на две части:
- основную, которая уходит на погашение тела кредита;
- процентную, которая является чистой прибылью банка.
Основную часть платежа высчитать просто по такой формуле:
Платеж =
Так, если заемщик взял в кредит 300 тыс. рублей под 22% годовых на 5 лет, то размер основной части составит:
300000 / 60 = 5000 рублей
Вторая часть платежа — процентная — рассчитывается по такой схеме:
Платеж = остаток основного долга * годовая ставка / 12
Так, проценты за первый месяц пользования кредита составят:
300000 * 0.22 / 12 = 5500 рублей
Путем сложения определяем размер платежа на первый месяц: 5000 + 5500 = 11000 рублей.
Для того, чтобы рассчитать проценты за любой месяц, необходимо узнать остаток задолженности. Если за второй месяц размер общего долга можно узнать путем простого вычитания из 300000 рублей первого платежа в 5000 рублей, то за 10-ый или 25-ый значение можно вычислить по такой схеме:
Остаток долга = общий размер долга — (размер основного платежа * количество прошедших месяцев).
Так, за 10-ый месяц процентная часть будет равна:
(300000 — 5000 * 9) * 0.22 / 12 = 4675
общий размер платежа: 9675 рублей.
За 25-й месяц:
(300000 — 5000 * 24) * 0.22 / 12 = 3300
Общий размер платежа: 8300 рублей.
Как видите, по сравнению с первым месяцем заемщику придется платить на 1700 рублей меньше. Проценты за самый последний месяц будут минимальными:
(300000 — 5000 * 59) * 0.22 / 12 = 91.67
В целом дифференцированную схему погашения кредита используют для небольших займов или при достаточно высоком уровне дохода. Тогда первые платежи не будут столь обременительны для вашего бюджета, а сниженный размер переплат позволит сэкономить и, возможно, потратить высвободившиеся средства для досрочного погашения кредита.
2. Решение задач.
Рассмотрим решение задач на дифференцированные платежи. Задачи можно найти в любом сборнике для подготовки к ЕГЭ по математике.
Учитывая, что платеж при дифференцированной схеме делится на две части:
основную и процентную, то при решении задач удобно составлять таблицу, в которой основная ежемесячная (ежегодная) часть платежа остается неизменной, а процентная часть меняется.
Решим несколько задач.
№1.
15-го января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастёт на r% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 30% больше суммы, взятой в кредит. Найдите r.
Решение.
Пусть S-сумма кредита, r-проценты банку, n=19 (число выплат).
Известно, что долг уменьшается на одну и ту же сумму.
Долг банку:
— это ежемесячные выплаты процентов банку.
Зная, что эти выплаты составляют 30% общей суммы кредита, составим уравнение:
(сумма арифметической прогрессии, где , n=19)
Ответ: 3%.
Примечание.
Выведем формулу для вычисления переплат банку, используя формулу суммы арифметической прогрессии, где
.(формула 1)
Тогда при , r=3
№2.
15-го января планируется взять кредит в банке на 25 месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастёт на r% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 13% больше суммы, взятой в кредит. Найдите r.
Решение.
Пусть S-сумма кредита, r-проценты банку, n=25 (число выплат).
Известно, что долг уменьшается на одну и ту же сумму. Тогда
Или по формуле (1) n=25, , r=1%.
Ответ: 1%
№3.
15-го января планируется взять кредит в банке на 2 года. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастёт на r% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 25% больше суммы, взятой в кредит. Найдите r.
Решение.
Пусть S-сумма кредита, r-проценты банку, n= 2 года=24месяца (число выплат).
n |
Долг |
Проценты |
Платеж по кредиту (ежемесячный) |
Остаток |
1 |
S |
|||
2 |
||||
3 |
||||
……. |
||||
23 |
||||
24 |
0 |
Если общая сумма выплат после полного погашения кредита на 25% больше суммы, взятой в кредит, это означает, что сумма всех ячеек в столбце “Проценты” равна 0,25 от изначального долга (S):
Ответ: 2%
№4.
15 января планируется взять кредит в банке на 24 месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2 % по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Какую сумму следует взять в кредит, чтобы общая сумма выплат после полного погашения равнялась 1 млн рублей?
Решение.
S-сумма кредита, n=24 месяца, r=2%, Sобщ=1млн=1000тыс рублей
Составим таблицу.
n |
Долг |
Проценты |
Платеж по кредиту (ежемесячный) |
Остаток |
1 |
S |
0,02S |
||
2 |
||||
3 |
||||
……. |
||||
23 |
||||
24 |
0 |
Sобщ=1млн=1000тыс рублей
Общая сумма платежей состоит из суммы кредита и процентов банку.
Sобщ=S+ 0,02S (. Числа, стоящие в скобках, образуют арифметическую прогрессию.
S+0,02S (, S·(1+0,02·12,5)=1000, S=тыс рублей
Ответ: 800000 руб
№5.
В июле планируется взять кредит в банке на сумму 28 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:
— каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить часть долга;
— в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.
Чему будет равна общая сумма выплат после полного погашения кредита, если наибольший годовой платёж составит 9 млн рублей?
Решение.
S-сумма кредита, n-целое число лет, r=25%, Sобщ=28млн рублей
Составим таблицу.
n |
Долг |
Проценты |
Платеж |
Остаток |
1 |
28млн |
0,25·28=7млн |
||
2 |
||||
……. |
||||
n-1 |
||||
n |
0 |
Наибольший годовой платеж -первый.
7+= 9млн, n=14
Sобщ=28+ 7 ()=28+7·+·7=80,5млн
Ответ: 80500000 рублей
№6.
15 января планируется взять кредит в банке на 21 месяц. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2 % по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца. Известно, что на 11-й месяц кредитования нужно выплатить 44,4 тыс. рублей. Какую сумму нужно вернуть банку в течение всего срока кредитования?
n |
Долг |
Проценты |
Платеж по кредиту (ежемесячный) |
Остаток |
1 |
S |
0,02S |
||
2 |
||||
……… |
||||
11 |
||||
……. |
||||
23 |
||||
24 |
0 |
По условию за 11 месяц было выплачено 44,4 тыс.рублей. Составим уравнение
Ответ: 932,4 тыс рублей
№ 7.
