Каталог заданий.
Применение производной к исследованию функций
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
На рисунке изображен график производной функции определенной на интервале Найдите промежутки возрастания функции В ответе укажите сумму целых точек, входящих в эти промежутки.
2
На рисунке изображен график функции y = f(x), определенной на интервале (−6; 8). Определите количество целых точек, в которых производная функции положительна.
3
На рисунке изображен график функции y = f(x), определенной на интервале (−2; 12). Найдите сумму точек экстремума функции f(x).
Источник: ЕГЭ по математике 29.06.2021. Резервная волна. Центр. Вариант 402
4
Источник: ЕГЭ по математике 07.06.2021. Основная волна. Подмосковье
5
На рисунке изображен график производной функции f(x), определенной на интервале (−8; 4). В какой точке отрезка [−7; −3] f(x) принимает наименьшее значение?
Источник: ЕГЭ по математике 07.06.2021. Основная волна. Санкт-Петербург
Пройти тестирование по этим заданиям
В 2022 году в вариантах ЕГЭ Профильного уровня появилась задание №10 по теме «Графики функций». Можно считать его подготовительным для освоения задач с параметрами.
Как формулируется задание 10 ЕГЭ по математике? По графику функции, который дается в условии, вам нужно определить неизвестные параметры в ее формуле. Возможно — найти значение функции в некоторой точке или координаты точки пересечения графиков функций.
Чтобы выполнить это задание, надо знать, как выглядят и какими свойствами обладают графики элементарных функций. Надо уметь читать графики, то есть получать из них необходимую информацию. Например, определять формулу функции по ее графику.
Вот необходимая теория для решения задания №10 ЕГЭ.
Что такое функция
Чтение графика функции
Четные и нечетные функции
Периодическая функция
Обратная функция
5 типов элементарных функций и их графики
Преобразование графиков функций
Построение графиков функций
Да, теоретического материала здесь много. Но он необходим — и для решения задания 10 ЕГЭ, и для понимания темы «Задачи с параметрами», а также для дальнейшего изучения математики на первом курсе вуза.
Рекомендации:
Запоминай, как выглядят графики основных элементарных функций. Замечай особенности графиков, чтобы не перепутать параболу с синусоидой : -)
Проверь себя: какие действия нужно сделать с формулой функции, чтобы сдвинуть ее график по горизонтали или по вертикали, растянуть, перевернуть?
Разбирая решения задач, обращай внимание на то, как мы ищем точки пересечения графиков или неизвестные переменные в формуле функции. Такие элементы оформления встречаются также в задачах с параметрами.
Задание 10 в формате ЕГЭ-2021
Линейная функция
Необходимая теория
1. На рисунке изображён график функции . Найдите значение , при котором
Решение:
Найдем, чему равны k и b. График функции проходит через точки (3; 4) и (-1; -3). Подставив по очереди координаты этих точек в уравнение прямой y = kx + b, получим систему:
Вычтем из первого уравнения второе:
Уравнение прямой имеет вид:
Найдем, при каком значение функции равно -13,5.
Ответ: -7.
2. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.
Решение:
Запишем формулы функций.
Одна из них проходит через точку (0; 1) и ее угловой коэффициент равен -1. Это линейная функция
Другая проходит через точки (-1; -1) и (-2; 4). Подставим по очереди координаты этих точек в формулу линейной функции
Вычтем из первого уравнения второе.
тогда
Прямая задается формулой:
Найдем абсциссу точки пересечения прямых. Эта точка лежит на обеих прямых, поэтому:
Ответ: -1,75.
3. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.
Решение:
Прямая, расположенная на рисунке ниже, задается формулой так как ее угловой коэффициент равен 1 и она проходит через точку (-3; -2).
Для прямой, расположенной выше, угловой коэффициент равен
Эта прямая проходит через точку (-2; 4), поэтому: эта прямая задается формулой
Для точки пересечения прямых:
Ответ: -12.
Квадратичная функция. Необходимая теория
4. На рисунке изображен график функции Найдите b.
Решение:
На рисунке — квадратичная парабола полученная из графика функции сдвигом на 1 вправо, то есть
Получим:
Ответ: -2.
5. На рисунке изображен график функции . Найдите с.
Решение:
На рисунке изображена парабола, ветви которой направлены вверх, значит, коэффициент при положительный. График сдвинут относительно графика функции на 1 единицу вправо вдоль оси Ох. Формула функции имеет вид .
Значит, с = 1.
Ответ: 1
6. На рисунке изображён график функции Найдите
Решение:
График функции проходит через точки с координатами (1; 1) и (-2; -2). Подставляя координаты этих точек в формулу функции, получим:
отсюда
Формула функции имеет вид:
Ответ: 31.
7. На рисунке изображены графики функций и которые пересекаются в точках А и В. Найдите абсциссу точки В.
Решение:
Найдем a, b и c в формуле функции . График этой функции пересекает ось ординат в точке (0; -3), поэтому
График функции проходит через точки (-1; -3) и (2; 3). Подставим по очереди координаты этих точек в формулу функции:
отсюда
Найдем абсциссу точки B. Для точек A и B:
(это абсцисса точки A) или (это абсцисса точки B).
Ответ: 6.
Степенные функции. Необходимая теория
8. На рисунке изображены графики функций и , которые пересекаются в точках А и В. Найдите абсциссу точки В.
Решение:
График функции проходит через точку (2; 1); значит,
График функции проходит через точки (2; 1) и (1; -4), — угловой коэффициент прямой; (находим как тангенс угла наклона прямой и положительному направлению оси X); тогда
Для точек A и B имеем:
Отсюда (абсцисса точки A) или (абсцисса точки B).
Ответ: -0,2.
9. На рисунке изображён график функции . Найдите f (6,76).
Решение:
Функция задана формулой:
Ее график проходит через точку (4; 5); значит,
Тогда
Ответ: 6,5.
10. На рисунке изображен график функции . Найдите .
Решение:
График функции на рисунке симметричен графику функции относительно оси Y. Он проходит через точку (-1; 1). Значит, формула изображенной на рисунке функции: , а = — 1. Тогда = 5.
Ответ: 5.
Показательная функция. Необходимая теория
11. На рисунке изображён график функции Найдите
Решение:
График функции проходит через точки (-3; 1) и (1; 4). Подставив по очереди координаты этих точек в формулу функции получим:
Поделим второе уравнение на первое:
Подставим во второе уравнение:
Ответ: 0,25.
12. На рисунке изображен график функции . Найдите
Решение:
График функции проходит через точку Это значит, что
формула функции имеет вид: .
Ответ: 2.
Логарифмическая функция. Необходимая теория
13. На рисунке изображён график функции Найдите
Решение:
График функции проходит через точки (-3; 1) и (-1; 2). Подставим по очереди эти точки в формулу функции.
Отсюда:
Вычтем из второго уравнения первое:
или — не подходит, так как (как основание логарифма).
Тогда
Ответ: 4.
14. На рисунке изображен график функции .
Найдите f(0,2).
Решение:
График логарифмической функции на рисунке проходит через точки и . Подставив по очереди координаты этих точек в формулу функции, получим систему уравнений:
Формула функции:
Найдем :
Ответ: -7.
Тригонометрические функции. Необходимая теория
15. На рисунке изображён график функции Найдите
Решение:
График функции сдвинут на 1,5 вверх; Значит, Амплитуда (наибольшее отклонение от среднего значения).
Это график функции Он получен из графика функции растяжением в 2 раза по вертикали и сдвигом вверх на .
Ответ:
16. На рисунке изображён график функции
Найдите .
