Задание на вероятность егэ математика профильный уровень


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Какова вероятность того, что случайно выбранный телефонный номер оканчивается двумя чётными цифрами?


2

Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.


3

На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу D.


4

Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже чем 36,8 °С, равна 0,81. Найдите вероятность того, что в случайный момент времени у здорового человека температура окажется 36,8 °С или выше.


5

При изготовлении подшипников диаметром 67 мм вероятность того, что диаметр будет отличаться от заданного не больше, чем на 0,01 мм, равна 0,965. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 66,99 мм или больше чем 67,01 мм.

Пройти тестирование по этим заданиям

Вероятностью события $А$ называется отношение числа благоприятных для $А$ исходов к числу всех
равновозможных исходов

$P(A)={m}/{n}$, где $n$ – общее количество возможных исходов, а $m$ – количество исходов, благоприятствующих событию
$А$.

Вероятность события — это число из отрезка $[0; 1]$

В фирме такси в наличии $50$ легковых автомобилей. $35$ из них чёрные, остальные — жёлтые.
Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета.

Решение:

Найдем количество желтых автомобилей:

$50-35=15$

Всего имеется $50$ автомобилей, то есть на вызов приедет одна из пятидесяти. Желтых автомобилей $15$,
следовательно, вероятность приезда именно желтого автомобиля равна ${15}/{50}={3}/{10}=0,3$

Ответ:$0,3$

Противоположные события

Два события называются противоположными, если в данном испытании они несовместимы и одно из них обязательно
происходит. Вероятности противоположных событий в сумме дают 1.Событие, противоположное событию $А$, записывают
${(А)}↖{-}$.

$Р(А)+Р{(А)}↖{-}=1$

Независимые события

Два события $А$ и $В$ называются независимыми, если вероятность появления каждого из них не зависит от того,
появилось другое событие или нет. В противном случае события называются зависимыми.

Вероятность произведения двух независимых событий $A$ и $B$ равна произведению этих
вероятностей:

$Р(А·В)=Р(А)·Р(В)$

Иван Иванович купил два различных лотерейных билета. Вероятность того, что выиграет первый
лотерейный билет, равна $0,15$. Вероятность того, что выиграет второй лотерейный билет, равна $0,12$. Иван Иванович
участвует в обоих розыгрышах. Считая, что розыгрыши проводятся независимо друг от друга, найдите вероятность того,
что Иван Иванович выиграет в обоих розыгрышах.

Решения:

Вероятность $Р(А)$ — выиграет первый билет.

Вероятность $Р(В)$ — выиграет второй билет.

События $А$ и $В$ – это независимые события. То есть, чтобы найти вероятность того, что они произойдут оба
события, нужно найти произведение вероятностей

$Р(А·В)=Р(А)·Р(В)$

$Р=0,15·0,12=0,018$

Ответ: $0,018$

Несовместные события

Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)

Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:

$Р(А+В)=Р(А)+Р(В)$

На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение:

Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:

$Р(А+В)=Р(А)+Р(В)$

$Р = 0,3+0,18=0,48$

Ответ: $0,48$

Совместные события

Два события называются совместными, если появление одного из них не исключает появление другого в одном и том же
испытании. В противном случае события называются несовместными.

Вероятность суммы двух совместных событий $A$ и $B$ равна сумме вероятностей этих событий минус
вероятность их произведения:

$Р(А+В)=Р(А)+Р(В)-Р(А·В)$

В холле кинотеатра два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится
кофе, равна $0,6$. Вероятность того, что кофе закончится в обоих автоматах, равна $0,32$. Найдите вероятность того,
что к концу дня кофе закончится хотя бы в одном из автоматов.

Решение:

Обозначим события, пусть:

$А$ = кофе закончится в первом автомате,

$В$ = кофе закончится во втором автомате.

Тогда,

$A·B =$ кофе закончится в обоих автоматах,

$A + B =$ кофе закончится хотя бы в одном автомате.

По условию, $P(A) = P(B) = 0,6; P(A·B) = 0,32$.

События $A$ и $B$ совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий,
уменьшенной на вероятность их произведения:

$P(A + B) = P(A) + P(B) − P(A·B) = 0,6 + 0,6 − 0,32 = 0,88$

Ответ: $0,88$

Автор материала — Анна Малкова

На этой странице – решения новых задач из Открытого Банка заданий, из которого формируется Банк заданий ФИПИ. Вы знаете, что в Проекте ЕГЭ-2022 в варианте Профильного ЕГЭ по математике не одна задача на теорию вероятностей, а две, причем вторая – повышенной сложности. Покажем, какие задачи могут вам встретиться на ЕГЭ-2022. Проект пока не утвержден, возможны изменения, но ясно одно – теория вероятностей на ЕГЭ будет на более серьезном уровне, чем раньше. Раздел будет дополняться, так что заходите на наш сайт почаще!

