Задание 9 профильного егэ по математике math100 ru

Skip to content

ЕГЭ Профиль №9. Прямая

ЕГЭ Профиль №9. Прямаяadmin2022-08-17T21:57:55+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №9. Прямая

Задача 1. На рисунке изображён график функции  (fleft( x right) = k,x + b.)  Найдите  (fleft( { — 5} right).)

Ответ

ОТВЕТ: — 10.

Задача 2. На рисунке изображён график функции  (fleft( x right) = k,x + b.)  Найдите  (fleft( {12} right).)

Ответ

ОТВЕТ: 4.

Задача 3. На рисунке изображён график функции  (fleft( x right) = k,x + b.)  Найдите  (fleft( { — 16} right).)

Ответ

ОТВЕТ: 14,5.

Задача 4. На рисунке изображён график функции  (fleft( x right) = k,x + b.)  Найдите  (fleft( { — 16} right).)

Ответ

ОТВЕТ: 26,5.

Задача 5. На рисунке изображён график функции  (fleft( x right) = k,x + b.)  Найдите значение x при котором (fleft( x right) =  — 13,5.)

Ответ

ОТВЕТ: — 7.

Задача 6. На рисунке изображён график функции  (fleft( x right) = k,x + b.)  Найдите значение x при котором (fleft( x right) = 4,75.)

Ответ

ОТВЕТ: 14.

Задача 7. На рисунке изображён график функции  (fleft( x right) = k,x + b.)  Найдите значение x при котором (fleft( x right) = 16.)

Ответ

ОТВЕТ: — 10.

Задача 8. На рисунке изображён график функции  (fleft( x right) = k,x + b.)  Найдите значение x при котором (fleft( x right) =  — 7,25.)

Ответ

ОТВЕТ: 14.

Задача 9. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

Ответ

ОТВЕТ: — 5.

Задача 10. На рисунке изображены графики функций вида (fleft( x right) = k,x + b.) которые пересекаются в точке  А.  Найдите абсциссу точки А.

Ответ

ОТВЕТ: 13.

Задача 11. На рисунке изображены графики двух линейных функций. Найдите ординату точки пересечения графиков.

Ответ

ОТВЕТ: 11.

Задача 12. На рисунке изображены графики функций вида (fleft( x right) = k,x + b.) которые пересекаются в точке  А.  Найдите ординату точки А.

Ответ

ОТВЕТ: — 11.

Задача 13. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

Ответ

ОТВЕТ: — 0,8.

Задача 14. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

Ответ

ОТВЕТ: — 1,8.

Задача 15. На рисунке изображены графики двух линейных функций. Найдите ординату точки пересечения графиков.

Ответ

ОТВЕТ: 0,2.

Задача 16. На рисунке изображены графики двух линейных функций. Найдите ординату точки пересечения графиков.

Ответ

ОТВЕТ: 1,8.

Задание 9 профильного егэ по математике math100 ru

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи. До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!

—>

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие промежутку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

A) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие промежутку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Укажите корни, принадлежащие отрезку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Укажите корни уравнения, принадлежащие отрезку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащее отрезку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие промежутку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение:

Б) Найдите все корни этого уравнения, принадлежащие отрезку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие промежутку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие промежутку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие промежутку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

На рисунке изображён график функции mbox<$fleft(xright)=dfrac $>. Найдите~$k$.

—>

Решения заданий с развернутым ответом не проверяются автоматически.

Ege. sdamgia. ru

20.06.2017 9:58:52

2017-06-20 09:58:52

Источники:

Https://ege. sdamgia. ru/test? id=13220838

Пробные и тренировочные варианты по математике профильного уровня в формате ЕГЭ 2022 из различных источников.