15-го января планируется взять кредит в банке на сумму 1300 тысяч рублей на 16 месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 15-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;
— 15-го числа 15-го месяца долг составит 100 тысяч рублей;
— к 15-му числу 16-го месяца кредит должен быть полностью погашен. Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1636 тысяч рублей.
Произведем некоторые вычисления.
1300 тыс-100 тыс=1200тыс.
n |
Долг |
Проценты |
Платеж по кредиту (ежемес) |
Остаток |
1 |
1300 |
|||
2 |
||||
……. |
||||
15 |
||||
16 |
0 |
Общая сумма платежей состоит из суммы кредита и процентов банку.
Ответ: r = 3%
№ 8.
15-го января планируется взять кредит в банке на 11 месяц. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3 % по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 10-й долг должен быть на 80 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— к 15-му числу 11-го месяца кредит должен быть полностью погашен;
Какой долг будет 15-го числа 10-го месяца, если общая сумма выплат после полного его погашения составит 1198 тысячи рублей?
Пусть х тыс. рублей будет долг 15-го числа 10-го месяца.
n |
Долг |
Проценты |
Платеж |
Остаток |
1 |
800+x |
|||
2 |
||||
……. |
||||
10 |
||||
11 |
0 |
Общая сумма платежей состоит из суммы кредита и процентов банку.
Ответ: тыс. рублей
№ 9.
15-го декабря планируется взять кредит в банке на сумму 1000 тысяч рублей на (n+1) месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по n-й долг должен быть на 40 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— 15-го числа n-го месяца долг составит 200 тысяч рублей;
— к 15-му числу (n+1)-го месяца кредит должен быть полностью погашен.
Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1378 тысяч рублей.
Считаем n.
n |
Долг |
Проценты |
Платеж |
Остаток |
1 |
1000 |
|||
2 |
||||
……. |
||||
20 |
||||
21 |
Общая сумма платежей состоит из суммы кредита и процентов банку.
.
Числа в скобках образуют арифметическую прогрессию, сумму которой найдем по формуле.
Ответ: %
Сайт репетитора по математике Фельдман Инны Владимировны. Профессиональные услуги репетитора по математике в Москве. Подготовка к ГИА и ЕГЭ, помощь отстающим.
2016-05-11
11
Май 2016
16 Задание (2022)
В этой статье мы выведем общую формулу для решения экономических задач, условие которых предполагает погашение задолженности по кредиту с использованием дифференцированного платежа.
Дифференцированный платеж – это способ погашения кредита, при котором заемщиком выплачивается основная сумма займа («тело кредита») равными частями, а начисление процентов осуществляется только на остаток задолженности в каждый конкретный момент времени.
Если в задаче присутствуют слова «равными частями», или «долг уменьшается на одну и ту же величину» , то, скорее всего, речь идет о дифференцированном платеже.
Отметим, что в этом случае платежи отличаются между собой.
Внимание! Следует отличать эти задачи от тех, в которых долг отдается равными платежами.
Пусть заемщик взял в кредит рублей на лет при годовой процентной ставке, равной %.
В случае дифференцированного платежа ежегодный платеж состоит из двух частей и равен
1) — часть долга, выплачиваемая ежегодно. Это та составляющая ежегодной выплаты, которая остается постоянной.
2) Проценты на оставшуюся часть долга. Это составляющая ежегодного платежа, которая меняется с каждой выплатой и зависит от порядкового номера этой выплаты.
В первый год выплата процентов по кредиту равна ,
во второй —
в третий —
Выплата процентов по кредиту в — ый год равна .
Тогда общий платеж в первый год равен
Во второй:
В — ый:
Выплаты по процентам представляют собой убывающую арифметическую прогрессию, в которой
Суммарно выплаты по процентам равны:
Сумма слагаемых в скобках находится по формуле суммы членов арифметической прогрессии:
В итоге, если клиент берет в кредит рублей на лет при годовой процентной ставке, равной %, то при дифференцированном платеже он выплатит за лет всего
рублей.
В этом случае переплата банку составляет рублей или процентов (считаем, сколько процентов составляет переплата от суммы долга, для этого сумму переплаты делим на сумму долга и умножаем на 100%).
Например, если клиент берет ипотеку на квартиру 10 млн руб. сроком на 20 лет под 10% годовых (фантастически низкий процент), то по истечении этого срока он заплатит за квартиру:
млн. руб. То есть сумму, более чем в два раза превышающую сумму кредита.
Решим задачу:
В июле планируется взять кредит в банке на сумму 28 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:
— каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить часть долга;
— в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.
Чему будет равна общая сумма выплат после полного погашения кредита, если наибольший годовой платёж составит 9 млн рублей?
Решение.
По условию задачи процентная ставка % годовых.
Пусть кредит взят на лет. Наибольший годовой платеж будет в первый год, когда невыплаченный остаток максимальный, он равен сумме, взятой в кредит. Годовой платеж в первый год равен млн руб.
По условию наибольший годовой платеж равен 9 млн руб.
Получаем уравнение:
Следовательно, кредит взят на 14 лет.
Тогда общая сумма выплат равна млн руб.
Ответ: млн руб.
И.В. Фельдман, репетитор по математике
|
Отзывов (13)
Методичка по решению экономических задач
(задание 17 ЕГЭ)
Составитель: Мокина В.С.,
учитель математики
МАОУ гимназия №83
Тюмень 2021 год
Содержание
l. Задачи на оптимальный выбор.
2. Задачи на кредит с аннуитетным платежом
3. Задачи на дифференцированный платеж
4. Задачи на нахождение суммы кредита
5. Задачи на нахождение суммы вклада
Все представленные в банке ЕГЭ задачи (задание 17), можно условно разделить на группы и подгруппы:
Задачи, не связанные с банковскими операциями (задачи на оптимизацию)
Банковские задачи на вклады
1) нахождение срока вклада;
2) вычисление процентной ставки по вкладу;
3) нахождение суммы вклада;
4) нахождение ежегодной суммы пополнения вклада
Банковские задачи на кредиты:
1) нахождение количества лет выплаты кредита;
2) вычисление процентной ставки по кредиту;
3) нахождение суммы кредита;
4) нахождение ежегодного транша.