1. Игральный кубик бросают дважды. Известно, что в сумме выпало 8 очков. Найдите вероятность того, что во второй раз выпало 3 очка.

Решение:

Выпишем возможные варианты получения 8 очков в сумме:

Подходит только вариант 5; 3. Вероятность этого события равна 1 : 5 = 0,2 (один случай из 5 возможных).

Ответ: 0,2.

2. В ящике 4 красных и 2 синих фломастера. Фломастеры вытаскивают по очереди в случайном порядке. Какова вероятность того, что первый раз синий фломастер появится третьим по счету?

Решение:

Благоприятными будут следующие исходы:

Первый раз – вытащили красный фломастер,

И второй раз – красный,

А третий раз – синий.

Вероятность вытащить красный фломастер (которых в ящике 4) равна displaystyle frac{4}{6}=frac{2}{3}.

После этого в ящике остается 5 фломастеров, из них 3 красных, вероятность вытащить красный равна displaystyle frac{3}{5}.

Наконец, когда осталось 4 фломастера и из них 2 синих, вероятность вытащить синий равна displaystyle frac{1}{2}.

Вероятность события {красный – красный – синий } равна произведению этих вероятностей, то есть displaystyle frac{2}{3}cdot frac{3}{5}cdot frac{1}{2}=frac{1}{5}=0,2.

Ответ: 0,2.

3. В коробке 10 синих, 9 красных и 6 зеленых фломастеров. Случайным образом выбирают 2 фломастера. Какова вероятность того, что окажутся выбраны один синий и один красный фломастер?

Решение:

Всего в коробке 25 фломастеров.
В условии не сказано, какой из фломастеров вытащили первым – красный или синий.

Предположим, что первым вытащили красный фломастер. Вероятность этого displaystyle frac{9}{25}, в коробке остается 24 фломастера, и вероятность вытащить вторым синий равна displaystyle frac{10}{24}. Вероятность того, что первым вытащили красный, а вторым синий, равна displaystyle frac{9}{25} cdot frac{10}{24} = frac{3}{5} cdot frac{1}{4} = frac{3}{20}.

А если первым вытащили синий фломастер? Вероятность этого события равна displaystyle frac{10}{25}=frac{2}{5}. Вероятность после этого вытащить красный равна displaystyle frac{9}{24}=frac{3}{8}, вероятность того, что синий и красный вытащили один за другим, равна displaystyle frac{2}{5}cdot frac{3}{8} = frac{3}{20}.

Значит, вероятность вытащить первым красный, вторым синий или первым синий, вторым красный равна displaystyle frac{3}{20} + frac{3}{20} =0,3.

А если их доставали из коробки не один за другим, а одновременно? Вероятность остается такой же: 0,3. Потому что она не зависит от того, вытащили мы фломастеры один за другим, или с интервалом в 2 секунды, или с интервалом в 0,5 секунды… или одновременно!
Ответ: 0,3.

4. При подозрение на наличие некоторого заболевания пациента отправляют на ПЦР-тест. Если заболевание действительно есть, то тест подтверждает его в 86 % случаев. Если заболевания нет, то тест выявляет отсутствие заболевания в среднем в 94% случаев.

Известно, что в среднем тест оказывается положительным у 10% пациентов, направленных на тестирование. При обследовании некоторого пациента врач направил его на ПЦР-тест, который оказался положительным. Какова вероятность того, что пациент действительно имеет это заболевание?

Решение:

Задача похожа на уже знакомую тем, кто готовится к ЕГЭ (про гепатит), однако вопрос здесь другой.
Уточним условие: «Какова вероятность того, что пациент, ПЦР-тест которого положителен, действительно имеет это заболевание?». В такой формулировке множество возможных исходов — это число пациентов с положительным результатом ПЦР-теста, причем только часть из них действительно заболевшие.

Пациент приходит к врачу и делает ПЦР-тест. Он может быть болен этим заболеванием – с вероятностью х. Тогда с вероятностью 1 – х он этим заболеванием не болен.