Решение:
На рисунке — график функции Так как
График функции проходит через точку A Подставим и координаты точки А в формулу функции.
Так как получим:
Ответ: 2.
17. На рисунке изображен график периодической функции у = f(x). Найдите значение выражения
Решение:
Функция, график которой изображен на рисунке, не только периодическая, но и нечетная, и если то
Пользуясь периодичностью функции , период которой T = 4, получим:
Ответ: 5.
Друзья, мы надеемся, что на уроках математики в школе вы решаете такие задачи. Для углубленного изучения темы «Функции и графики» (задание 10 ЕГЭ по математике), а также задач с параметрами и других тем ЕГЭ — рекомендуем Онлайн-курс для подготовки к ЕГЭ на 100 баллов.
Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Задание 10 ЕГЭ по математике. Графики функций» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
09.03.2023
- ЕГЭ по математике профиль
Новые задания №9 ЕГЭ 2022 по профильной математике — графики функций.
Для успешного результата необходимо уметь выполнять действия с функциями.
Задание №9 ЕГЭ 2022 математика профильный уровень Прототипы
Скачать задания | Источник |
Новые задания 9 | ФИПИ |
Прототипы задания №9 | vk.com/mathegeexam |
Скачать задания | vk.com/ekaterina_chekmareva |
→ Теория → Задачи → Шпаргалка |
vk.com/abel_mat |
Линейная функция | math100.ru |
Парабола | |
Гипербола | |
Логарифмическая и показательная функции | |
Иррациональные функции | |
Тригонометрические функции |
Из кодификатора 2022 года для выполнения 9 задания нужно изучить основные элементарные функции, их свойства и графики:
3.3.1 Линейная функция, её график
3.3.2 Функция, описывающая обратную пропорциональную зависимость, её график
3.3.3 Квадратичная функция, её график
3.3.4 Степенная функция с натуральным показателем, её график
3.3.5 Тригонометрические функции, их графики
3.3.6 Показательная функция, её график
3.3.7 Логарифмическая функция, её график
Уметь выполнять действия с функциями: определять значение функции по значению аргумента при различных способах задания функции; описывать по графику поведение и свойства функции, находить по графику функции наибольшее и наименьшее значения; строить графики изученных функций:
При отработке данного задания будут полезны книги:
Купить ЕГЭ. Математика. Графики функций, уравнения и неравенства, содержащие переменную под знаком модуля
Купить Задачи с параметрами. Применение свойств функций, преобразование неравенств
Связанные страницы:
Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи в разделе контакты
В ЕГЭ 2022 года добавили новую задачу на графики функций. Для решения этой задачи нужно сначала определить формулу функции, а затем вычислить ответ на вопрос задачи. И если вычисление ответа по известной формуле обычно не составляет труда, то вот определение самой формулы часто ставит школьников в тупик. Поэтому мы разберем три разных подхода к этому вопросу.
Замечание. Про то как определяется формула у прямой и параболы я написала в этой и этой статьях. Поэтому здесь в примерах я буду использовать другие функции – дробные, иррациональные, показательные и логарифмические, но все три описанных здесь способа работают и для линейных, и для квадратичных функций в том числе.
1 способ – находим формулу по точкам
Этот способ подходит вообще для любой девятой задачи, но занимает достаточно много времени и требует хорошего навыка решения систем уравнений.
Давайте разберем алгоритм на примере конкретной 9-ой задачи ЕГЭ:
Алгоритм:
1. Находим 2 точки с целыми координатами. Обычно они выделены жирно, но если это не так, то не проблема найти их самому.
Пример:
2. Подставляем эти координаты в «полуфабрикат» функции. Вместо (f(x))– координату игрек, вместо (x) – икс. Получается система.
3. Решаем эту систему и получаем готовую формулу.
4. Готово, функция найдена, можно переходить ко второму этапу – вычислению (f(-8)). Если вы вдруг не знаете, что это значит – в конце статьи я рассматриваю этот момент более подробно.
Давайте посмотрим метод еще раз на примере с логарифмической функцией.
Пример:
2 способ – преобразование графиков функций
Этот способ сильно быстрее первого, но требует больше знаний. Для использования преобразований функций нужно знать, как выглядят функции без изменения и как преобразования их меняют. Наиболее удобно использовать этот способ для иррациональной функции ((y=sqrt{x}) ) и функции обратной пропорциональности ((y=frac{1}{x})).
Вот как выглядит применение этого способа:
Для использования этого способа надо знать, как выглядят изначальные функции:
И понимать, как меняются функции от преобразований:
Часто даже по «полуфабрикату» функции понятно, какие преобразования сделали с функцией:
Пример:
3 способ – гибридный
Идеально подходит для логарифмических и показательных функций, так как обычно у таких функций неизвестно основание и с помощью преобразований его не найти. С другой стороны, независимо от оснований любая показательная функция должна проходить через точку ((0;1)), а любая логарифмическая — через точку ((1;0)).
По смещению этих точек легко понять, как именно двигали функцию, но только если ее не растягивали, а лишь перемещали вверх-вниз, влево-вправо (как обычно и бывает в задачах на ЕГЭ).
Основание же лучше находить уже следующим действием, используя подстановку координат точки в «полуфабрикат» функции.
Как отвечать на вопросы в задаче, когда уже определили функцию
— Если просят найти (f)(любое число), то нужно это число подставить в готовую функцию вместо икса.
Пример:
— Если просят найти «при каком значении x значение функции равно *любому числу*», то надо решить уравнение, в одной части которого будет функция, а в другой — то самое число. Аналогично надо поступить, если просят «найти корень уравнения (f(x)=) *любое число*».
Пример:
— Если просят найти абсциссу точки пересечения – надо приравнять 2 функции и решить получившееся уравнение. Корень уравнения и будет искомой абсциссой. Аналогично надо делать в задачах, где даны две точки пересечения (A)(*любое число*;*другое число*) и (B(x_0;y_0)) и просят найти (x_0).
Пример:
— Если просят найти ординату точки пересечения – надо приравнять 2 функции, найти иксы и подставить подходящий икс в любую функцию. Точно также решаем если просят найти (y_0) точки пересечения двух функций.
Пример:
— Иногда просят найти просто какой-либо из коэффициентов функции. Тогда надо просто восстановить функцию и записать в ответ то, о чем спросили:
Пример:
💡 Если Вы — учитель математики, то Вы можете создавать готовые карточки для учеников с индивидуальными заданиями и с ответами для отработки заданий на графики функций. Данные задачи доступны в Конструкторе бесплатно.