В методичке показаны методы решения задач экономического содержания, связанные с банковскими кредитами, оптимизацией производства товаров и услуг.
Рассмотрим решение задач (задание 17), в которых требуется оптимальным образом распределить производство продукции для получения максимальной прибыли.
Задачи на оптимальный выбор. Например, нужно найти максимальную прибыль (при соблюдении каких-либо дополнительных условий), или минимальные затраты. Сначала в такой задаче нужно понять, как одна из величин зависит от другой (или других). Другими словами, нужна та функция, наибольшее или наименьшее значение которой мы ищем. А затем — найти это наибольшее или наименьшее значение. Иногда — с помощью производной. А если функция получится линейная или квадратичная — можно просто воспользоваться свойствами этих функций.
У фермера есть два поля, каждое площадью 10 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 500 ц/га, а на втором – 300 ц/га. Урожайность свёклы на первом поле составляет 300 ц/га, а на втором – 500 ц/га. Фермер может продать картофель по цене 5000 руб. за центнер, а свёклу – по цене 8000 руб. за центнер. Какой наибольший доход может получить фермер?
Решение:
Величина дохода фермера будет зависеть от того как будет распределена площадь поля между картофелем и свёклой. Пусть х га, засажено картофелем на первом поле, тогда (10 – х) га, засаженных свеклой на первом поле. Полученная прибыль с первого поля, равна:
S(х) = х·500·5000 + (10 – х)·300·8000 = 24000000 + 100000х (руб.)
Функция возрастающая, т.к. к>0, значит, наибольшая доходность будет достигнута при наибольшем значении х = 10 га и прибыль с первого поля составит: S(10) = 24000000 + 100000·10 = 25000000 рублей.
Обозначим через у — количество гектар, засаженных картофелем на втором поле, а (10- у) — количество гектар, засаженных свеклой на втором поле. Прибыль со второго поля составит:
S(у) = 300·5000·у + (10 – у)·500·8000 = 40000000 – 2500000у ( руб.)
Функция убывающая, т.к. к<0, значит, наибольшая доходность будет достигнута при наименьшем значении х = 0 га и прибыль с первого поля составит: S(10) = 40000000 рублей.
Таким образом, максимальная прибыль с обоих полей, равна: S = 25000000 + 40000 = 65000000 рублей, что составляет 65 млн. рублей.
Ответ: 65млн. рублей.
Реши самостоятельно:
У фермера есть два поля, каждое площадью 10 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 400 ц/га, а на втором — 300 ц/га. Урожайность свёклы на первом поле составляет 300 ц/га, а на втором — 400 ц/га.
Фермер может продавать картофель по цене 10 000 руб. за центнер, а свёклу — по цене 11 000 руб. за центнер. Какой наибольший доход может получить фермер?
У фермера есть два поля, каждое площадью 10 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 300 ц/га, а на втором — 200 ц/га. Урожайность свёклы на первом поле составляет 200 ц/га, а на втором — 300 ц/га.
Фермер может продавать картофель по цене 10 000 руб. за центнер, а свёклу — по цене 13 000 руб. за центнер. Какой наибольший доход может получить фермер?
У фермера есть два поля, каждое площадью 10 гектаров. На каждом поле можно выращивать картофель и свёклу, поля можно делить между этими культурами в любой пропорции. Урожайность картофеля на первом поле составляет 200 ц/га, а на втором — 300 ц/га. Урожайность свёклы на первом поле составляет 250 ц/га, а на втором — 200 ц/га.
Фермер может продавать картофель по цене 15 000 руб. за центнер, а свёклу — по цене 18 000 руб. за центнер. Какой наибольший доход может получить фермер?
Консервный завод выпускает фруктовые компоты в двух видах тары — стеклянной и жестяной. Производственные мощности завода позволяют выпускать в день 90 центнеров компотов в стеклянной таре или 80 центнеров в жестяной таре. Для выполнения условий ассортиментности, которые предъявляются торговыми сетями, продукции в каждом из видов тары должно быть выпущено не менее 20 центнеров. В таблице приведены себестоимость и отпускная цена завода за 1 центнер продукции для обоих видов тары.
Вид тары |
Себестоимость за 1 ц |
Отпускная цена за 1 ц |
стекло |
1500 рублей |
2100 рублей |
жесть |
1100 рублей |
1750 рублей |
Предполагая, что вся продукция завода находит спрос (реализуется без остатка), найдите максимально возможную прибыль завода за один день (прибылью называется разница между отпускной стоимостью всей продукции и её себестоимостью).
5) Фабрика, производящая пищевые полуфабрикаты, выпускает блинчики со следующими видами начинки: ягодная и творожная. В данной ниже таблице приведены себестоимость и отпускная цена, а также производственные возможности фабрики по каждому виду продукта при полной загрузке всех мощностей только данным видом продукта.
Вид начинки |
Себестоимость за 1 тонну |
Отпускная цена за 1тонну |
Производственные возможности |
ягоды |
70000 рублей |
100000 рублей |
90т/месс. |
творог |
100000 рублей |
135000 рублей |
75 т/месс. |
Для выполнения условий ассортиментности, которые предъявляются торговыми сетями, продукции каждого вида должно быть выпущено не менее 15 тонн. Предполагая, что вся продукция фабрики находит спрос (реализуется без остатка), найдите максимально возможную прибыль, которую может получить фабрика от производства блинчиков за 1 месяц.
Предприниматель купил здание и собирается открыть в нём отель. В отеле могут быть стандартные номера площадью 27 квадратных метров и номера «люкс» площадью 45 квадратных метров. Общая площадь, которую можно отвести под номера, составляет 981 квадратный метр. Предприниматель может поделить эту площадь между номерами различных типов, как хочет. Обычный номер будет приносить отелю 2000 рублей в сутки, а номер «люкс» — 4000 рублей в сутки. Какую наибольшую сумму денег сможет заработать в сутки на своём отеле предприниматель?
Решение:
Пусть у — число номеров «люкс», а х — число стандартных номеров и S = 981м2. Тогда должно соблюдаться неравенство: 27х + 45у = 981
Выразим число обычных номеров т.е.
х = 981 – 45у, х = = 36 + = 36 +
Найдем решение этого уравнения подбором, где х, у N
Если у = 2, то х = 33 у = 14, то х = 15
у = 5, то х = 28 у = 17, то х = 8
у = 11, то х =18 у = 20, то х = 3
f(х,у) = 2000х + 4000у.