Анализ пациента может быть положительным по двум причинам:
а) пациент болеет заболеванием, которое нельзя называть, его анализ верен; событие А,
б) пациент не болен этим заболеванием, его анализ ложно-положительный, событие В.
Это несовместные события, и вероятность их суммы равна сумме вероятностей этих событий.

Имеем:

P(A)=0,86x;

P(B)=0,06 cdot (1-x);

P(A+B)=P(A)+P(B)=0,86x+0,06 (1-x)=0,1.

Мы составили уравнение, решив которое, найдем вероятность x.

x = 0,05.

Что такое вероятность х? Это вероятность того, что пациент, пришедший к доктору, действительно болен. Здесь множество возможных исходов — это количество всех пациентов, пришедших к доктору.

Нам же нужно найти вероятность z того, что пациент, ПЦР-тест которого положителен, действительно имеет это заболевание. Вероятность этого события равна 0,05 cdot 0,86 (пациент болен и ПЦР-тест выявил заболевание, произведение событий). С другой стороны, эта вероятность равна 0,1 cdot z (у пациента положительный результат ПЦР-теста, и при выполнении этого условия он действительно болен).

Получим: 0,05 cdot 0,86 = 0,1 cdot z, отсюда z = 0,43.
Ответ: 0,43.

Вероятность того, что пациент с положительным результатом ПЦР-теста действительно болен, меньше половины!
Кстати, это реальная проблема для диагностики в медицине, то есть в задаче отражена вполне жизненная ситуация.

5. Телефон передает sms-сообщение. В случае неудачи телефон делает следующую попытку. Вероятность того, что сообщение удастся передать без ошибок в каждой следующей попытке, равна 0,4. Найдите вероятность того, что для передачи сообщения потребуется не больше 2 попыток.

Решение:

Здесь все просто. Либо сообщение удалось передать с первой попытки, либо со второй.
Вероятность того, что сообщение удалось передать с первой попытки, равна 0,4.
С вероятностью 0,6 с первой попытки передать не получилось. Если при этом получилось со второй, то вероятность этого события равна 0,6 cdot 0,4.
Значит, вероятность того, что для передачи сообщения потребовалось не более 2 попыток, равна 0,4 + 0,4 cdot 0,6 = 0,4 cdot ( 1 + 0,6 ) = 0,64.

Ответ: 0,64.

6. Симметричную монету бросают 10 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4 орла»?

Решение:

А это более сложная задача. Можно, как и в предыдущих, пользоваться определением вероятности и понятиями суммы и произведения событий. А можно применить формулу Бернулли.

Формула Бернулли:

– Вероятность P_n^m того, что в n независимых испытаниях некоторое случайное событие A наступит ровно m раз, равна:

P_n^m=C_n^m p^m q^{n-m}, где:

p – вероятность появления события A в каждом испытании;
q=1-p – вероятность непоявления события A в каждом испытании.

Коэффициент C_n^m часто называют биномиальным коэффициентом.

О том, что это такое, расскажем с следующих статьях на нашем сайте. Чтобы не пропустить – подписывайтесь на нашу рассылку.

А пока скажем просто, как их вычислять.

displaystyle C_n^m=frac{n!}{m!(n-m)!}

Нет, это не заклинание. Не нужно громко кричать: Эн!!!! Поделить на эм! И на эн минус эм! 🙂 То, что вы видите в формуле, – это не восклицательные знаки. Это факториалы.
На самом деле все просто: n! (читается: эн факториал) – это произведение натуральных чисел от 1 до n. Например,

6! = 1cdot 2cdot 3cdot 4cdot 5cdot 6.

Пусть вероятность выпадения орла при одном броске монеты равна displaystyle frac{1}{2}, вероятность решки тоже displaystyle frac{1}{2}. Давайте посчитаем вероятность того, что из 10 бросков монеты выпадет ровно 5 орлов.

displaystyle P_1=C_{10}^5 cdot left ( frac{1}{2} right )^5 cdot left ( frac{1}{2} right )^5 =frac{10!}{5!cdot 5!}cdot frac{1}{2^{10}}.

Вероятность выпадения ровно 4 орлов равна

displaystyle P_2=C_{10}^4 cdot left ( frac{1}{2} right )^4 cdot left ( frac{1}{2} right )^6 =frac{10!}{4!cdot 6!}cdot frac{1}{2^{10}}.