3. На рисунке изображён график функции y=3x^2+bx+c . Найдите f(6) . [Ответ: 10] |
Смотреть видеоразбор похожего >> |
4. На рисунке изображён график функции y=ax^2+12x+c . Найдите f(7) . [Ответ: -74] |
Смотреть видеоразбор похожего >> |
5. На рисунке изображён график функции y=ax^2+bx+12 . Найдите f(-7) . [Ответ: 19] |
Смотреть видеоразбор похожего >> |
6. На рисунке изображён график функции y=ax^2+bx+c . Найдите f(1) . [Ответ: 49] |
Смотреть видеоразбор похожего >> |
7. На рисунке изображён график функции y=ax^2+bx+c , где числа a , b и c — целые. Найдите f(-5) . [Ответ: -29] |
Смотреть видеоразбор похожего >> |
8. На рисунке изображён график функции f(x)=frac{k}{x}+a . Найдите f(0.1) . [Ответ: -17] |
Смотреть видеоразбор похожего >> |
9. На рисунке изображён график функции f(x)=frac{k}{x}+a . Найдите, при каком значении x значение функции равно -4.4 . [Ответ: -12.5] |
Смотреть видеоразбор похожего >> |
10. На рисунке изображён график функции f(x)=frac{k}{x+a} . Найдите f(-3.5) . [Ответ: 6] |
Смотреть видеоразбор похожего >> |
11. На рисунке изображён график функции f(x)=frac{k}{x+a} . Найдите значение x , при котором f(x) = 10 . [Ответ: 0.6] |
Смотреть видеоразбор похожего >> |
12. На рисунке изображён график функции f(x)=frac{kx+a}{x+b} . Найдите k . [Ответ: 1] |
Смотреть видеоразбор похожего >> |
13. На рисунке изображён график функции f(x)=frac{kx+a}{x+b} . Найдите a . [Ответ: 2] |
Смотреть видеоразбор похожего >> |
14. На рисунке изображён график функции f(x)=b+log_ax . Найдите f(frac{1}{9}) . [Ответ: 3] |
Смотреть видеоразбор похожего >> |
15. На рисунке изображён график функции f(x)=b+log_ax . Найдите значение x , при котором f(x)=-11 . [Ответ: 64] |
Смотреть видеоразбор похожего >> |
16. На рисунке изображён график функции f(x)=log_a(x+b) . Найдите f(26) . [Ответ: -2] |
Смотреть видеоразбор похожего >> |
17. На рисунке изображён график функции f(x)=log_a(x+b) . Найдите значение x , при котором f(x)=4 . [Ответ: 82] |
Смотреть видеоразбор похожего >> |
18. На рисунке изображён график функции f(x) = a^x+b . Найдите f(-2) . [Ответ: 22] |
Смотреть видеоразбор похожего >> |
19. На рисунке изображён график функции f(x) = a^x+b . Найдите значение x , при котором f(x) = 77 . [Ответ: -4] |
Смотреть видеоразбор похожего >> |
20. На рисунке изображён график функции f(x) = a^{x+b} . Найдите f(4) . [Ответ: 9] |
Смотреть видеоразбор похожего >> |
21. На рисунке изображён график функции f(x) = a^{x+b} . Найдите значение x , при котором f(x) = 64 . [Ответ: 8] |
Смотреть видеоразбор похожего >> |
22. На рисунке изображён график функции f(x) = ksqrt{x} . Найдите f(8.41) . [Ответ: 8.7] |
Смотреть видеоразбор похожего >> |
23. На рисунке изображён график функции f(x) = ksqrt{x} . Найдите значение x , при котором f(x)=-6.75 . [Ответ: 7.29] |
Смотреть видеоразбор похожего >> |
24. На рисунке изображены графики функций f(x)=-4x+22 и g(x)=ax^2+bx+c , которые пересекаются в точках A и B. Найдите абсциссу точки B. [Ответ: 9] |
Смотреть видеоразбор похожего >> |
25. На рисунке изображены графики функций f(x)=-6x-28 и g(x)=ax^2+bx+c , которые пересекаются в точках A и B. Найдите ординату точки B. [Ответ: 38] |
Смотреть видеоразбор похожего >> |
26. На рисунке изображены графики функций f(x)=frac{k}{x} и g(x)=ax+b , которые пересекаются в точках A и B. Найдите абсциссу точки B. [Ответ: 0.2] |
Смотреть видеоразбор похожего >> |
27. На рисунке изображены графики функций f(x)=frac{k}{x} и g(x)=ax+b , которые пересекаются в точках A и B. Найдите ординату точки B. [Ответ: 20] |
Смотреть видеоразбор похожего >> |
28. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков. [Ответ: -2.08] |
Смотреть видеоразбор похожего >> |
29. На рисунке изображены графики двух линейных функций. Найдите ординату точки пересечения графиков. [Ответ: -2.4] |
Смотреть видеоразбор похожего >> |
30. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков. [Ответ: -11.3] |
Смотреть видеоразбор похожего >> |
31. На рисунке изображены графики двух линейных функций. Найдите ординату точки пересечения графиков. [Ответ: 6.8] |
Смотреть видеоразбор похожего >> |
32. На рисунке изображены графики функций f(x) = 2x^2+16x+30 и g(x) = ax^2+bx+c , которые пересекаются в точках A и B. Найдите абсциссу точки B. [Ответ: -9] |
Смотреть видеоразбор похожего >> |
33. На рисунке изображены графики функций f(x) = -2x^2-3x+1 и g(x) = ax^2+bx+c , которые пересекаются в точках A и B. Найдите ординату точки B. [Ответ: -13] |
Смотреть видеоразбор похожего >> |
34. На рисунке изображены графики функций f(x)=asqrt{x} и g(x)=kx+b , которые пересекаются в точке A. Найдите абсциссу точки A. [Ответ: 3.24] |
Смотреть видеоразбор похожего >> |
35. На рисунке изображены графики функций f(x)=asqrt{x} и g(x)=kx+b , которые пересекаются в точке A. Найдите ординату точки A. [Ответ: 9] |
Смотреть видеоразбор похожего >> |
36. На рисунке изображён график функции f(x) = asin{x}+b . Найдите a . [Ответ: 2] |
Смотреть видеоразбор похожего >> |
37. На рисунке изображён график функции f(x) = asin{x}+b . Найдите b . [Ответ: 1,5] |
Смотреть видеоразбор похожего >> |
38. На рисунке изображён график функции f(x) = acos{x}+b . Найдите a . [Ответ: 1,5] |
Смотреть видеоразбор похожего >> |
39. На рисунке изображён график функции f(x) = acos{x}+b . Найдите b . [Ответ: −1] |
Смотреть видеоразбор похожего >> |
40. На рисунке изображён график функции f(x) = a;tg{x}+b . Найдите a . [Ответ: 2] |
Смотреть видеоразбор похожего >> |
41. На рисунке изображён график функции f(x) = a;tg{x}+b . Найдите b . [Ответ: −1,5] |
Смотреть видеоразбор похожего >> |
Графики функций
В задании №13 ЕГЭ по математике базового уровня придется продемонстрировать умения и знания одного из понятий поведения функции: производных в точке или скоростей возрастания или убывания. Теория к этому заданию будет добавлена чуть позже, но это не помешает нам подробно разобрать несколько типовых вариантов.
Разбор типовых вариантов заданий №14 ЕГЭ по математике базового уровня
Вариант 14МБ1
[su_note note_color=”#defae6″]
На графике изображена зависимость температуры от времени в процессе разогрева двигателя легкового автомобиля. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя; на вертикальной оси – температура двигателя в градусах Цельсия.
Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику процесса разогрева двигателя на этом интервале.
ИНТЕРВАЛЫ ВРЕМЕНИ:
А) 0 – 1 мин. Б) 1 – 3 мин. В) 3 – 6 мин. Г) 8 – 10 мин. |
ХАРАКТЕРИСТИКИ:
|
В таблице под каждой буквой укажите соответствующий номер.
[/su_note]
Алгоритм выполнения:
- Выбрать интервал времени, на котором температура падала.
- Приложить линейку к 30°С и определить интервал времени, на котором температура была ниже 30°С.
- С помощью карандаша и линейки найдем на каком интервале времени температура находилась в пределах от 40°С до 80°С.
- Методом исключения выберем недостающий вариант ответа.
Решение:
Выберем интервал времени, на котором температура падала. Этот участок видно не вооруженным глазом, он начинается в 8 мин от момента запуска двигателя.
Г – 2
Приложим линейку к 30°С и определить интервал времени, на котором температура была ниже 30°С.