 Тренировочные варианты ЕГЭ 2022 по математике (профиль)

egemath.ru
Вариант 1 скачать
Вариант 2 скачать
Вариант 3 скачать
Вариант 4 скачать
Вариант 5 скачать
Вариант 6 скачать
Вариант 7 скачать
variant 8 скачать
variant 9 скачать
variant 10 скачать
variant 11 скачать
variant 12 скачать
variant 13 скачать
variant 14 скачать
variant 15 скачать
variant 16 скачать
variant 17 скачать
variant 18 скачать
variant 19 скачать
variant 20 скачать
yagubov.ru
вариант 21 ege2022-yagubov-prof-var21
вариант 22 ege2022-yagubov-prof-var22
вариант 23 ege2022-yagubov-prof-var23
вариант 24 ege2022-yagubov-prof-var24
вариант 25 ege2022-yagubov-prof-var25
вариант 26 ege2022-yagubov-prof-var26
вариант 27 ege2022-yagubov-prof-var27
вариант 28 ege2022-yagubov-prof-var28
Досрочный Москва 28.03.2022 скачать
egemathschool.ru
вариант 1 ответ
вариант 2 ответ
вариант 3 ответ
вариант 4 ответ
ЕГЭ 100 баллов (с решениями) 
Вариант 1 скачать
Вариант 2 скачать
Вариант 3 скачать
Вариант 4 скачать
Вариант 5 скачать
Вариант 6 скачать
Вариант 7 скачать
Вариант 8 скачать
Вариант 9 скачать
Вариант 10 скачать
variant 11 скачать
variant 12 скачать
variant 13 скачать
variant 14 скачать
variant 15 скачать
variant 16 скачать
variant 17 скачать
variant 18 скачать
variant 20 скачать
variant 21 скачать
variant 23 скачать
variant 24 скачать
variant 25 скачать
variant 26 скачать
variant 29 скачать
variant 30 скачать
math100.ru (с ответами) 
Вариант 140 скачать
Вариант 141 скачать
Вариант 142 скачать
Вариант 143 math100-ege22-v143
Вариант 144 math100-ege22-v144
Вариант 145 math100-ege22-v145
Вариант 146 math100-ege22-v146
variant 147 math100-ege22-v147
variant 148 math100-ege22-v148
variant 149 math100-ege22-v149
variant 150 math100-ege22-v150
variant 151 math100-ege22-v151
variant 152 math100-ege22-v152
variant 153 math100-ege22-v153
variant 154 math100-ege22-v154
variant 155 math100-ege22-v155
variant 156 math100-ege22-v156
variant 157 math100-ege22-v157
variant 158 math100-ege22-v158
variant 159 math100-ege22-v159
variant 160 math100-ege22-v160
variant 161 math100-ege22-v161
variant 162 math100-ege22-v162
variant 163 math100-ege22-v163
variant 164 math100-ege22-v164
variant 165 math100-ege22-v165
variant 166 math100-ege22-v166
variant 167 math100-ege22-v167
variant 168 math100-ege22-v168
variant 169 math100-ege22-v169
variant 170 math100-ege22-v170
variant 171 math100-ege22-v171
variant 172 math100-ege22-v172
variant 173 math100-ege22-v173
variant 174 math100-ege22-v174
alexlarin.net 
Вариант 358
скачать
Вариант 359 скачать
Вариант 360 скачать
Вариант 361 скачать
Вариант 362 проверить ответы
Вариант 363 проверить ответы
Вариант 364 проверить ответы
Вариант 365 проверить ответы
Вариант 366 проверить ответы
Вариант 367 проверить ответы
Вариант 368 проверить ответы
Вариант 369 проверить ответы
Вариант 370 проверить ответы
Вариант 371 проверить ответы
Вариант 372 проверить ответы
Вариант 373 проверить ответы
Вариант 374 проверить ответы
Вариант 375 проверить ответы
Вариант 376 проверить ответы
Вариант 377 проверить ответы
Вариант 378 проверить ответы
Вариант 379 проверить ответы
Вариант 380 проверить ответы
Вариант 381 проверить ответы
Вариант 382 проверить ответы
Вариант 383 проверить ответы
Вариант 384 проверить ответы
Вариант 385 проверить ответы
Вариант 386 проверить ответы
Вариант 387 проверить ответы
Вариант 388 проверить ответы
vk.com/ekaterina_chekmareva (задания 1-12)
Вариант 1 ответы
Вариант 2
Вариант 3
Вариант 4
Вариант 5
Вариант 6
Вариант 7 ответы
Вариант 8
Вариант 9
Вариант 10
vk.com/matematicalate
Вариант 1 matematikaLite-prof-ege22-var1
Вариант 2 matematikaLite-prof-ege22-var2
Вариант 3 matematikaLite-prof-ege22-var3
Вариант 4 matematikaLite-prof-ege22-var4
Вариант 5 matematikaLite-prof-ege22-var5
Вариант 6 matematikaLite-prof-ege22-var6
Вариант 7 matematikaLite-prof-ege22-var7
Вариант 8 matematikaLite-prof-ege22-var8
vk.com/pro_matem
variant 1 pro_matem-prof-ege22-var1
variant 2 pro_matem-prof-ege22-var2
variant 3 pro_matem-prof-ege22-var3
variant 4 разбор
variant 5 разбор
vk.com/murmurmash
variant 1 otvet
variant 2 otvet
→  Купить сборники тренировочных вариантов ЕГЭ 2022 по математике