Очевидно, что максимальная прибыль будет при максимальном числе номеров «люкс», поэтому выбираем у = 20, х = 3.
Тогда в сутки предприниматель получит:
4000·20 + 2000·3 = 80000 + 6000 = 86000 рублей.
Проверим оставшиеся варианты
2·4000 + 33·2000 = 74000 рублей
5·4000 + 28·2000 = 76000 рублей
11·4000 + 18·2000 = 74000 рублей
2·4000 + 33·2000 = 80000 рублей
14·4000 + 15·2000 = 86000 рублей
17·4000 + 8·2000 = 84000 рублей
Ответ: 86000 рублей
Реши самостоятельно:
Предприниматель купил здание и собирается открыть в нем отель. В отеле могут быть стандартные номера площадью 30 квадратных метров и номера «люкс» площадью 40 квадратных метров. Общая площадь, которую можно отвести под номера, составляет 940 квадратных метров. Предприниматель может определить эту площадь между номерами различных типов, как хочет. Обычный номер будет приносить отелю 4000 рублей в сутки, а номер «люкс» — 5000 рублей в сутки. Какую наибольшую сумму денег сможет заработать в сутки на своем отеле предприниматель?
Предприниматель купил здание и собирается открыть в нем отель. В отеле могут быть стандартные номера площадью 21 квадратный метр и номера «люкс» площадью 49 м2. Общая площадь, которую можно отвести под номера, составляет 1099 м2. Предприниматель может поделить эту площадь между номерами различных типов, как хочет. Обычный номер будет приносить отелю 2000 рублей в сутки, а номер «люкс» — 4500 рублей в сутки. Какую наибольшую сумму денег сможет заработать в сутки на своем отеле предприниматель?
Предприниматель купил здание и собирается открыть в нём отель. В отеле могут быть стандартные номера площадью 27 квадратных метров и номера «люкс» площадью 45 квадратных метров. Общая площадь, которую можно отвести под номера, составляет 981 квадратный метр. Предприниматель может поделить эту площадь между номерами различных типов, как хочет. Обычный номер будет приносить отелю 2200 рублей в сутки, а номер «люкс» — 4000 рублей в сутки. Какую наибольшую сумму денег сможет заработать в сутки на своём отеле предприниматель?
Производство некоторого товара облагалось налогом в размере t0 руб. за ед. товара. Государство увеличило налог в 2.5 раза (t1= 2.5t0), но сумма налоговых поступлений не изменилась. На сколько процентов государству следует изменить налог, чтобы добиться максимальных налоговых сборов. если известно, что при налоге равном t руб. за ед. товара, объем производства товара составляет 9000 – 2t ед., если это число положительно, и 0 единиц?
Решение:
Обозначим Q(t) = 9000- 2t единиц товара, Q(t)- объем производства. Тогда налоговые сборы составляют S(t) = Q ·t, S(t) = (9000 — 2t)·t = 9000t – 2t2 руб. Рассмотрим функцию S(t) = 9000t – 2t2. Это квадратичная функция, графиком является парабола, ветви которой направлены вниз. Максимального значения эта функция достигает в вершине параболы. t = t = = 2250, 2250 руб. за единицу товара. При t= t0 налоговые сборы составляют 9000t0 – 2t02 руб. При t= 2,5t0 налоговые сборы составляют 9000·2,5t0 – 2·(2,5t0)2 = 22505t0 – 12,5t02 руб. Так как сумма налоговых поступлений не изменилась, то 9000t0 – 2t02 = 22505t0 – 12,5t02 / : t0 0 получим 9000 – 2t0 = 22505 – 12,5t0 , 10,5 t0 = 13500, t0 = 13500: 10,5 = , значит за единицу товара был налог руб., а стал руб. Теперь этот налог надо уменьшить на r%, чтобы налог стал равным 22500 руб. за единицу товара.
Значит государству необходимо на 30% уменьшить налог, чтобы добиться максимальных налоговых сборов.
Ответ: уменьшить на 30%
Решить самостоятельно
Производство некоторого товара облагалось налогом в размере t0 руб. за ед. товара. Государство увеличило налог в 2.5 раза (t1= 2.5t0),но сумма налоговых поступлений не изменилась. На сколько процентов государству следует изменить налог, чтобы добиться максимальных налоговых сборов. если известно, что при налоге равном t руб. за ед. товара, объем производства товара составляет 7000–2t ед., если это число положительно, и 0 единиц?
Производство некоторого товара облагалось налогом в размере t0 рублей за единицу товара. После того как государство, стремясь нарастить сумму налоговых поступлений, увеличило налог вдвое (до 2t0 рублей за единицу товара), сумма налоговых поступлений не изменилась. На сколько процентов государству следует изменить налог после такого увеличения, чтобы добиться максимальных налоговых поступлений, если известно, что при налоге, равном t рублей за единицу товара, объём производства составляет 10 000 – 2t единиц и это число положительно?
lll. 1. В начале 2001 года Алексей приобрел ценную бумагу за 11 000 рублей. В конце каждого года цена бумаги возрастает на 4 000 рублей. В начале любого года Алексей может продать бумагу и положить вырученные деньги на банковский счет. Каждый год сумма на счете будет увеличиваться на 10%. В начале каждого года Алексей должен продать ценную бумагу, чтобы через 15 лет после покупки этой бумаги сумма на счете была наибольшей?
Решение:
Используем арифметическую прогрессию, в которой а1=11000 — цена за бумагу в первый год покупки году, d=4000 — увеличение стоимости бумаги, аn — пока еще неизвестный нам год продажи бумаги (по счету от года покупки), n — номер года.
Формула n-ого члена арифметической прогрессии: an=a1+d(n-1).
Используя ее находим числа, отвечающие за стоимость бумаги на начало n-го года (по счету от года покупки).
Каждый год сумма на счете будет увеличиваться на 10% = 0,1 от данной суммы, и эти 10% должны быть больше или равны 4000.
Составим неравенство: 0,1·(a1+d(n-1)) ≥ 4000.