Ниже линейки окажется участок, соответствующий интервалу времени 0 – 1 мин.
А – 4
С помощью карандаша и линейки найдем на каком интервале времени температура находилась в пределах от 40°С до 80°С.
Опустим из точек, соответствующих 40°С и 80°С перпендикуляры на график, а из полученных точек опустим перпендикуляры на ось времени.
Видим, что этому температурному интервалу соответствует интервал времени 3 – 6,5 мин. То есть из приведенных в условии 3 – 6 мин.
В – 3
Методом исключения выберем недостающий вариант ответа.
Б – 1
Ответ:
А – 4
Б – 1
В – 3
Г – 2
Вариант 14МБ2
[su_note note_color=”#defae6″]
Установите соответствие между графиками функций и графиками их производных.
[/su_note]
Алгоритм выполнения для каждой из функций:
- Определить промежутки возрастания и убывания функций.
- Определить точки максимума и точки минимума функций.
- Сделать выводы, поставить в соответствие предложенные графики.
Решение:
Проанализируем график функции А. Если Функция возрастает, то производная положительна и наоборот. Производная функции равна нулю в точках экстремума.
Точка экстремума – это точка, в которой достигается максимальное или минимальное значение функции.
Сначала функция А возрастает, т.е. производная положительна. Этому соответствуют графики производных 2 и 3. В точке максимума функции x=-2, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 3.
А – 3
Проанализируем график функции Б.
Сначала функция Б убывает, т.е. производная отрицательна. Этому соответствуют графики производных 1 и 4. Точка максимума функции x=-2, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 4.
Б – 4
Проанализируем график функции В.
Сначала функция В возрастает, т.е. производная положительна. Этому соответствуют графики производных 2 и 3. Точка максимума функции x = 1, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 2.
В – 2
Методом исключения можем определить, что графику функции Г соответствует график производной под номером 1.
Г – 1
А – 3
Б – 4
В – 2
Г – 1
Ответ: 3421.
Вариант 14МБ3
[su_note note_color=”#defae6″]
Установите соответствие между графиками функций и графиками их производных.
[/su_note]
Алгоритм выполнения для каждой из функций:
- Определить промежутки возрастания и убывания функций.
- Определить точки максимума и точки минимума функций.
- Сделать выводы, поставить в соответствие предложенные графики.
Решение:
Проанализируем график функции А.
Если функция возрастает, то производная положительна и наоборот. Производная функции равна нулю в точках экстремума.
Точка экстремума – это точка, в которой достигается максимальное или минимальное значение функции.
Сначала функция А возрастает, т.е. производная положительна. Этому соответствуют графики производных 3 и 4. В точке максимума функции x=0, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 4.
А – 4
Проанализируем график функции Б.
Сначала функция Б убывает, т.е. производная отрицательна. Этому соответствуют графики производных 1 и 2. Точка минимума функции x=-1, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 2.
Б – 2
Проанализируем график функции В.
Сначала функция В убывает, т.е. производная отрицательна. Этому соответствуют графики производных 1 и 2. Точка минимума функции x = 0, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 1.
В – 1
Методом исключения можем определить, что графику функции Г соответствует график производной под номером 3.
Г – 3
А – 4
Б – 2
В – 1
Г – 3
Ответ: 4213.
Вариант 14МБ4
[su_note note_color=”#defae6″]
На рисунке изображен график функции и касательные, проведённые к нему в точках с абсциссами А, В, С и D. В правом столбце указаны значения производной в точках А, В, С и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.
ТОЧКИ
А
В
С
D
ЗНАЧЕНИЯ ПРОИЗВОДНОЙ
1) –4
2) 3
3) 2/3
4) -1/2
[/su_note]
Вспомним, что означает производная, а именно ее значение в точке – значение функции производной в точке равно тангенсу угла наклона (коэффициенту) касательной.
В ответах у нас есть два положительных, и два отрицательных варианта. Как мы помним, если коэффициент прямой (графика y = kx+ b) положительный – то прямая возрастает, если же он отрицательный – то прямая убывает.
Возрастающих прямых у нас две – в точке A и D. Теперь вспомним, что же означает значение коэффициента k?
Коэффициент k показывает, насколько быстро возрастает или убывает функция (на самом деле коэффициент k сам является производной функции y = kx+ b).
Поэтому k = 2/3 соответствует более пологой прямой – D, а k = 3 – A.
Аналогично и в случае с отрицательными значениями: точке B соответствует более крутая прямая с k = – 4, а точке С – -1/2.
Вариант 14МБ5
[su_note note_color=”#defae6″]
На рисунке точками показаны объемы месячных продаж обогревателей в магазине бытовой техники. По горизонтали указываются месяцы, по вертикали – количество проданных обогревателей. Для наглядности точки соединены линией.
Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику продаж обогревателей.
[/su_note]
Алгоритм выполнения
Анализируем части графика, соответствующие разным временам года. Формулируем ситуации, отображенные на графике. Находим для них наиболее подходящие варианты ответов.
Решение:
Зимой кол-во продаж превысило 120 шт./мес., причем оно все время увеличивалось. Эта ситуация соответствует варианту ответа №3. Т.е. получаем: А–3.
Весной продажи постепенно упали со 120 обогревателей за месяц до 50. Наиболее приближенным к этой формулировке является вариант №2. Имеем: Б–2.
Летом кол-во продаж не менялась и была минимальной. 2-я часть этой формулировки не отражена в ответах, а для первой подходит только №4. Отсюда имеем: В–4.
Осенью продажи росли, однако их кол-во ни в одном из месяцев не превысило 100 штук. Эта ситуация описана в варианте №1. Получаем: Г–1.
Вариант 14МБ6
[su_note note_color=”#defae6″]
На графике изображена зависимость скорости движения рейсового автобуса от времени. На вертикальной оси отмечена скорость автобуса в км/ч, на горизонтальной – время в минутах, прошедшее с начала движения автобуса.
Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику движения автобуса на этом интервале.
[/su_note]
Алгоритм выполнения
- Определяем цену деления на горизонтальной и на вертикальной шкале.
- Анализируем по очереди предложенные утверждения 1–4 из правой колонки («Характеристики»). Сопоставляем их с временными интервалами из левой колонки таблицы, находим пары «буква–число» для ответа.
Решение:
Цена деления горизонтальной шкалы составляет 1 с, вертикальной – 20 км/ч.
Далее анализируем характеристики, данные в правой колонке таблицы.
- Когда автобус делает остановку, его скорость равна 0. Нулевую скорость в течение 2 минут подряд автобус имел только с 9-й по 11-ю минуту. Это время попадает в интервал 8–12 мин. Значит, имеем пару для ответа: Б–1.
- Скорость 20 км/ч и больше автобус имел в течение нескольких временных промежутков. Причем вариант А здесь не подходит, т.к., к примеру, на 7-й минуте скорость составляла 60 км/ч, вариант Б – потому что он уже применен, вариант Г – потому что в начале и конце промежутка автобус имел нулевую скорость. В данном случае подходит вариант В (12–16 мин); на этом промежутке автобус начинает движение со скоростью 40 км/ч, далее ускоряется до 100 км/м и потом постепенно снижает скорость до 20 км/ч. Итак, имеем: В–2.
- Здесь установлено ограничение для скорости. При этом варианты Б и В мы не рассматриваем. Оставшиеся же интервалы А и Г подходят оба. Поэтому правильно будет рассмотреть сначала 4-й вариант, а потом снова вернуться в 3-му.