Найдем, во сколько раз P_1 больше, чем P_2.

displaystyle frac{P_1}{P_2}=frac{10!cdot 4!cdot 6!cdot 2^{10}}{5!cdot 5!cdot 2^{10}cdot 10!}=frac{4!}{5!}=frac{1cdot 2cdot 3cdot 4cdot 1cdot 2cdot 3 cdot 4cdot 5cdot 6}{1cdot 2cdot 3cdot 4cdot 5 cdot 1cdot 2cdot 3 cdot 4cdot 5}=

displaystyle =frac{6}{5}=1,2.

Ответ: 1,2.

7. Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень дается не более двух выстрелов, и известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,6. Во сколько раз вероятность события «стрелок поразит ровно 5 мишеней» больше вероятности события «стрелок поразит ровно 4 мишени»?

Решение:

Стрелок поражает мишень с первого или со второго выстрела.

Вероятность поразить мишень равна

0,6 + 0,4 cdot 0,6 = 0,84.

Вероятность поразить 5 мишеней из 5 равна 0,84^5 = P_1 .

Вероятность поразить 4 мишени из 5 находим по формуле Бернулли:

displaystyle P_2={C_5}^4 cdot 0,84^4 cdot 0,16 = frac{5!}{4!}cdot 0,84^4 cdot 0,16 = 5cdot 0,84^4 cdot 0,16 ;

displaystyle frac{P_1}{P_2}=frac{0,84^5}{5cdot 0,84^4 cdot 0,16} = frac{0,84}{0,8} = 1,05.

8. В одном ресторане в г. Тамбове администратор предлагает гостям сыграть в «Шеш-беш»: гость бросает одновременно 2 игральные кости. Если он выбросит комбинацию 5 и 6 очков хотя бы один раз из двух попыток, то получит комплимент от ресторана: чашку кофе или десерт бесплатно. Какова вероятность получить комплимент? Результат округлите до сотых.

Решение:

Ресторан «Шеш-Беш» должен сказать составителям задачи спасибо: теперь популярность вырастет во много раз :-)
Заметим, что условие не вполне корректно. Например, я бросаю кости и при первом броске получаю 5 и 6 очков. Надо ли мне бросать второй раз? Могу ли я получить 2 десерта, если дважды выброшу комбинацию из 5 и 6 очков?

Поэтому уточним условие. Если при первом броске получилась комбинация из 5 и 6 очков, то больше кости я не бросаю и забираю свой десерт (или кофе).

Если первый раз не получилось – у меня есть вторая попытка.

Решим задачу с учетом этих условий.

При броске одной игральной кости возможны 6 исходов, при броске 2 костей – 36 исходов. Только два из них благоприятны: это 5; 6 и 6; 5, вероятность каждого из них равна displaystyle frac{1}{36}. Вероятность выбросить 5 и 6 при первом броске равна displaystyle frac{1}{36} + frac{1}{36}=frac{2}{36}=frac{1}{18}.

Вероятность того, что с первой попытки не получилось, равна displaystyle 1- frac{1}{18}=frac{17}{18}.

Если в первый раз не получилось выбросить 5 и 6, а во второй раз получилось – вероятность этого события равна displaystyle frac{17}{18}cdot frac{1}{18}.

Вероятность выбросить 5 и 6 с первой или со второй попытки равна displaystyle frac{1}{18}+ frac{1}{18} cdot frac{17}{18}= frac{1}{18} cdot frac{35}{18} = frac{35}{324}approx 0,11.

9. Игральную кость бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 4. Какова вероятность того, что был сделан один бросок? Ответ округлите до сотых.

Решение:

Рассмотрим возможные варианты. Игральную кость могли бросить:
1 раз, выпало 4 очка. Вероятность этого события равна displaystyle frac{1}{6} (1 благоприятный исход из 6 возможных). При этом, если получили 4 очка, кость больше не бросаем.

2 раза, выпало 3 и 1 или 1 и 3 или 2 и 2. При этом, если получили 4 очка, больше не бросаем кость. Для 2 бросков: всего 36 возможны исходов, из них 3 благоприятных, вероятность получить 4 очка равна displaystyle frac{3}{36}.

3 раза, выпало 1, 1, 2 или 1, 2, 1 или 2, 1, 1. Если получили 4 очка – больше не бросаем кость. Для 3 бросков: всего 6^3 = 216 возможны исходов, из них 3 благоприятных, вероятность получить 4 очка равна displaystyle frac{3}{216}.

4 раза, каждый раз по 1 очку. Вероятность этого события равна displaystyle frac{1}{6^4}.

