Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, а боковое ребро призмы равно 10.
Спрятать решение
Решение.
Сторона ромба a выражается через его диагонали и формулой
Найдем площадь ромба
Тогда площадь поверхности призмы равна
Ответ: 248.
Примечание.
Приведем вывод используемой в решении формулы, выражающей сторону ромба a через его диагонали d1 и d2. Диагонали ромба перпендикулярны и точкой пересечения делятся пополам, следовательно, по теореме Пифагора
- ЗАДАЧИ ЕГЭ С ОТВЕТАМИ
- АНГЛИЙСКИЙ без ГРАНИЦ
2012-07-23
НЕ ОТКЛАДЫВАЙ! Заговори на английском!
ДОЛОЙ обидные ошибки на ЕГЭ!!
Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!
Конструктор упражнений для позвоночника!
Добавить комментарий
*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.
- РубрикиРубрики
- Задачи по номерам!
№1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16
- МЕТКИ
БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие
- ОСТЕОХОНДРОЗУ-НЕТ!
Найдите площадь поверхности прямой призмы
Дата: 2021-10-09
285
Категория: Стерео Призма
Метка: ЕГЭ-№2
27062. Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 10.Площадь всей поверхности состоит из площади оснований и пощади боковой поверхности. Площадь основания (ромба) равна:Необходимо вычислить ребро основания и мы сможем найти площадь боковой поверхности. Диагонали делят ромб на четыре равных прямоугольных треугольника с катетами 3 и 4. По теореме Пифагора ребро будет равно:Таким образом, площадь равна:Ответ: 248
27148. В основании прямой призмы лежит ромб с диагоналями, равными 6 и 8. Площадь ее поверхности равна 248. Найдите боковое ребро этой призмы.Это обратная задача. Боковое ребро равно высоте, обозначим его через Н. Формула площади:Ответ: 10
Используя этот сайт, Вы соглашаетесь с тем, что мы сохраняем и используем файлы cookies, а также используем похожие технологии для улучшения работы сайта.
Ok
СДАМ ГИА:
РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
≡ Математика
Базовый уровень
Профильный уровень
Информатика
Русский язык
Английский язык
Немецкий язык
Французский язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
Сайты, меню, вход, новости
СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ
Об экзамене
Каталог заданий
Варианты
Ученику
Учителю
Школа
Эксперту
Справочник
Карточки
Теория
Сказать спасибо
Вопрос — ответ
Чужой компьютер
Зарегистрироваться
Восстановить пароль
Войти через ВКонтакте
Играть в ЕГЭ-игрушку
Новости
10 марта
Как подготовиться к ЕГЭ и ОГЭ за 45 дней
6 марта
Изменения ВПР 2023
3 марта
Разместили утвержденное расписание ЕГЭ
27 января
Вариант экзамена блокадного Ленинграда
23 января
ДДОС-атака на Решу ЕГЭ. Шантаж.
6 января
Открываем новый сервис: «папки в избранном»
22 декабря
Открыли новый портал Решу Олимп. Для подготовки к перечневым олимпиадам!
4 ноября
Материалы для подготовки к итоговому сочинению 2022–2023
31 октября
Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР
21 марта
Новый сервис: рисование
31 января
Внедрили тёмную тему!
НАШИ БОТЫ
Все новости
ЧУЖОЕ НЕ БРАТЬ!
Экзамер из Таганрога
10 апреля
Предприниматель Щеголихин скопировал сайт Решу ЕГЭ
Наша группа
Задания
Версия для печати и копирования в MS Word
Тип 2 № 27148
В основании прямой призмы лежит ромб с диагоналями, равными 6 и 8. Площадь ее поверхности равна 248. Найдите боковое ребро этой призмы.
Спрятать решение
Решение.
Сторона ромба a выражается через его диагонали и как
Площадь ромба
Тогда боковое ребро найдем из выражения для площади поверхности:
Ответ: 10.