- Из двух оставшихся интервалов для характеристики №4 подходит только 4–8 мин, поскольку на этом промежутке остановка была (на 6-й минуте). На промежутке 18–22 мин остановок не было. Получаем: А–4. Отсюда следует, что для характеристики №3 нужно взять интервал Г, т.е. получается пара Г–3.
Вариант 14МБ7
[su_note note_color=”#defae6″]
На рисунке точками показан прирост населения Китая в период с 2004 по 2013 год. По горизонтали указывается год, по вертикали – прирост населения в процентах (увеличение численности населения относительно прошлого года). Для наглядности точки соединены линией.
Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику прироста населения Китая в этот период.
[/su_note]
Алгоритм выполнения
- Определяем цену деления вертикальной шкалы рисунка. Находится она как разница пары соседних значений шкалы, деленная на 2 (т.к. между двумя соседними значениями имеется 2 деления).
- Анализируем последовательно приведенные в условии характеристики 1–4 (левая табличная колонка). Сопоставляем каждую из них с конкретным периодом времени (правая табличная колонка).
Решение:
Цена деления вертикальной шкалы составляет 0,01%.
- Падение прироста непрерывно продолжалось с 2004 по 2010 год. В 2010–2011 годах прирост был стабильно минимальным, и начиная с 2012 года оно начал увеличиваться. Т.е. остановка прироста произошла в 2010 году. Этот год находится в периоде 2009–2011 гг. Соответственно, имеем: В–1.
- Наибольшим падением прироста следует считать самую «круто» падающую линию графика на рисунке. Она приходится на период 2006–2007 гг. и составляет 0,04%, за год (0,59–0,56=0,04% в 2006 г. и 0,56–0,52=0,04% в 2007 г.). Отсюда получаем: А–2.
- Указанный в характеристике №3 прирост начался с 2007 года, продолжился в 2008 г. и завершился в 2009 году. Это соответствует периоду времени Б, т.е. имеем: Б–3.
- Прирост населения начал увеличиваться после 2011 г., т.е. в 2012–2013 гг. Поэтому получаем: Г–4.
Вариант 14МБ8
[su_note note_color=”#defae6″]
На рисунке изображены график функции и касательные, проведенные к нему в точках с абсциссами А,В,С и D.
В правом столбце указаны значения производной функции в точках А, В, С и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.
[/su_note]
Алгоритм выполнения
- Рассматриваем пару касательных, имеющих острый угол с положит.направлением оси абсцисс. Сравниваем их, находим соответствие среди пары соответствующих значений производных.
- Рассматриваем пару касательных, образующих с положит.направлением оси абсцисс тупой угол. Сравниваем их по модулю, определяем соответствие их значениям производных среди двух оставшихся в правой колонке.
Решение:
Острый угол с положит.направлением оси абсцисс образуют производные в т.В и т.С. Эти производные имеют положит.значения. Поэтому выбирать тут следует между значениями №№1 и 3. Применяя правило о том, что если угол меньше 450, то производная меньше 1, а если больше, то больше 1, делаем вывод: в т.В производная по модулю больше 1, в т.С – меньше 1. Это означает, что можно составить пары для ответа: В–3 и С–1.
Производные в т.А и т.D образуют с положит.направлением оси абсцисс тупой угол. И тут применяем то же правило, немного перефразировав его: чем больше касательная в точке «прижата» к линии оси абсцисс (к отрицат. ее направлению), тем больше она по модулю. Тогда получаем: производная в т.А по модулю меньше, чем производная в т.D. Отсюда имеем пары для ответа: А–2 и D–4.
Вариант 14МБ9
[su_note note_color=”#defae6″]
На рисунке точками показана среднесуточная температура воздуха в Москве в январе 2011 года. По горизонтали указываются числа месяца, по вертикали – температура в градусах Цельсия. Для наглядности точки соединены линией.
Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику изменения температуры.
[/su_note]
Алгоритм выполнения
Анализируем последовательно характеристики 1–4 (правая колонка), используя график на рисунке. Ставим каждой из них в соответствие конкретный временной период (левая колонка).
Решение:
- Рост температуры наблюдался только в конце периода 22–28 января. Здесь 27 и 28 числа она повышалась соответственно на 1 и на 2 градуса. В конце периода 1–7 января температура была стабильной (–10 градусов), в конце 8–14 и 15–21 января понижалась (с –1 до –2 и с –11 до –12 градусов соответственно). Поэтому получаем: Г–1.
- Поскольку каждый временной период охватывает 7 дней, то анализировать нужно температуру, начиная с 4-го дня каждого периода. Неизменной в течение 3–4 дней температура была только с 4 по 7 января. Поэтому получаем ответ: А–2.
- Месячный минимум температуры наблюдался 17 января. Это число входит в период 15–21 января. Отсюда имеем пару: В–3.
- Температурный максимум пришелся 10 января и составил +1 градус. Эта дата попадает в период 8–14 января. Значит, имеем: Б–4.
Вариант 14МБ10
[su_note note_color=”#defae6″]
На рисунке изображен график функции y=f(x) и отмечены точки А, В, С и D на оси Ох..
Пользуясь графиком, поставьте в соответствие каждой точке характеристики функции и ее производной
[/su_note]
Алгоритм выполнения
- Значение функции в точке положительно, если эта точка расположена выше оси Ох.
- Производная в точке больше нуля, если касательная к этой точке образует острый угол с положительным направлением оси Ох.
Решение:
Точка А. Она находится ниже оси Ох, значит значение функции в ней отрицательно. Если провести в ней касательную, то угол между нею и положит.направлением Ох составит около 900, т.е. образует острый угол. Значит, в данном случае подходит характеристика №3. Т.е. имеем: А–3.
Точка Б. Она находится над осью Ох, т.е. точка имеет положит.значение функции. Касательная в этой точке будет довольно близко «прилегать» к оси абсцисс, образуя тупой угол (немногим меньше 1800) с положительным ее направлением. Соответственно, производная в этой точке отрицательна. Т.о., здесь подходит характеристика 1. Получаем ответ: В–1.
Точка С. Точка расположена ниже оси Ох, касательная в ней образует большой тупой угол с положит.направлением оси абсцисс. Т.е. в т.С значение и функции, и производной отрицательно, что соответствует характеристике №2. Ответ: С–2.
Точка D. Точка находится выше оси Ох, а касательная в ней образует с положит.направлением оси острый угол. Это говорит о том, что как значение функции, так и значение производной здесь больше нуля. Ответ: D–4.
Вариант 14МБ11
[su_note note_color=”#defae6″]
На рисунке точками показаны объемы месячных продаж холодильников в магазине бытовой техники. По горизонтали указываются месяцы, по вертикали – количество проданных холодильников. Для наглядности точки соединены линией.
Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику продаж холодильников.
[/su_note]
Алгоритм выполнения
- При необходимости найти кол-во холодильников за тот или иной период нужно определять их сумму за три месяца.
- Анализировать следует характеристики 1–4 (правая колонка), находя для каждой из них соответствие в виде временного периода (левая колонка).
Решение:
Анализируем характеристики:
- Меньше всего холодильников продано в начале и в конце года. Поэтому рассмотрим периоды январь–март и октябрь–декабрь. В январе–марте было продано примерно 250+250+300=800 холодильников, в октябре–декабре – примерно 350+200+100=650. Значит, здесь подходит все-таки последний период. Ответ: Г–1.
- Длительный рост продаж наблюдался с апреля по июль. Это время охватывает полностью период апрель–июнь и захватывает начало следующего. Поэтому получаем: Б–2.