Структура варианта КИМ ЕГЭ

Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и количеству заданий:

– часть 1 содержит 11 заданий (задания 1–11) с кратким ответом в виде целого числа или конечной десятичной дроби;

– часть 2 содержит 7 заданий (задания 12–18) с развёрнутым ответом (полная запись решения с обоснованием выполненных действий).

Задания части 1 направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.

Посредством заданий части 2 осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.

Связанные страницы:

Средний балл ЕГЭ 2021 по математике

Решение задач с параметром при подготовке к ЕГЭ

Изменения в КИМ ЕГЭ 2022 года по математике

Купить сборники типовых вариантов ЕГЭ по математике

Как решать экономические задачи ЕГЭ по математике профильного уровня?

3633 На рисунке изображён график функции f(x)=k/(x+a). Найдите f(-7)

Решение     График

На рисунке изображён график функции f(x)=k / x+a Найдите f(-7) ! 36 вариантов ФИПИ Ященко 2023 Вариант 25 Задание 10 ...X
3610 На рисунке изображены графики двух линейных функций. Найдите ординату точки пересечения графиков

Решение     График

На рисунке изображены графики двух линейных функций. Найдите ординату точки пересечения графиков ! 36 вариантов ФИПИ Ященко 2023 Вариант 22 Задание 10 ...X
3563 На рисунке изображены графики функций f(x)=3x+3 и g(x)=ax^2+bx+c., которые пересекаются в точках A(-1; 0) и B (x0; y0). Найдите y0

Решение     График

На рисунке изображены графики функций f(x)=3x+3 и g(x)= ax2 + bx+c ! 36 вариантов ФИПИ Ященко 2023 Вариант 16 Задание 10 ...X
3507 На рисунке изображён график функции f(x)=a^(x+2). Найдите f(6)

Решение     График

На рисунке изображён график функции f(x)=a^(x+2). Найдите f(6) ! 36 вариантов ФИПИ Ященко 2023 Вариант 5 Задание 10 ...X
3482 На рисунке изображены части графиков функций иf(x)=k/x и g(x)=c/x+d. Найдите ординату точки пересечения графиков этих функций

Решение
На рисунке изображены части графиков функций. Найдите ординату точки пересечения графиков этих функций ! 36 вариантов ФИПИ Ященко 2023 Вариант 1 Задание 10 ...X
3456 На рисунке изображен график функции f(x)=acosx+b. Найдите a
Решение
На рисунке изображен график функции f(x)=acosx+b ! Тренировочный вариант 397 от Ларина Задание 10 ...X
3307 На рисунке изображён график функций f(x)=(kx+a)/(x+b). Найдите k