Подставим а1=11000, d=4000 и решим неравенство:
0,1·(11000+4000(n-1)) ≥ 4000 обе части неравенства умножим на 10, чтобы избавится от десятичной дроби, получим
11000+4000(n — 1) ≥ 40000;
11000+4000n — 4000 ≥ 40000;
4000n ≥ 33000;
n ≥ 8,25, n ∈Ν ⇒ n=8
через 8 лет надо продать бумагу, т.е. в 2001+8=2009 году
Или рассуждаем так: на восьмом году (т.е. в 2008) 10% от стоимости будет больше 4000, значит бумагу надо продать в следующем (т.е. 2009)).
Ответ: 2009 год.
Другое решение этой задачи.
Чтобы извлечь наибольшую прибыль, Алексей должен воспользоваться банковским депозитом, когда 10% от суммы, вырученной за ценную бумагу, превысит 4000 руб. Найдем значение суммы, от которой 10% будут равны 4000, получим: х·0,1 = 4000
х = 4000: 0,1 = 40000
То есть ценную бумагу в 11000 рублей нужно довести до суммы большей или равной 40000 рублей и полученную сумму положить в банк. Ценная бумага дойдет до этого уровня через 40000 – 11000 = 4000·n
n = 29000: 4000 = 7,25 n ∈Ν ⇒ n=8
то есть через 8 лет, и в начале 2009-го года полученную сумму нужно положить на банковский депозит.
Ответ: 2009.
Реши самостоятельно:
В начале 2001 года Алексей приобрел ценную бумагу за 7000 рублей. В конце каждого года цена бумаги возрастает на 2000 рублей. В начале любого года Алексей может продать бумагу и положить вырученные деньги на банковский счет. Каждый год сумма на счет будет увеличиваться на 10%. В начале какого года Алексей должен продать ценную бумагу, чтобы через пятнадцать лет после покупки этой бумаги сумма на банковском счете была наибольшей?
В начале 2001 года Алексей приобрел ценную бумагу за 19000руб. В конце каждого года цена бумаги возрастает на 3000 руб. В начале любого года Алексей может продать бумагу и положить вырученные деньги на банковский счет. Каждый год сумма на счете будет увеличиваться на 10%. В начале какого года Алексей должен продать ценную бумагу, чтобы через пятнадцать лет после покупки этой бумаги сумма на банковском счете была наибольшей?
Решение экономических задач: банки, проценты, кредиты.
1. Аннуитетный платеж – представляет собой равные ежемесячные платежи, растянутые на весь срок кредитования. В сумму платежа включены: часть ссудной задолженности и начисленный процент. При этом, в первые месяцы (или годы) кредита большую часть транша составляют проценты, а меньшую – погашаемая часть основного долга. Ближе к концу кредитования пропорция меняется: большая часть транша идет на погашение «тела» кредита, меньшая – на проценты. При этом общий размер платежа всегда остается одинаковым.
Задачи на кредит с аннуитетным платежом
1 января 2015 года Александр Сергеевич взял в банке 1,1 млн. рублей в кредит. Схема выплаты кредита следующая – 1-го числа каждого следующего месяца банк начисляет 1% на оставшуюся сумму долга (то есть увеличивает долг на 1%), затем Александр Сергеевич переводит в банк платёж. На какое минимальное количество месяцев Александр Сергеевич может взять кредит, чтобы ежемесячные выплаты были не более 275 тыс. рублей?
Решение:
№ месяца |
Остаток после начисления процентов и платежа |
0 |
1100000руб. |
1 |
1100000 ·1,02 – 275000 = 836000 руб. |
2 |
836000 ·1,02 – 275000 = 569360 руб. |
3 |
569360 ·1,02 – 275000 = 300053,6 руб. |
4 |
300053,6·1,02 – 275000 = 28054,13 руб. |
5 |
28054,13 ·1,02 = 28334,67 — 28334,67 = 0 |
Ответ: 5 месяцев
Реши самостоятельно:
1 января 2015 года Иван Сергеевич взял в банке 1 млн. рублей в кредит. Схема выплаты кредита следующая: 1-го числа каждого следующего месяца банк начисляет 2% на оставшуюся сумму долга (то есть увеличивает долг на 2%), затем Иван Сергеевич переводит в банк платёж. На какое минимальное количество месяцев Иван Сергеевич может взять кредит, чтобы ежемесячные выплаты были не более 200 тыс. рублей.
1 января 2015 года Андрей Владимирович взял в банке 1,1 млн. рублей в кредит. Схема выплаты кредита следующая: 1 числа каждого следующего месяца банк начисляет 3 процента на оставшуюся сумму долга (то есть увеличивает долг на 3%), затем Андрей Владимирович переводит в банк платёж. На какое минимальное количество месяцев Андрей Владимирович может взять кредит, чтобы ежемесячные выплаты были не более 220 тыс. рублей?
1 января 2019 года Павел Васильевич взял в банке 1 млн. рублей в кредит. Схема выплаты кредита следующая: 1 числа каждого следующего месяца банк начисляет 1 процент на оставшуюся сумму долга (то есть увеличивает долг на 1%), затем Павел Васильевич переводит в банк платёж. На какое минимальное количество месяцев Павел Васильевич может взять кредит, чтобы ежемесячные выплаты были не более 125 тыс. рублей?
1 января 2018 года Тимофей Ильич взял в банке 1,1 млн. рублей в кредит. Схема выплаты кредита следующая — 1 числа каждого следующего месяца банк начисляет 2 процента на оставшуюся сумму долга (то есть увеличивает долг на 2%), затем Тимофей Ильич переводит в банк платёж. На какое минимальное количество месяцев Тимофей Ильич может взять кредит, чтобы ежемесячные выплаты были не более 220 тыс. рублей?
IV.1. 31 декабря 2014 года Алексей взял в банке 9282000 рублей в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%) затем Алексей переводит в банк X рублей. Какой должна быть сумма X, чтобы Алексей выплатил долг четырьмя равными платежами (то есть за 4 года)?
Решение:
Пусть S = 9282000 рублей размер взятого в банке кредита. 31 декабря каждого года размер кредита увеличился на 10%, а затем, Алексей переводит в банк X рублей, т.е. остаток через четыре года будет равен нулю.