- Тут тоже требуется найти сумму проданных единиц за целые периоды. Для 1-го и последнего периода она уже найдена (см.п.1). Считаем для 2-го и 3-го, получаем: 300+400+600=1300 – в апреле–июне, примерно 650+600+550=1800 – в июле–сентябре. К требуемым 800 холодильникам максимально приближен объем продаж в январе–марте. Поэтому имеем: А–3.
- Одинаковое падение объема продаж означает, что разница между кол-вом проданных холодильников должна быть одинаковой. Падение продаж наблюдалось, начиная с конца июля. В августе падение составило 650–600=50 штук, в сентябре – 600–550=50 штук. Далее, в октябре, разница составила уже 550–350=200 холодильников, в ноябре 350–200=150, в декабре 200–100=100. Т.о., подходит в данном случаем период июль–сентябрь. Ответ: В–4.
Вариант 14МБ12
[su_note note_color=”#defae6″]
На рисунке точками показан годовой объем добычи угля в России открытым способом в период с 2001 по 2010 год. По горизонтали указывается год, по вертикали – объем добычи угля в миллионах тонн. Для наглядности точки соединены линиями.
Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов характеристику добычи угля в этот период.
[/su_note]
Алгоритм выполнения
- Точки, которые не приходятся на точные значения шкалы вертикальной оси, определяем приблизительно.
- Анализируем по очереди приведенные (в правом столбце) характеристики, используя данный график. Определяем соответствие каждой из них конкретного временного периода.
Решение:
Анализируем характеристики:
- Объем добычи меньше 190 млн т приходился на период с 2001 года по 2005 год. Затем спад добычи зафиксирован в 2009 году, но один год не составляет периода. 2001–2005 годы полностью попадают в период А (2002–2004 гг.). Поэтому получаем ответ: А–1.
- Такая формулировка «объем… сначала уменьшался, а затем начал расти» соответствует 2 периодам – 2002–2003 гг. и 2009–2010 гг. Но т.к. первый из этих периодов уже взят в качестве ответа, то правильно здесь использовать пару Г–2.
- Ситуация, описанная в 3-й характеристике, наиболее точно отображена в периоде 2006–2008 гг. Именно в это время добыча сначала понемногу увеличивалась (примерно с 190 млн т до 210), а потом резко возросла до 250 млн т. Т.е. подходящий ответ здесь: 2006–2008 гг. и, соответственно, имеем: В–3.
- Медленный рост следует искать в период, когда линия графика имеет наиболее пологий вид. Это: 2004–2006 год, что соответствует периоду Б, т.е. получаем: Б–4.
Вариант 14МБ13
[su_note note_color=”#defae6″]
На графике изображена зависимость температуры от времени в процессе разогрева двигателя легкового автомобиля. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя, на вертикальной оси – температура двигателя в градусах Цельсия.
Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику температуры.
[/su_note]
Алгоритм выполнения
Анализируем сначала очередную характеристику, а затем сопоставляем ее с конкретным временным интервалом.
Решение:
- Выше 600 температура была с 4-й по 7-ю минуту. Поэтому здесь нужно взять интервал 4–6 мин. Получаем: В–1.
- Температура падала только после 7-й минуты. Соответственно, тут подходит интервал 7–9 мин. Ответ: Г–2.
- Самый быстрый рост температуры происходил там, где график имеет наиболее «крутой» вертикальный подъем. Это имеет место только в 1-ю минуту нагревания. Т.е. подходящим интервалом является 0–1 мин. Ответ: А–3.
- В пределах 40–50 0С температура имела место, начиная со 2-й по 3-ю минуту. Значит, нужно выбрать интервал 2–3мин. Ответ: Б–4.
Вариант 14МБ14
[su_note note_color=”#defae6″]
На графике изображена зависимость частоты пульса гимнаста от времени в течение и после его выступления в вольных упражнениях. На горизонтальной оси отмечено время (в минутах), прошедшее с начала выступления гимнаста, на вертикальной оси – частота пульса (в ударах в минуту).
Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику пульса гимнаста на этом интервале.
[/su_note]
Алгоритм выполнения
- Для анализа характеристики нужно использовать только 1-ю половину графика.
- Для точек графика, которые не попадают в «узлы» сетки рисунка (т.е. для которых невозможно определить точные значения), нужно определять значения приблизительно.
- Величина роста пульса связана с пологостью (или, напротив, крутизной) линии графика. Это означает, что чем большее изменение значения функции происходит за тот или иной (но обязательно одинаковый) промежуток времени, тем больше величина роста.
Решение:
Анализируем предложенные характеристики:
- Если частота пульса сначала падала, а затем росла, то на графике это должно выразиться в «прогибе» линии графика вниз. Такая кривизна наблюдается только в течение 3–4 минуты. Значит, получаем ответ: Г–1.
- Самый большой «подъем» линии на 1-й половине графика имеет место с 1-й по 2-ю минуту. Отсюда получаем: Б–2.
- Частота пульса падала, начиная со 2-й минуты. В течение 3–4 минут тоже наблюдалось падение, однако оно потом перешло в рост. Поэтому правильным здесь следует считать интервал В. Т.о., ответ: В–3.
- Единственный интервал, на котором частота не превысила 100 ударов, – 0–1 мин. Отсюда имеем ответ: А–4.
Даниил Романович | Просмотров: 21.2k
В данном блоке представлен тренажер заданий «Производная и графики»
Скачать:
Предварительный просмотр:
- На рисунке изображен график функции y=f(x), определенной на интервале (−2;12). Найдите сумму точек экстремума функции f(x).
- На рисунке изображен график функции y=f(x), определенной на интервале (−7;5). Найдите сумму точек экстремума функции f(x).
- На рисунке изображен график функции y=f(x), определенной на интервале (−7;5). Найдите сумму точек экстремума функции f(x).
- На рисунке изображен график функции y=f(x), определенной на интервале (−7;5). Найдите сумму точек экстремума функции f(x).
- На рисунке изображен график функции y=f(x), определенной на интервале (−4;8). Найдите сумму точек экстремума функции f(x).
- На рисунке изображен график функции y=f(x), определенной на интервале (−9;5). Найдите сумму точек экстремума функции f(x).
- На рисунке изображен график функции y=f(x), определенной на интервале (−5;9). Найдите сумму точек экстремума функции f(x).
- На рисунке изображен график функции y=f(x), определенной на интервале (−1;13). Найдите сумму точек экстремума функции f(x).
- На рисунке изображен график функции y=f(x), определенной на интервале (−8;5). Найдите сумму точек экстремума функции f(x).
- На рисунке изображен график функции y=f(x), определенной на интервале (−8;3). Найдите сумму точек экстремума функции f(x).
- На рисунке изображен график функции y=f(x), определенной на интервале (−6;8). Найдите сумму точек экстремума функции f(x).
- На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
- На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
- На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
- На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
- На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
- На рисунке изображены график дифференцируемой функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
- На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
- На рисунке изображены график функции y=f(x) и касательная к этому графику, проведённая в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
- На рисунке изображены график дифференцируемой функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
- На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
- На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
- Прямая y=3x+1 является касательной к графику функции ax2+2x+3. Найдите a.
- Прямая y=−5x+8 является касательной к графику функции 28x2+bx+15. Найдите b, учитывая, что абсцисса точки касания больше 0.
- Прямая y=3x+4 является касательной к графику функции 3x2−3x+c. Найдите c.
- Прямая y = 7x−5 параллельна касательной к графику функции y = x2+6x−8. Найдите абсциссу точки касания.
- Прямая y = 6x+8 параллельна касательной к графику функции y = x2−3x+5. Найдите абсциссу точки касания.