Аналоги к заданию № 27148: 75963 75965 75967 75969 75971 75973 75975 75977 75979 75981 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 5.5.5 Площадь треугольника, параллелограмма, трапеции, круга, сектора
Классификатор стереометрии: Площадь поверхности призмы
Спрятать решение
·
·
Курс Д. Д. Гущина
·
Сообщить об ошибке · Помощь
О проекте · Редакция · Правовая информация · О рекламе
© Гущин Д. Д., 2011—2023
Тренажер задания 5 профильного ЕГЭ по математике-2022 (с ответами). Здесь приведены прототипы задания 5 — задачи на определение площади поверхности объемных фигур. Это задание на стереометрию. Номер заданий соответствует номеру заданий в базе mathege.ru.
Площади поверхности
Многогранники
27158. Найдите площадь поверхности пространственного креста, изображенного на рисунке и составленного из единичных кубов.
27215. Площадь поверхности тетраэдра равна 12. Найдите площадь поверхности многогранника, вершинами которого являются середины рёбер данного тетраэдра.
Куб
27055. Площадь поверхности куба равна 18. Найдите его диагональ.
27056. Объем куба равен 8. Найдите площадь его поверхности.
27139. Диагональ куба равна 1. Найдите площадь его поверхности.
27061. Если каждое ребро куба увеличить на 1, то его площадь поверхности увеличится на 54. Найдите ребро куба.
27130. Во сколько раз увеличится площадь поверхности куба, если все его рёбра увеличить в три раза?
27168. Объём первого куба в 8 раз больше объёма второго куба. Во сколько раз площадь поверхности первого куба больше площади поверхности второго куба?
Призма
27057. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 5, а высота — 10.
27062. Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 10.
27148. В основании прямой призмы лежит ромб с диагоналями, равными 6 и 8. Площадь ее поверхности равна 248. Найдите боковое ребро этой призмы.
27063. Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 20, а площадь поверхности равна 1760.
27132. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, высота призмы равна 10. Найдите площадь ее поверхности.
27151. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8. Площадь ее поверхности равна 288. Найдите высоту призмы.
27157. Во сколько раз увеличится площадь поверхности октаэдра, если все его ребра увеличить в 3 раза?
245356. Площадь поверхности правильной треугольной призмы равна 6. Какой станет площадь поверхности призмы, если все её рёбра увеличатся в три раза, а форма останется прежней?
245354. Правильная четырехугольная призма описана около цилиндра, радиус основания которого равен 2. Площадь боковой поверхности призмы равна 48. Найдите высоту цилиндра.
Пирамида
27131. Во сколько раз увеличится площадь поверхности правильного тетраэдра, если все его ребра увеличить в два раза?
27172. Во сколько раз увеличится площадь поверхности пирамиды, если все ее ребра увеличить в 2 раза?
Цилиндр
27058. Радиус основания цилиндра равен 2, высота равна 3. Найдите площадь боковой поверхности цилиндра, деленную на π.
27133. Длина окружности основания цилиндра равна 3, высота равна 2. Найдите площадь боковой поверхности цилиндра.
245358. Длина окружности основания цилиндра равна 3. Площадь боковой поверхности равна 6. Найдите высоту цилиндра.
284361. Площадь боковой поверхности цилиндра равна 2π, а диаметр основания — 1. Найдите высоту цилиндра.
284362. Площадь боковой поверхности цилиндра равна 2π, а высота — 1. Найдите диаметр основания.
Конус
27136. Во сколько раз увеличится площадь боковой поверхности конуса, если его образующая увеличится в 3 раза, а радиус основания останется прежним?
27137. Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?
27160. Площадь боковой поверхности конуса в два раза больше площади основания. Найдите угол между образующей конуса и плоскостью основания. Ответ дайте в градусах.
Шар
27072. Дано два шара. Радиус первого шара в 2 раза больше радиуса второго. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?
27163. Радиусы двух шаров равны 6 и 8. Найдите радиус шара, площадь поверхности которого равна сумме площадей поверхностей двух данных шаров.