год |
дата |
долг |
0 |
31 декабря 2014 |
S = 9282000 рублей |
31 декабря 2015 |
1,1S |
|
1 |
1 января 2016 |
1,1S — х |
31 декабря 2016 |
(1,1S – х)1,1 |
|
2 |
1 января 2017 |
1,12 S – 1,1х -х |
31 декабря 2017 |
(1,12 S – 1,1х –х)1,1 |
|
3 |
1 января 2018 |
(1,12 S – 1,1х –х)1,1 — х |
31 декабря 2018 |
((1,12 S – 1,1х –х)1,1 – х)1,1 |
|
4 |
1 января 2019 |
((1,12 S – 1,1х –х)1,1 – х)1,1 — х |
Решим уравнение: ((1,12 S – 1,1х –х)1,1 – х)1,1 – х = 0
1,14 S – 1,13 х — 1,12 х — 1,1х –х = 0
Х =
Х =
Х = 2928200
Ответ: 2928200.
31 декабря 2018 года Роман взял в банке 8599000 рублей в кредит под 14% годовых. Схема выплаты кредита следующая – 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга(то есть увеличивает долг на 14%), затем Роман переводит в банк Х рублей. Какой должна быть сумма Х, чтобы Роман выплатил долг тремя равными платежами (то есть за 3 года)?
31 декабря 2019 года Виктор взял в банке 3276000 рублей в кредит под 20 % годовых. Схема выплаты кредита следующая – 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 20 %), затем Виктор переводит в банк Х рублей. Какой должна быть сумма Х, чтобы Виктор выплатил долг тремя равными платежами (то есть за 3 года)?
31 декабря 2020 года Георгий взял в банке 2648000 рублей в кредит под 10 % годовых. Схема выплаты кредита следующая – 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10 %), затем Георгий переводит в банк Х рублей. Какой должна быть сумма Х, чтобы Георгий выплатил долг тремя равными платежами (то есть за 3 года)?
IV.2. В августе 2020 года взяли кредит. Условия возврата таковы:
— каждый январь долг увеличивается на r %;
— с февраля по июль необходимо выплатить часть долга. Кредит можно выплатить за три года равными платежами по 56 595 рублей, или за два года равными платежами по 81 095 рублей. Найдите r.
Решение:
Пусть S рублей сумма кредита, ежегодные выплаты x руб., r % годовых,
к = 1 + r/100. Выплаты: b = 81095 руб., х = 56595 руб. По условию долг на июль меняется так:
год |
Долг (руб.) |
1 |
кS — b |
2 |
(кS – b)к — b |
Если долг выплачен двумя равными платежами b руб., то (кS – b)к – b = 0
к2 S – кb — b = 0; к2 S = (к + 1)b; S = ((к+1) b)/к2
Если долг выплачен тремя равными платежами х руб., то
год |
Долг (руб.) |
1 |
кS — х |
2 |
(кS – х)к — х |
3 |
((кS – х)к – х)к — х |
((кS – х)к – х)к – х = 0
к3 S – к2 х – кх — х = 0
S = ((к2 + к+1) х)/к3
Решим систему уравнений
=
(к+1)к b = х(к2 + к+1)
(к2 + к) b = х(к2 + к) + х
(к2 + к) b — х(к2 + к) – х = 0
(к2 + к)( b – х) –х = 0
(81095 – 56595) (к2 + к) – 56595 = 0
24500к2 + 24500к — 56595 = 0
100к2 + 100к – 231 = 0
D = 102400, к = 1,1 к = -21 не удовлетворяет условию
к = 1 + r/100, r = 10%
Ответ: 10
Реши самостоятельно:
31 декабря 2017 года Пётр взял в банке некоторую сумму в кредит под некоторый процент годовых. Схема выплаты кредита следующая — 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на а %), затем Пётр переводит очередной транш. Если он будет платить каждый год по 2 592 000 рублей, то выплатит долг за 4 года. Если по 4 392 000 рублей, то за 2 года. Под какой процент Пётр взял деньги в банке?
В августе 2017 года взяли кредит. Условия возврата таковы:
— каждый январь долг увеличивается на r %;
— с февраля по июль необходимо выплатить часть долга.
Кредит можно выплатить за три года равными платежами по 38 016 рублей, или за два года равными платежами по 52 416 рублей.
Найдите r.
В августе 2020 года взяли кредит. Условия возврата таковы: — каждый год долг увеличивается на r — процентов с февраля по июнь необходимо выплатить часть долга Кредит можно выплатить за 4 года равными платежами по 777600 руб. или за 2 года равными платежами по 1317600 руб. Найдите r.
В июле 2020 года планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:
— каждый январь долг увеличивается на r % по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга.
Если ежегодно выплачивать по 58 564 рубля, то кредит будет полностью погашен за 4 года, а если ежегодно выплачивать по 106 964 рубля, то кредит будет полностью погашен за 2 года. Найдите r.
2. Дифференцированный платеж – представляет собой неравные ежемесячные транши, пропорционально уменьшающиеся в течение срока кредитования. Наибольшие платежи – в первой четверти срока, наименьшие – в четвертой четверти. «Срединные» платежи обычно сравнимы с аннуитетом. Ежемесячно тело кредита уменьшается на равную долю, процент же насчитывается на остаток задолженности. Поэтому сумма транша меняется от выплаты к выплате. Если в задаче присутствуют слова «равными платежами» или «долг уменьшается на одну и ту же величину», то речь идет о дифференцированном платеже.
V. Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заёмщика возрастает на 25 % по сравнению с началом года. В конце 1-го и 2-го годов заёмщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 3-го и 4-го годов заёмщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заёмщика превысит 9 млн. рублей.
Решение:
Пусть S млн. рублей сумма первоначального кредита. В середине каждого года действия кредита долг возрастает на 25 %, x млн.рублей заёмщик выплачивает в конце 3-го и 4-го годов. В конце 1-го и 2-го годов заёмщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному.
1 год |
начало |
S млн. рублей |
2 год |
начало |
S млн. рублей |
середина |
S + 0,25 S = 1,25 S |
середина |
S + 0,25 S = 1,25 S |
||
конец |
1,25 S — 0,25 S = S |
конец |
1,25 S — 0,25 S = S |
В сумме за 2 года он погашает сумму 0,25S + 0,25S = 0,5S.