Решение

На рисунке изображён график функций f(x)= kx+a / (x+b). Найдите k ! 36 вариантов ФИПИ Ященко 2022 Вариант 33 Задание 9 ...X
3306 На рисунке изображены графики функций f(x)=asqrtx. и g(x)=kx+b., которые пересекаются в точках A(x0; y0) и B(4; 5). Найдите y0

Решение     График

На рисунке изображены графики функций, которые пересекаются в точках A(x0; y0) и B(4; 5) ! 36 вариантов ФИПИ Ященко 2022 Вариант 32 Задание 9 ...X
3304 На рисунке изображены графики функций f(x)=asqrtx. и g(x)=kx+b., которые пересекаются в точке A. Найдите абсциссу точки A

Решение     График

На рисунке изображены графики функций. Найдите абсциссу точки A ! 36 вариантов ФИПИ Ященко 2022 Вариант 31 Задание 9 ...X
3301 На рисунке изображён график функции f(x)=a^(x+b). Найдите f(-1)

Решение     График

На рисунке изображён график функции f(x)=a x+b ! 36 вариантов ФИПИ Ященко 2022 Вариант 29 Задание 9 ...X

За это задание ты можешь получить 1 балл. На решение дается около 10 минут. Уровень сложности: повышенный.
Средний процент выполнения: 72.7%
Ответом к заданию 9 по математике (профильной) может быть целое число или конечная десятичная дробь.

Разбор сложных заданий в тг-канале

Задачи для практики

Задача 1

Свежие подосиновики содержат $78%$ воды, а сушёные — $12%$. Сколько килограммов свежих подосиновиков требуется для получения $3$ кг сушёных грибов?

Решение

Предположим, что подосиновики состоят из воды и «сухого остатка». В сушёных грибах содержится 100% — 12% = 88% «сухого остатка», в свежих — 100% — 78% = 22% «сухого остатка». В 3 кг сушёных грибов содержится 3 · 0.88 = 2,64 кг «сухого остатка», в свежих грибах, из которых приготовили сушёные, этого остатка было столько же, но в процентах это составляет уже 22%.

Если 2.64 кг — это 22%, то 100% это 2.64 : 0,22 = 12 кг. Требуется 12 килограммов свежих подосиновиков.

Ответ: 12

Задача 2

Смешали некоторое количество $12 $-процентного раствора уксуса с вчетверо большим количеством $9 $-процентного раствора уксуса. Сколько процентов составляет концентрация уксуса в получившемся растворе?

Решение

Чтобы найти концентрацию уксуса в растворе, надо найти отношение массы уксуса к массе раствора и умножить это отношение на $100%$. Найдем, сколько уксуса содержится в каждом растворе, обозначим количество 12-процентного раствора уксуса через $x$. При этом 9-процентного раствора уксуса вчетверо больше, то есть $4x$.Тогда в первом растворе $x · {12}/{100}$ кг уксуса, а во втором $4x · {9}/{100} = 0.36x$ кг уксуса. Масса получившегося раствора $5x$ кг, и в нём $0.12x + 0.36x = 0.48x$ кг уксуса.

Концентрация уксуса в получившемся растворе равна ${0.48x}/{5x} · 100% = 9.6%.$

Ответ: 9.6

Задача 3

Смешали некоторое количество $12 $-процентного раствора уксуса с таким же количеством $6 $-процентного раствора уксуса. Сколько процентов составляет концентрация уксуса в получившемся растворе?

Решение

Чтобы найти концентрацию уксуса в растворе, надо найти отношение массы уксуса к массе раствора и умножить это отношение на $100%$. Найдем, сколько уксуса содержится в каждом растворе ($a_1$ кг — в первом растворе и $a_2$ кг — во втором растворе), обозначим количество каждого раствора через $x$ кг. $a_1 = x · {12}/{100}, a_2 = x · {6}/{100}$. Количество получившегося раствора $2x$ кг, и в нём $a_1 + a_2 = 0.12x + 0.06x = 0.18x$.