Элементы 71—80 из 166.
Задача №:
27148. Прототип №: 27148
В основании прямой призмы лежит ромб с диагоналями, равными 6 и 8. Площадь ее поверхности равна 248. Найдите боковое ребро этой призмы.
Ответ:
Показать/скрыть правильный ответ
Задача №:
27151. Прототип №: 27151
Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8. Площадь ее поверхности равна 288. Найдите высоту призмы.
Ответ:
Показать/скрыть правильный ответ
Задача №:
27153. Прототип №: 27153
Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсеченной треугольной призмы равна 8. Найдите площадь боковой поверхности исходной призмы.
Ответ:
Показать/скрыть правильный ответ
Задача №:
27158. Прототип №: 27158
Найдите площадь поверхности пространственного креста, изображенного на рисунке и составленного из единичных кубов.
Ответ:
Показать/скрыть правильный ответ
Задача №:
27161. Прототип №: 27161
Площадь полной поверхности конуса равна 12. Параллельно основанию конуса проведено сечение, делящее высоту пополам. Найдите площадь полной поверхности отсеченного конуса.
Ответ:
Показать/скрыть правильный ответ
Задача №:
27162. Прототип №: 27162
Объем одного шара в 27 раз больше объема второго. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?
Ответ:
Показать/скрыть правильный ответ
Задача №:
27163. Прототип №: 27163
Радиусы двух шаров равны 6, 8. Найдите радиус шара, площадь поверхности которого равна сумме площадей их поверхностей.
Ответ:
Показать/скрыть правильный ответ
Задача №:
27168. Прототип №: 27168
Объём первого куба в 8 раз больше объёма второго куба. Во сколько раз площадь поверхности первого куба больше площади поверхности второго куба?
Ответ:
Показать/скрыть правильный ответ
Меню
-
HomeГлавная страница -
ОбразованиеПроблемы и решения-
Домашнее обучение -
Как учиться -
Будущее образования -
Математическое образование -
Школьное образование -
Разное
-
-
ЕГЭПодготовка к экзамену
Элементарные задания
Меню
-
Элементарные заданияВ1, В2, В3, В4 -
Практико-ориентированные задачи -
Графики -
Выбор варианта
Алгебра +
Меню
-
Алгебра +В7, В11 -
Уравнения -
Преобразования
Производная
Меню
-
ПроизводнаяВ9, В15 -
Анализ графиков, касательная, скорость, первообразная -
Вычисление производной
Задачи
Меню
-
ЗадачиB6, B12, B14 -
Работа, движение, растворы, прогрессии -
Построение мат. моделей в физике и технике -
Теория вероятности, комбинаторика и статистика
Геометрия
Меню
-
Углы и треугольники -
4х-угольники. Многоугольники и окружности -
Площади. Вектора. Координаты -
Многогранники -
Тела вращения
Вход/Регистрация
Логин
Пароль
Запомнить меня
- Забыли пароль?
- Забыли логин?
- Регистрация
Проверить аттестат
Наверх
Меню
-
HomeГлавная страница -
ОбразованиеПроблемы и решения-
Домашнее обучение -
Как учиться -
Будущее образования -
Математическое образование -
Школьное образование -
Разное
-
-
ЕГЭПодготовка к экзамену
Аналогичные задания
Ответ
Здесь ответ
Элементарные задания
Меню
-
Элементарные заданияВ1, В2, В3, В4 -
Практико-ориентированные задачи -
Графики -
Выбор варианта
Алгебра +
Меню
-
Алгебра +В7, В11 -
Уравнения -
Преобразования
Производная
Меню
-
ПроизводнаяВ9, В15 -
Анализ графиков, касательная, скорость, первообразная -
Вычисление производной
Задачи
Меню
-
ЗадачиB6, B12, B14 -
Работа, движение, растворы, прогрессии -
Построение мат. моделей в физике и технике -
Теория вероятности, комбинаторика и статистика
Геометрия
Меню
-
Углы и треугольники -
4х-угольники. Многоугольники и окружности -
Площади. Вектора. Координаты -
Многогранники -
Тела вращения
Вход/Регистрация
Логин
Пароль
Запомнить меня
- Забыли пароль?