В последние два года (3-й и 4-й) сумма долга сначала возрастает в 1,25 раза, а затем, погашается равными долями в x млн.рублей.
3 год |
начало |
S млн. рублей |
4 год |
начало |
(1,25 S – х) млн. руб. |
середина |
S + 0,25 S = 1,25 S |
середина |
(1,25 S – х)1,25 |
||
конец |
1,25 S — х |
конец |
1,252 S — 1,25 х -х |
На конец 4-го года, сумма долга составляет 0 рублей. Отсюда получаем
1,252 S — 1,25 х –х = 0,
1,252 S — 2,25 х = 0, х = =
За 4 года сумма выплат составила 0,5S + 2х. По условию общая сумма выплат превышает 9 млн. рублей, то есть, 0,5S + 2>9, 4,5S + 12,5S > 81,
17S > 81, S > 4 . При минимальном целом значении S = 5 это неравенство выполняется, следовательно, размер кредита составил 5 млн. рублей.
Ответ: 5 000 000
Реши самостоятельно:
Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заемщика возрастает на 20% по сравнению с началом года. В конце 1-го и 2-го годов заемщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 3-го и 4-го годов заемщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заемщика превысит 10 млн. рублей.
Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заемщика возрастает на 25% по сравнению с началом года. В конце 1-го и 2-го годов заемщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 3-го и 4-го годов заемщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заемщика превысит 5 млн. рублей.
Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заемщика возрастает на 15% по сравнению с началом года. В конце 1-го и 2-го годов заемщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 3-го и 4-го годов заемщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заемщика превысит 7 млн. рублей.
Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заёмщика возрастает на 10 % по сравнению с началом года. По договоренности с банком в конце 1-го и 3 – го года заемщик выплачивает только проценты по кредиту, начисленные за соответствующий текущий год. В конце 2‐го и 4‐го годов заёмщик выплачивает одинаковые суммы, погашая к концу 4‐го года весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заёмщика превысит 100 млн. рублей.
Планируется выдать льготный кредит на целое число миллионов рублей на пять лет. В середине каждого года действия кредита долг заемщика возрастает на 10% по сравнению с началом года. В конце 1-го и 2-го и 3-го годов заемщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 4-го и 5-го годов заемщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наибольший размер кредита, при котором общая сумма выплат будет меньше 8 млн. рублей.
Решение банковских задач на нахождение суммы кредита
VI. В июле 2026 года планируется взять кредит в банке на три года в размере S млн. руб., где S — целое число. Условия его возврата таковы:
— каждый январь долг увеличивается на 25% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
-в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.
Месяц, год |
Июль 2026 |
Июль 2027 |
Июль 2028 |
Июль 2029 |
Долг (в млн. руб.) |
S |
0,8S |
0,5S |
0 |
Найдите наибольшее значение S, при котором каждая из выплат будет меньше 4 млн. рублей.
Решение:
Долг перед банком (в млн. рублей) на июль каждого года должен уменьшаться до нуля следующим образом: S; 0,8S; 0,5S; 0
По условию, в январе каждого года долг увеличивается на 25%, значит, долг в январе каждого года равен: 1,25S; 1,25∙0,8S; 1,25∙0,5S
Следовательно, выплаты с февраля по июнь каждого года составляют:
1,25S — 0,8S = 0,45S 1,25∙0,8S — 0,5S = 0,5S 1,25∙0,5S – 0 = 0,725S
По условию, каждая из выплат должна быть меньше 4 млн. рублей. Это будет верно, если максимальная из выплат меньше 4 млн.рублей, т. е.
0,725S< 4; S< 6,4 S = 6
Наибольшее целое решение этого неравенства – число 6. Значит, искомый размер кредита 6 млн. рублей.
Ответ: 6 млн. рублей.
Реши самостоятельно:
В июле 2026 года планируется взять кредит в банке на три года в размере S млн. руб., где S — целое число. Условия его возврата таковы:
— каждый январь долг увеличивается на 25% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
-в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.
Месяц, год |
Июль 2026 |
Июль 2027 |
Июль 2028 |
Июль 2029 |
Долг (в млн. руб.) |
S |
0,7S |
0,4S |
0 |
Найдите наименьшее значение S, при котором каждая из выплат будет больше 5 млн. рублей.
В июле 2020 года планируется взять кредит в банке на три года в размере S млн. руб., где S — целое число. Условия его возврата таковы:
— каждый январь долг увеличивается на 15% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
-в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.
Месяц, год |
Июль 2020 |
Июль 2021 |
Июль 2022 |
Июль 2023 |
Долг (в тыс. руб.) |
S |
0,7S |
0,4S |
0 |
Найдите наименьшее значение S, при котором каждая из выплат будет составлять целое число тысяч рублей.
В июле планируется взять кредит в банке в размере S тыс. рублей (S – натуральное число) сроком на 3 года. Условия возврата кредита таковы: ‐ каждый январь долг увеличивается на 22,5% по сравнению с концом предыдущего года; ‐ в июне каждого года необходимо выплатить одним платежом часть долга; ‐ в июле каждого года величина долга задается таблицей
Месяц, год |
2018 |
2019 |
2020 |
2021 |
Долг (в тыс. руб.) |
S |
0,7S |
0,4S |
0 |
Найдите наименьшее значение S, при котором каждая из выплат будет составлять целое число тысяч рублей.
В июле 2016 года планируется взять кредит в банке на четыре года в размере S млн. рублей, где S — целое число. Условия его возврата таковы:
— каждый январь долг увеличивается на 15% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить часть долга;
— в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.
Месяц, год |
Июль 2016 |
Июль 2017 |
Июль 2018 |
Июль 2019 |
Июль 2020 |
Долг (в млн. руб.) |
S |
0,8S |
0,5S |
0,1 S |
0 |
Найдите наибольшее значение S, при котором общая сумма выплат будет меньше 50 млн. рублей.
В июле 2016 года планируется взять кредит в банке на четыре года в размере S млн. рублей, где S — натуральное число. Условия его возврата таковы:
— каждый январь долг увеличивается на 25% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить часть долга;
— в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.
Месяц, год |
Июль 2016 |
Июль 2017 |
Июль 2018 |
Июль 2019 |
Июль 2020 |
Долг (в млн. руб.) |
S |
0,7S |
0,5S |
0,3 S |
0 |
Найдите наименьшее значение S, при котором общая сумма выплат будет составлять целое число миллионов рублей.