Концентрация уксуса в получившемся растворе равна ${0.18x}/{2x} · 100% = 9%.$

Ответ: 9

Задача 4

Теплоход в 6:00 вышел из пункта $A$ в пункт $B$, расположенный в $204$ км по реке от пункта $A$. Пробыв в пункте $B$ 2 часа 20 минут, теплоход отправился назад и вернулся в пункт отправления в 20:00 того же дня. Найдите скорость течения, если собственная скорость теплохода равна $35$ км/ч. Ответ дайте в км/ч.

Решение

Обозначим скорость течения реки через $x$ км/ч. Тогда скорость теплохода по течению реки — $(35 + x)$ км/ч, а скорость теплохода против течения реки $(35 — x)$ км/ч.

По условию на весь путь теплоход затратил $20-6-2{1}/{3} = 11{2}/{3} = {35}/{3}$ (ч).

Составим и решим уравнение:

${204}/{35 + x} + {204}/{35 — x} = {35}/{3}$,

$204·3(35-x+35+x) = 35(35-x)(35+x)$,

$204·3·70= 35(35-x)(35+x) $ | $:35$,

$1224 = 1225-x^2$,

$x^2 = 1$,

$x_1 = 1, x_2 = -1$.

Скорость течения положительна, она равна $1$ км/ч.

Ответ: 1

Задача 5

От продовольственного склада до супермаркета, расстояние между которыми $240$ км, с постоянной скоростью выехала фура. На следующий день она отправилась обратно со скоростью на $20$ км/ч больше прежней. По дороге фура сделала остановку на 2 часа. В результате она затратила на обратный путь столько же времени, сколько на путь до супермаркета. Найдите скорость фуры по пути от продовольственного склада до супермаркета. Ответ дайте в км/ч.

Решение

Обозначим скорость фуры по пути от продовольственного склада до супермаркета через $x$ км/ч, тогда путь $240$ км она проедет за ${240}/{x}$ ч. Скорость фуры на обратном пути равна $(x + 20)$ км/ч, таким образом, время, затраченное на обратный путь, равно ${240}/{x + 20}$ ч. Составим и решим уравнение: ${240}/{x} — {240}/{x+20} = 2, 240 · 20 = 2x(x + 20), x^2 + 20x — 2400 = 0, x_1 = 40, x_2 = -60$.

Скорость $-60$ км/ч не удовлетворяет условию, поэтому скорость фуры по пути от продовольственного склада до супермаркета равна $40$ км/ч.

Ответ: 40

Задача 6

От замка А к замку В, расстояние между которыми $20$ км, одновременно вылетели два почтовых голубя. Известно, что за час первый голубь пролетает на $20$ км меньше, чем второй. Найдите скорость второго голубя, если он прилетел в замок В на $ 5$ минут раньше первого голубя. Ответ дайте в км/ч.

Решение

Обозначим скорость второго голубя через $x$ км/ч, тогда по условию скорость первого голубя $(x — 20)$ км/ч. Время, затраченное на полёт первым голубем, равно ${20}/{x — 20}$ ч. Время, затраченное на полёт вторым голубем, равно ${20}/{x}$ ч.

Составим и решим уравнение: ${20}/{x — 20} — {20}/{x} = {5}/{60}, {4}/{x — 20} — {4}/{x} = {1}/{60}, 4x — 4(x — 20) = {x(x — 20)}/{60}, x^2 — 20x — 4800 = 0, x_1 = 80, x_2 = -60$.

Отрицательная скорость не удовлетворяет условию. Скорость второго голубя $80$ км/ч.

Ответ: 80

Задача 7

Семья состоит из мужа, жены и их сына-студента. Если бы зарплата мужа увеличилась втрое, общий доход семьи вырос бы вдвое, а если бы зарплата жены сократилась впятеро, то общий доход семьи сократился бы на $ 32%$. Сколько процентов от общего дохода семьи составляет стипендия их сына-студента?