- рямая y = 3x+6 параллельна касательной к графику функции y = x2−5x+8. Найдите абсциссу точки касания.
- Прямая y = 8x+11 параллельна касательной к графику функции y = x2+5x+7. Найдите абсциссу точки касания
- Прямая y = −4x−11 является касательной к графику функции y = x3+7x2+7x−6. Найдите абсциссу точки касания.
- Прямая y = −2x+6 является касательной к графику функции y = x3−3x2+x+5. Найдите абсциссу точки касания.
- Прямая y = −x+14 является касательной к графику функции y = x3−4x2+3x+14. Найдите абсциссу точки касания.
- Прямая y = x+9 является касательной к графику функции y = x3−3x2+4x+8. Найдите абсциссу точки касания.
- Прямая y = −6x−10 является касательной к графику функции y = x3+4x2−6x−10. Найдите абсциссу точки касания.
- Материальная точка движется прямолинейно по закону x(t)=6t2−48t+17, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t=9 с.
- Материальная точка движется прямолинейно по закону x(t)=t3−3t2+2t, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t=6 с.
- Материальная точка движется прямолинейно по закону x(t)=−t4+6t3+5t+23, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t=3 с.
- Материальная точка движется прямолинейно по закону x(t)=t2−13t+23, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. В какой момент времени (в секундах) ее скорость была равна 3 м/с?
- Материальная точка движется прямолинейно по закону x(t)=t3−3t2−5t+3, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. В какой момент времени (в секундах) ее скорость была равна 2 м/с?
- На рисунке изображён график функции y=f(x), определённой на интервале (− 9; 5). Найдите количество точек, в которых производная функции f(x) равна 0.
- На рисунке изображён график функции y=f(x), определённой на интервале (− 5; 9). Найдите количество точек, в которых производная функции f(x) равна 0.
- На рисунке изображен график функции y=f(x), определенной на интервале (−6;8). Определите количество целых точек, в которых производная функции положительна.
- На рисунке изображен график функции y=f(x), определенной на интервале (−5;6). Определите количество целых точек, в которых производная функции положительна.
- На рисунке изображен график функции y=f(x), определенной на интервале (−9;8). Определите количество целых точек, в которых производная функции f(x) положительна.
- На рисунке изображен график функции y=f(x), определенной на интервале (−2;11). Определите количество целых точек, в которых производная функции положительна.
- На рисунке изображен график функции y=f(x), определенной на интервале (−6;8). Определите количество целых точек, в которых производная функции положительна.
- На рисунке изображен график функции y=f(x), определенной на интервале (−6;8). Определите количество целых точек, в которых производная функции положительна.
- На рисунке изображен график функции y=f(x), определенной на интервале (−5;5). Определите количество целых точек, в которых производная функции f(x) отрицательна.
- На рисунке изображен график функции y=f(x), определенной на интервале (−5;5). Определите количество целых точек, в которых производная функции f(x) отрицательна.
- На рисунке изображен график функции y=f(x), определенной на интервале (−1;12). Определите количество целых точек, в которых производная функции отрицательна.
- На рисунке изображен график функции y=f(x), определенной на интервале (−7;7). Определите количество целых точек, в которых производная функции отрицательна.
- На рисунке изображен график функции y=f(x), определенной на интервале (−4;9). Определите количество целых точек, в которых производная функции отрицательна.
- На рисунке изображён график y=f′(x) — производной функции f(x), определенной на интервале (−8;3). В какой точке отрезка [−3;2] функция f(x) принимает наибольшее значение?
- На рисунке изображён график y=f′(x) — производной функции f(x), определенной на интервале (−6;6). В какой точке отрезка [−5;−1] функция f(x) принимает наибольшее значение?
- На рисунке изображён график y=f′(x) — производной функции f(x), определенной на интервале (−6;6). В какой точке отрезка [3;5] функция f(x) принимает наибольшее значение?
- На рисунке изображён график y=f′(x) — производной функции f(x), определенной на интервале (−2;9). В какой точке отрезка [2;6] функция f(x) принимает наибольшее значение?
- На рисунке изображён график y=f′(x) — производной функции f(x), определенной на интервале (−8;3). В какой точке отрезка [−3;2] функция f(x) принимает наибольшее значение?
- На рисунке изображён график y=f′(x) — производной функции f(x), определенной на интервале (−8;5). В какой точке отрезка [−1;4] функция f(x) принимает наибольшее значение?
- На рисунке изображён график y=f′(x) — производной функции f(x), определенной на интервале (−7;5). В какой точке отрезка [−1;3] функция f(x) принимает наибольшее значение?
- На рисунке изображён график y=f′(x) производной функции f(x), определенной на интервале (−2;9). В какой точке отрезка [−1;3] функция f(x) принимает наименьшее значение?
- На рисунке изображён график y=f′(x) производной функции f(x), определенной на интервале (−2;9). В какой точке отрезка [2;6] функция f(x) принимает наименьшее значение?
- На рисунке изображён график y=f′(x) — производной функции f(x), определенной на интервале (−8;4). В какой точке отрезка [−7;−3] функция f(x) принимает наименьшее значение?
- На рисунке изображён график y=f′(x) производной функции f(x), определенной на интервале (−7;5). В какой точке отрезка [−6;−1] функция f(x) принимает наименьшее значение?
- На рисунке изображён график y=f′(x) производной функции f(x), определенной на интервале (−4;9). В какой точке отрезка [−2;2] функция f(x) принимает наименьшее значение?
- На рисунке изображён график y=f′(x) производной функции f(x), определенной на интервале (−9;8). В какой точке отрезка [−8;−4] функция f(x) принимает наименьшее значение?
- На рисунке изображён график y=f′(x) производной функции f(x), определенной на интервале (−9;8). В какой точке отрезка [1;7] функция f(x) принимает наименьшее значение?
- На рисунке изображён график y=f′(x) производной функции f(x), определенной на интервале (−9;8). В какой точке отрезка [−5;3] функция f(x) принимает наименьшее значение?
- На рисунке изображён график y=f′(x) производной функции f(x), определенной на интервале (−5;5). В какой точке отрезка [−4;−1] функция f(x) принимает наименьшее значение?
- На рисунке изображён график y=f′(x) производной функции f(x), определённой на интервале (− 8; 4). В какой точке отрезка [− 2; 3] функция f(x) принимает наименьшее значение?
- На рисунке изображён график y=f′(x) производной функции f(x), определённой на интервале (− 2; 9). В какой точке отрезка [2; 8] функция f(x) принимает наименьшее значение?
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−7;14). Найдите количество точек максимума функции f(x), принадлежащих отрезку [−6;9].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−4;16). Найдите количество точек максимума функции f(x), принадлежащих отрезку [0;13].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−13;8). Найдите количество точек максимума функции f(x), принадлежащих отрезку [−8;6].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−21;2). Найдите количество точек максимума функции f(x), принадлежащих отрезку [−19;1].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−17;5). Найдите количество точек максимума функции f(x), принадлежащих отрезку [−15;0].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−1;16). Найдите количество точек максимума функции f(x), принадлежащих отрезку [0;15].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−18;6). Найдите количество точек минимума функции f(x), принадлежащих отрезку [−13;1].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−2;21). Найдите количество точек минимума функции f(x), принадлежащих отрезку [2;19].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−17;2). Найдите количество точек минимума функции f(x), принадлежащих отрезку [−12;1].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−22;2). Найдите количество точек минимума функции f(x), принадлежащих отрезку [−17;0].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−10;12). Найдите количество точек минимума функции f(x), принадлежащих отрезку [−9;10].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−14;4). Найдите количество точек минимума функции f(x), принадлежащих отрезку [−13;3].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−11;11). Найдите количество точек экстремума функции f(x), принадлежащих отрезку [−10;10].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−5;5). Найдите количество точек экстремума функции f(x), принадлежащих отрезку [−4;4].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−12;5). Найдите количество точек экстремума функции f(x), принадлежащих отрезку [−10;0].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−8;16). Найдите количество точек экстремума функции f(x), принадлежащих отрезку [−4;15].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−4;20). Найдите количество точек экстремума функции f(x), принадлежащих отрезку [0;18].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−2;15). Найдите количество точек экстремума функции f(x), принадлежащих отрезку [2;10].