Решение банковских задач на нахождение суммы вклада
VII. 15-го января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Известно, что в течении первого года кредитования нужно вернуть банку 466,5 тыс. руб. Какую сумму планируется взять в кредит?
Решение:
Обозначим через Х размер кредита, взятого в банке. Во втором месяце долг увеличивается на 3% и, затем, осуществляется выплата так, чтобы долг уменьшался на одну и ту же величину, т.е. в первый раз выплата будет составлять , и сумма долга во втором месяце составит:
1,03х – () = х — = . Аналогично для следующего месяца, только долг теперь будет составлять получаем остаток долга в размере
1,03· – () = — = .
Вторая выплата будет равна:
Аналогично третья выплата:
Аналогично четвертая выплата: и т.п.
………………………………………………………..
12- тая выплата:
Сумма выплат за первые 12 месяцев составит:
… + 13) =
В скобках получилась арифметическая прогрессия сумму, которой находим по формуле =
= + = = .
По условию в течении первого года нужно выплатить 466,5 тыс. руб.
= 466,5 Х= Х= 600 тыс. руб. или это 600000 руб.
Ответ: 600000 руб.
Реши самостоятельно:
15-го января планируется взять кредит в банке на 20 месяца. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Известно, что за первые 10 месяцев нужно вернуть банку 1179 тыс. руб. Какую сумму планируется взять в кредит?
15-го января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Известно, что за последние 12 месяцев нужно вернуть банку 1597,5 тыс. руб. Какую сумму планируется взять в кредит?
15-го января планируется взять кредит в банке на 16 месяца. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 4% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Известно, что за первые 8 месяцев нужно вернуть банку 900 тыс. руб. Какую сумму планируется взять в кредит?
5-го января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Какую сумму следует взять в кредит, чтобы общая сумма выплат после полного его погашения равнялась 1 млн рублей?
5)15 января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.
Известно, что в течение второго года кредитования нужно вернуть банку 339 тыс. рублей. Какую сумму нужно вернуть банку в течение первого года кредитования?
VIII. 15-го января планируется взять кредит в банке на 26 месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1- го по 25 – й месяц долг должен быть на 40 тыс. руб. меньше долга на 15-е число предыдущего месяца.
— к 15 – му числу 26 – го месяца кредит должен быть полностью погашен.
Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1924 тыс. руб.
Решение:
Обозначим через S исходную сумму кредита. В течение первого месяца эта сумма возрастает на 3%, становится равной S+0,03S = 1,03 S. Выплату нужно сделать так, чтобы исходная сумма S уменьшилась на 40 тыс. рублей, то есть, нужно выплатить
0,03S+40 тыс. рублей.
Оставшаяся сумма S-40 в следующем месяце снова увеличивается на 3%, становится равной 1,03(S-40), и следует выплатить0,03(S-40) + 40 тыс. руб., Таким образом, в течении 25-ти месяцев, сумма выплат составит:
0,03S+40 + (0,03(S-40) + 40) + (0,03(S-2·40) + 40) + (0,03(S-2·40) + 40) +… + (0,03(S-24·40) + 40) = 0,03S·25 + 40·25 – 0,03·40·( 1 + 2 + 3 +… + 24) =
S24 = 1 + 2 + 3 +… + 24 = 24 = 25·12 = 300
= 0,75 S + 1000 – 360 =0,75 S + 640
В последний 26-й месяц выплачивается остаток 1,03(S -25·40) = 1,03(S – 1000)
В сумме за 26 месяцев имеем: 0,75 S + 640 +1,03(S – 1000). По условию общая сумма выплат после полного его погашения составит 1924 тыс. руб. Составим и решим уравнение: 0,75 S + 640 +1,03(S – 1000) = 1924
1,78 S = 1924 + 390
S = 2314/ 1,78
S = 1300 тыс.руб.
Ответ: 1300000 руб.
Реши самостоятельно:
15-го декабря планируется взять кредит в банке на 11 месяцев. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 10-й долг должен быть на 80 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— к 15-му числу 11-го месяца кредит должен быть полностью погашен.
Какой долг будет 15-го числа 10-го месяца, если общая сумма выплат после полного погашения кредита составит 1198 тысяч рублей?
15-го декабря планируется взять кредит в банке на сумму 300 тысяч рублей на 21 месяц. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;
— 15-го числа 20-го месяца долг составит 100 тысяч рублей;
— к 15-му числу 21-го месяца кредит должен быть полностью погашен.
Найдите общую сумму выплат после полного погашения кредита.
15-го декабря планируется взять кредит в банке на 21 месяц. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на 30 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— к 15-му числу 21-го месяца кредит должен быть полностью погашен.
Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1604 тысяч рублей?
Ответы:
1) 84 млн. руб., 2) 69 млн. руб., 3) 90 млн. руб., 4)53500 руб., 5) 2685000 руб.
1) 125000 руб., 2)104500 руб. 3)86600 рублей.
1) 2 2) 25
III. l. 1) 2008 2) 2005
1) 6 месяцев 2) 6 месяцев 3) 9 месяцев 4) 6 месяцев
IV.1. 1) 3703860 рублей 2) 155520 рублей 3) 1064800 рублей
IV.2. 1) 20% 2) 20% 3) 20% 4) 10%
1) 6 млн. руб., 2) 3 млн. руб., 3) 5 млн. руб., 4) 77 млн. руб.,
5 млн. руб.
VI. 1) 11млн.руб. 2) 200 тыс. руб. 3) 400 тыс. руб. 4) 36 млн.руб.
5) 8 млн.руб.
VII. 1) 1200000руб. 2) 3000000 руб. 3) 1200000руб. 4) 0,8 млн. руб.
5) 411000 руб.
VIII. 1) 200000 руб. 2) 384000 руб. 3) 1100000 руб.
Используемая литература:
Шестаков С.А. ЕГЭ 2017. Математика. Задачи с экономическим содержанием. Задачи 17(профильный уровень)/Под ред.И.В.Ященко.-М.:МЦНМЩ, 2017
30 тренировочных вариантов ЕГЭ под редакцией И. В. Ященко» – 2021.