Решение

Если бы зарплата мужа увеличилась втрое, то есть прибавилось бы ещё две зарплаты, то общий доход семьи вырос бы вдвое, то есть увеличился на $100%$. Из этого можно сделать вывод, что одна зарплата мужа составляет ${100%}/{2} = 50%$ общего дохода семьи. Если бы зарплата жены сократилась бы впятеро, то есть стала равной ${1}/{5}$ имеющейся её зарплаты, то общий доход семьи сократился бы на ${4}/{5}$ имеющейся зарплаты, что по условию составляет $32%$ общего дохода семьи. Значит вся зарплата жены составляет ${32%}/{4/5} = 40%$ общего дохода семьи. На долю стипендии сына остаётся $100% — 50% — 40% = 10%$.

Ответ: 10

Задача 8

Цена мультиварки в магазине ежемесячно уменьшается на одно и то же число процентов от предыдущей цены. Определите, на сколько процентов каждый месяц уменьшалась цена мультиварки, если выставленная на продажу за $6800$ рублей через два месяца она была продана за $5508$ рублей?

Решение

Стоимость мультиварки первоначально была $6800$ рублей. Через месяц она стала $6800-6800·0.01x = 6800(1-0.01x)$ рублей, где $x$ — количе ство процентов, на которые уменьшается ежемесячно цена мультиварки. Тогда через два месяца её стоимость стала $6800(1 — 0.01x)(1 — 0.01x) = 6800(1 — 0.01x)^2$.

Составим и решим уравнение: $6800(1 — 0.01x)^2 = 5508, 1 — 0.01x = 0.9, x = 10$. Цена мультиварки уменьшалась на $10$ процентов.

Ответ: 10

Задача 9

В сентябре в магазине продали товаров на $585000$ рублей. В октябре сумма продаж возросла на $8%$, а в ноябре — на $10%$ по сравнению с октябрём. На сколько рублей продал магазин товаров в ноябре?

Решение

В октябре сумма продаж возросла на $8%$, то есть стала $108%=1{,}08$, что равно $585000⋅ 1{,} 08 $ (рублей). В ноябре сумма продаж возросла на $10%$ (стала $110%=1{,}1$) по сравнению с октябрём, то есть сумма продаж стала равна $585000⋅ 1{,}08⋅1{,}1=694 980$ (рублей).

Ответ: 694980

Задача 10

Три трубы наполняют бак за $2$ минуты, первая труба — за $9$ минут, а вторая — за $18$ минут. За сколько минут наполнит бак третья труба?

Решение

Объём бака примем за 1, тогда за 1 минуту три трубы заполнят ${1}/{2}$ часть бака, первая труба за 1 минуту заполнит ${1}/{9}$ часть бака, вторая труба — ${1}/{18}$ часть бака. Тогда третья труба за 1 минуту заполнит ${1}/{2} — {1}/{9} — {1}/{18} = {1}/{3}$ часть бака. Весь бак третья труба заполнит за $1 : {1}/{3} = 3$ минуты.

Ответ: 3

Задача 11

Роберт покрасит стену дома за $10$ часов, а Давид — за $15$ часов. За сколько часов покрасят эту стену Роберт и Давид, работая вместе?

Решение

Весь объём работы примем за $1$, тогда ${1}/{10}$ — часть стены, которую красит Роберт за $1$ час, ${1}/{15}$ — часть стены, которую красит Давид за $1$ час. Тогда оба мальчика за $1$ час покрасят ${1}/{10} + {1}/{15} = {1}/{6}$. Всю стену мальчики покрасят за $1 : {1}/{6} = 6$ часов.

Ответ: 6

Задача 12

Гаянэ и Милена выполняют одинаковый тест. Гаянэ отвечает за час на $16$ вопросов теста, а Милена — на $18$. Они одновременно начали отвечать на вопросы теста, и Гаянэ закончила свой тест позже Милены на $20$ минут. Сколько вопросов содержит тест?