- Забыли логин?
- Регистрация
Проверить аттестат
Наверх
Тренажер задания 5 профильного ЕГЭ по математике-2022 (с ответами). Здесь приведены прототипы задания 5 — задачи на определение площади поверхности объемных фигур. Это задание на стереометрию. Номер заданий соответствует номеру заданий в базе mathege.ru.
Площади поверхности
Многогранники
27158. Найдите площадь поверхности пространственного креста, изображенного на рисунке и составленного из единичных кубов.
27215. Площадь поверхности тетраэдра равна 12. Найдите площадь поверхности многогранника, вершинами которого являются середины рёбер данного тетраэдра.
Куб
27055. Площадь поверхности куба равна 18. Найдите его диагональ.
27056. Объем куба равен 8. Найдите площадь его поверхности.
27139. Диагональ куба равна 1. Найдите площадь его поверхности.
27061. Если каждое ребро куба увеличить на 1, то его площадь поверхности увеличится на 54. Найдите ребро куба.
27130. Во сколько раз увеличится площадь поверхности куба, если все его рёбра увеличить в три раза?
27168. Объём первого куба в 8 раз больше объёма второго куба. Во сколько раз площадь поверхности первого куба больше площади поверхности второго куба?
Призма
27057. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 5, а высота — 10.
27062. Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 10.
27148. В основании прямой призмы лежит ромб с диагоналями, равными 6 и 8. Площадь ее поверхности равна 248. Найдите боковое ребро этой призмы.
27063. Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 20, а площадь поверхности равна 1760.
27132. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, высота призмы равна 10. Найдите площадь ее поверхности.
27151. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8. Площадь ее поверхности равна 288. Найдите высоту призмы.
27157. Во сколько раз увеличится площадь поверхности октаэдра, если все его ребра увеличить в 3 раза?
245356. Площадь поверхности правильной треугольной призмы равна 6. Какой станет площадь поверхности призмы, если все её рёбра увеличатся в три раза, а форма останется прежней?
245354. Правильная четырехугольная призма описана около цилиндра, радиус основания которого равен 2. Площадь боковой поверхности призмы равна 48. Найдите высоту цилиндра.
Пирамида
27131. Во сколько раз увеличится площадь поверхности правильного тетраэдра, если все его ребра увеличить в два раза?
27172. Во сколько раз увеличится площадь поверхности пирамиды, если все ее ребра увеличить в 2 раза?
Цилиндр
27058. Радиус основания цилиндра равен 2, высота равна 3. Найдите площадь боковой поверхности цилиндра, деленную на π.
27133. Длина окружности основания цилиндра равна 3, высота равна 2. Найдите площадь боковой поверхности цилиндра.
245358. Длина окружности основания цилиндра равна 3. Площадь боковой поверхности равна 6. Найдите высоту цилиндра.
284361. Площадь боковой поверхности цилиндра равна 2π, а диаметр основания — 1. Найдите высоту цилиндра.
284362. Площадь боковой поверхности цилиндра равна 2π, а высота — 1. Найдите диаметр основания.
Конус
27136. Во сколько раз увеличится площадь боковой поверхности конуса, если его образующая увеличится в 3 раза, а радиус основания останется прежним?
27137. Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?
27160. Площадь боковой поверхности конуса в два раза больше площади основания. Найдите угол между образующей конуса и плоскостью основания. Ответ дайте в градусах.
Шар
27072. Дано два шара. Радиус первого шара в 2 раза больше радиуса второго. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?
27163. Радиусы двух шаров равны 6 и 8. Найдите радиус шара, площадь поверхности которого равна сумме площадей поверхностей двух данных шаров.