Вероятность получить 4 очка равна

displaystyle P=frac{1}{6}+frac{3}{6^2}+frac{3}{6^3}+frac{1}{6^4}=frac{1}{6}left ( 1+frac{3}{6}+frac{3}{6^2}+frac{1}{6^3} right )=

displaystyle =frac{1}{6}left ( 1+frac{1}{6} right )^3=frac{1}{6}cdot frac{7^3}{6^3}=frac{7^3}{6^4}.

Воспользуемся формулой условной вероятности.

Пусть P_1 — вероятность получить 4 очка, сделав 1 бросок; displaystyle P_1=frac{1}{6} (для одного броска: 6 возможных исходов, 1 благоприятный);

P — вероятность получить 4 очка с одной или нескольких попыток, displaystyle P=frac{7^3}{6^4};

P_2 — вероятность, что при этом был сделан только один бросок;

P_1=Pcdot P_2;

displaystyle frac{1}{6}=frac{1}{6}cdot frac{7^3}{6^3}cdot P_2;

displaystyle P_2=frac{6^3}{7^3}=frac{216}{343}approx 0,63.

Ответ: 0,63.

10. В викторине участвуют 6 команд. Все команды разной силы, и в каждой встрече выигрывает та команда, которая сильнее. В первом раунде встречаются две случайно выбранные команды.

Ничья невозможна. Проигравшая команда выбывает из викторины, а победившая команда играет со следующим случайно выбранным соперником. Известно, что в первых трех играх победила команда А. Какова вероятность того, что эта команда выиграет следующий раунд?

Решение:

Пусть силы команд равны 1, 2, 3, 4, 5 и 6.
В трех раундах участвуют 4 команды, то есть выбирается 4 числа из 6 и среди этих четырех находится наибольшее.
Выпишем в порядке возрастания, какие 4 команды могли участвовать в первых трех раундах:

1234, 1235, 1236, 1245, 1246, 1256, 1345, 1346, 1356, 1456, 2345, 2346, 2356, 2456, 3456 — всего 15 вариантов.

Среди этих 15 групп есть только одна, в которой 4 — наибольшее число. Это группа 1234. Однако, если команда 4 победила команды 1, 2 и 3, то у нее нет шансов выиграть в следующем раунде у команды 5 или 6.

Есть также 4 группы, в которых 5 — наибольшее число. Вероятность того, что команда 5 победила в трех первых раундах, равна displaystyle frac{4}{15}. В следующем туре команда 5 встретится либо с командой 6 (и проиграет), либо с командой 1, 2, 3 или 4 и выиграет, то есть в четвертом раунде команда 5 побеждает с вероятностью displaystyle frac{1}{2}.

Есть также 10 групп, где 6 — наибольшее число. Вероятность того, что команда 6 победила в трех первых раундах, равна displaystyle frac{10}{15}. В четвертом туре команда 6 побеждает с вероятностью 1 (она самая сильная). Соответственно, в следующем туре команда 6 побеждает с вероятностью 1.
Получается displaystyle frac{4}{15} cdot frac{1}{2} + frac{10}{15} cdot 1 = frac{12}{15} = frac{4}{5} — вероятность команды, победившей в 3 первых турах, победить в четвертном.

Ответ: displaystyle frac{4}{5}.

И наконец, хитроумная задача, совсем не похожая на школьную теорию вероятностей. В математике ее называют «задачей о разорении игрока». Это уже крутейший теорвер! Будем надеяться, что в варианты ЕГЭ ее все-таки включать не будут.

11. Первый член последовательности целых чисел равен 0. Каждый следующий член последовательности с вероятностью р = 0,8 на единицу больше предыдущего и с вероятностью 1 – р меньше предыдущего. Какова вероятность того, что какой-то член этой последовательности окажется равен – 1?

Решение:

Кошмар, что и говорить, и точно не задача из Части 1 ЕГЭ. Будем разбираться.
Вначале мы находимся в точке 0, из нее можем попасть в точку с координатой 1 или в точку с координатой -1. Дальше возможно увеличение или уменьшение координаты на каждом шаге, а найти надо вероятность того, что когда-либо попадем в точку -1.

Обозначим P_1 – вероятность когда-либо попасть в точку -1, если сейчас мы находимся в точке 0,
P_i – вероятность когда-либо попасть в точку -1, если сейчас мы находимся в точке i.

Из точки 0 можно пойти вверх или вниз. Если мы идем вниз (с вероятностью q=1 – р) – мы сразу попадаем в точку -1.