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки возрастания функции (−7;4). В ответе укажите сумму целых точек, входящих в эти промежутки.
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−6;6). Найдите промежутки возрастания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−5;5). Найдите промежутки возрастания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки возрастания функции (−1;13). В ответе укажите сумму целых точек, входящих в эти промежутки.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки возрастания функции (−6;10). В ответе укажите сумму целых точек, входящих в эти промежутки.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки возрастания функции (−3;8). В ответе укажите сумму целых точек, входящих в эти промежутки.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки возрастания функции (−2;10). В ответе укажите сумму целых точек, входящих в эти промежутки.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки возрастания функции (−2;9). В ответе укажите сумму целых точек, входящих в эти промежутки.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки возрастания функции (−3;9). В ответе укажите сумму целых точек, входящих в эти промежутки.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки убывания функции (−2;12). В ответе укажите длину наибольшего из них.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки убывания функции (−5;7). В ответе укажите сумму целых точек, входящих в эти промежутки.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки убывания функции (−5;7). В ответе укажите сумму целых точек, входящих в эти промежутки.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки убывания функции (−4;7). В ответе укажите сумму целых точек, входящих в эти промежутки.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки убывания функции (−6;7). В ответе укажите сумму целых точек, входящих в эти промежутки.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки убывания функции (−4;9). В ответе укажите сумму целых точек, входящих в эти промежутки.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки возрастания функции (−11;3). В ответе укажите длину наибольшего из них.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки возрастания функции (−16;2). В ответе укажите длину наибольшего из них.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки возрастания функции (−6;8). В ответе укажите длину наибольшего из них.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки возрастания функции (−4;10). В ответе укажите длину наибольшего из них.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки возрастания функции (−5;10). В ответе укажите длину наибольшего из них.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки возрастания функции (−6;8). В ответе укажите длину наибольшего из них.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки убывания функции (−1;14). В ответе укажите длину наибольшего из них.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки убывания функции (−14;3). В ответе укажите длину наибольшего из них.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки убывания функции (−2;12). В ответе укажите длину наибольшего из них.
На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки убывания функции (−3;14). В ответе укажите длину наибольшего из них.
На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки убывания функции (−2;16). В ответе укажите длину наибольшего из них.
- На рисунке изображен график y=f(x) — производной функции y=f′(x), определенной на интервале f(x). Найдите промежутки убывания функции (−12;2). В ответе укажите длину наибольшего из них.
- На рисунке изображен график производной функции f(x), определенной на интервале (−10; 2). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = −2x − 11 или совпадает с ней.
- На рисунке изображен график y=f′(x) — производной функции f(x). Найдите абсциссу точки, в которой касательная к графику y = f(x) параллельна прямой y = 2x−2 или совпадает с ней.
- На рисунке изображен график y=f′(x) — производной функции f(x). Найдите абсциссу точки, в которой касательная к графику y = f(x) параллельна оси абсцисс или совпадает с ней.
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−9;8). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y=x−7 или совпадает с ней.
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−9;8). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y=−x+8 или совпадает с ней.
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−6;6). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y=−3x−11 или совпадает с ней.
- На рисунке изображен график функции y=f(x), определенной на интервале (−5;5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y=6.
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−5;5). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y=−0,5x+9 или совпадает с ней.
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−5;5). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y=−2x+2 или совпадает с ней.
- На рисунке изображен график функции y=f(x), определенной на интервале (−1;10). Найдите количество точек, в которых касательная к графику функции параллельна прямой y=−3.
- На рисунке изображен график функции y=f(x), определенной на интервале (−3;8). Найдите количество точек, в которых касательная к графику функции параллельна прямой y=−20.
- На рисунке изображен график функции y=f(x), определенной на интервале (−2;12). Найдите количество точек, в которых касательная к графику функции параллельна прямой y=7.
- На рисунке изображен график функции y=f(x), определенной на интервале (−9;3). Найдите количество точек, в которых касательная к графику функции параллельна прямой y=14.
- На рисунке изображен график функции y=f(x), определенной на интервале (−4;10). Найдите количество точек, в которых касательная к графику функции параллельна прямой y=−10.
- На рисунке изображен график функции y=f(x), определенной на интервале (−5;9). Найдите количество точек, в которых касательная к графику функции параллельна прямой y=−10.
- На рисунке изображен график функции y=f(x), определенной на интервале (−1;13). Найдите количество точек, в которых касательная к графику функции параллельна прямой y=11.
- На рисунке изображён график y=f′(x) — производной функции f(x), определённой на интервале (−9; . Найдите точку экстремума функции f(x) на отрезке [−3; 3].
- На рисунке изображен график y=f′(x) — производной функции f(x), определенной на интервале (−6;6). Найдите точку экстремума функции f(x) на интервале (−4;5).
- На рисунке изображён график функции y=f′(x) — производной функции f(x), определённой на интервале (− 3 ; . Найдите точку минимума функции f(x).
- На рисунке изображён график функции y=f(x) и восемь точек на оси абсцисс: x1, x2,x3, …, x8. В скольких из этих точек производная функции f(x) положительна?
- На рисунке изображён график дифференцируемой функции y=f(x) и отмечены семь точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7. В скольких из этих точек производная функции f(x) положительна?
- На рисунке изображён график функции y=f(x) и двенадцать точек на оси абсцисс: x1, x2, x3, …, x12. В скольких из этих точек производная функции f(x) отрицательна?
- На рисунке изображён график y=f′(x) — производной функции f(x). На оси абсцисс отмечено восемь точек: x1, x2, x3, …, x8. Сколько из этих точек лежит на промежутках возрастания функции f(x)?
- На рисунке изображён график y=f′(x) — производной функции f(x). На оси абсцисс отмечено восемь точек: x1, x2, x3, …, x8. Сколько из этих точек лежит на промежутках убывания функции f(x)?
- На рисунке изображен график функции y=f(x) и отмечены точки −2, −1, 1, 2. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.
- На рисунке изображен график функции y=f(x) и отмечены точки −2, −1, 1, 4. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.
- На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (−3;5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [−2;4].
- На рисунке изображён график функции y=f(x) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8)−F(2), где F(x) — одна из первообразных функции f(x).
- На рисунке изображён график некоторой функции y=f(x). Функция F(x)=x3+30x2+302x−158 — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.
- На рисунке изображён график некоторой функции y=f(x). Функция F(x)=−x3−27x2−240x−8 — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.
- На рисунке изображен график функции y=f(x), определенной на интервале (−9;8). Найдите количество точек, в которых касательная к графику функции параллельна прямой y=10.
По теме: методические разработки, презентации и конспекты
Каталог заданий В1,В2
Материал взят с сайта www.rechuege.ru Дмитрия Гущина и предназначен для отработки заданий на вычисление В1 и В2…
- Мне нравится