Решение

Пусть в тесте $x$ вопросов. В среднем, Гаянэ отвечает на ${16}/{60}$ вопроса в минуту, а Милена на ${18}/{60}$ вопроса в минуту. На все вопросы теста Гаянэ ответит за $x : {16}/{60} = {60x}/{16}$ минут, а Милена за $x : {18}/{60} = {60x}/{18}$ минуты. По условию Гаянэ закончила свой тест позже Милены на $20$ минут, можно составить уравнение ${60x}/{16} — {60x}/{18} = 20$. Получаем $x = 48$.

Ответ: 48

Задача 13

Поезд, двигаясь равномерно со скоростью $84$ км/ч, проезжает мимо здания вокзала, длина которого равна $250$ метров, за $2$ минуты. Найдите длину поезда в метрах.

Решение

Обозначим длину поезда $x$ км. Длина здания равна $250$ метров, то есть $0.25$ км. Путь, который поезд проехал мимо здания вокзала, равен $(x + 0.25)$ км. Время, за которое поезд проезжает мимо здания вокзала, равно ${x + 0.25}/{84}$ ч. По условию это $2$ минуты ($2$ мин = ${2}/{60}$ часа).

Составим и решим уравнение: ${x + 0.25}/{84} = {2}/{60}; x = 2.55$ (км).

Длина поезда равна $2550$ м.

Ответ: 2550

Задача 14

Электричка, двигаясь равномерно со скоростью $50$ км/ч, проезжает мимо семафора за $45$ секунд. Найдите длину поезда в метрах.

Решение

Обозначим длину электрички $x$ км. Тогда время, за которое электричка проезжает мимо семафора, равно ${x} / {50}$  ч. По условию это $45$ секунд, то есть ${45} / {3600}$ ч. ${x} / {50}={45} / {3600}$, $x= {50⋅ 45} / {3600}, x=0{,} 625$ (км). Длина электрички равна $625$ м.

Ответ: 625

Задача 15

Первые два часа снегоход ехал со скоростью $15$ км/ч, следующие три часа — со скоростью $20$ км/ч, а затем один час — со скоростью $18$ км/ч. Найдите среднюю скорость снегохода на протяжении всего пути. Ответ дайте в км/ч.

Решение

Снегоход был в пути $2 + 3 + 1 = 6$ часов, за это время он проехал $15·2 + 20·3 + 18 = 108$ км. Т.к. средняя скорость снегохода равна $v_{ср} ={S}/{t}$, где $S$ — пройденный путь, $t$ — время, затраченное на весь путь, то $v_{ср} = {108}/{6} = 18$ (км/ч).

Ответ: 18

Задача 16

Из городов $A$ и $B$, расстояние между которыми равно $160$ км, навстречу друг другу одновременно выехали велосипед и мопед и встретились через $4$ часа на расстоянии $64$ км от города $B$. Найдите скорость мопеда, выехавшего из города $A$. Ответ дайте в км/ч.

Решение

Мопед и велосипед встретились через 4 часа на расстоянии 160 — 64 = 96 км от города A. Тогда скорость мопеда, выехавшего из города A, равна 96 : 4 = 24 км/ч.

Ответ: 24

Задача 17

Из двух городов, расстояние между которыми равно $720$ км, навстречу друг другу одновременно выехали два автомобиля. Через сколько часов автомобили встретятся, если их скорости равны $56$ км/ч и $64$ км/ч?

Решение

Скорость сближения автомобилей равна сумме скоростей 56 + 64 = 120 (км/ч). Автомобили встретятся через 720 : 120 = 6 (ч).

Ответ: 6

Рекомендуемые курсы подготовки

Понравилась статья? Поделить с друзьями:
  • Задание 9 егэ по русскому языку 2019 практика с ответами
  • Задание 9 егэ информатика треугольники
  • Задание 9 егэ rustutors
  • Задание 85 адвокатский экзамен
  • Задание 8057 егэ обществознание