Поскольку из точки 0 можно пойти вверх или вниз, и эти события несовместны, получим:

P_1= q + p cdot P_2, где P_2 – вероятность попасть когда-нибудь в точку -1, находясь в данный момент в точке 1.
А из точки 1 в точку – 1 можно попасть следующим образом: сначала в точку 0, потом в точку – 1; вероятность каждого из этих событий равна P_1.
Да, это сложно воспринять! Но давайте вернемся к обозначениям: Р1 – вероятность когда-либо попасть в точку -1, если сейчас мы находимся в точке 0. И она точно такая же, как вероятность когда-либо попасть в точку 0, если сейчас мы находимся в точке 1.
Значит, вероятность попадания из точки 1 в точку – 1 равна {P_1}^2 . Мы получаем квадратное уравнение: P_1 = q +p cdot {P_1}^2 .

По условию, q = 1 - p = 0,2. Тогда 0,8cdot{P_1}^2 - P_1 + 0,2 = 0;
4 cdot {P_1}^2 - 5P_1 + 1 = 0. Корни этого уравнения: displaystyle P_1 = 1 или displaystyle P_1 = frac{1}{4} = frac{q}{p}.

Какой из этих корней выбрать? Оказывается, если по условию displaystyle frac{q}{p} textgreater 1, то в ответе получится 1 (всегда попадем в точку -1).
А если, как в нашем случае, displaystyle frac{q}{p} textless 1, то ответ displaystyle frac{q}{p} , то есть 0,25.
Ответ: 0,25.

А теперь представим себе, что будет, если эту задачи все-таки включат в курс подготовки к ЕГЭ. Учителя будут говорить ученикам: если тебе надо попасть из 0 в точку – 1, вероятность перехода вверх равна р, вероятность перехода вниз равна q, и если q textless p, то в ответе будет displaystyle frac{q}{p}, а если q textgreater p, то в ответе будет 1. Бессмысленная зубрежка, короче говоря.

Задачи, разобранные в этой статье, взяты из Открытого Банка заданий ЕГЭ по математике: mathege.ru

Будут ли эти задачи — и особенно последние — на ЕГЭ-2022? Вот официальный ответ ФИПИ:

«Открытость и прозрачность ЕГЭ, наличие открытых банков, дает возможность развивать различные ресурсы, способствующие повышению качества образования.

При этом вся официальная информация, спецификации, демонстрационные варианты, открытые банки, содержатся только на сайте ФИПИ. Типы заданий, которые будут включены в ЕГЭ по математике в 2022 году прошли широкое обсуждение и апробацию в регионах, соответствуют ФГОС.

ФИПИ не комментирует содержание других ресурсов».
Ждем, когда на сайте ФИПИ появятся подборки задач №10 ЕГЭ-2022.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Новые задачи по теории вероятностей из Открытого Банка заданий ЕГЭ, 2021-2022 год» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Теория вероятностей»

Открытый банк заданий по теме теория вероятностей. Задания B4 из ЕГЭ по математике (профильный уровень)

Геометрические фигуры на плоскости: нахождение длины, площади, угла, координат

Задание №1060

Условие

На заводе керамической плитки 5% произведённых плиток имеют дефект. При контроле качества продукции обнаруживается лишь 40% дефектных плиток. Остальные плитки отправляются на продажу. Найдите вероятность того, что выбранная случайным образом при покупке плитка не будет иметь дефектов. Ответ округлите до сотых.

Показать решение

Решение

При контроле качества продукции выявляется 40% дефектных плиток, которые составляют 5% от произведённых плиток, и они не поступают в продажу. Значит, не поступает в продажу 0,4 · 5% = 2% от произведённых плиток. Остальная часть произведённых плиток — 100% − 2% = 98% поступает в продажу.

Не имеет дефектов 100% − 95% произведённых плиток. Вероятность того, что купленная плитка не имеет дефекта, равна 95% : 98% = frac{95}{98}approx 0,97

Ответ

0,97

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1059

Условие

Вероятность того, что аккумулятор не заряжен, равна 0,15. Покупатель в магазине приобретает случайную упаковку, которая содержит два таких аккумулятора. Найдите вероятность того, что оба аккумулятора в этой упаковке окажутся заряжены.

Показать решение

Решение

Вероятность того, что аккумулятор заряжён, равна 1-0,15 = 0,85. Найдём вероятность события «оба аккумулятора заряжены». Обозначим через A и B события «первый аккумулятор заряжён» и «второй аккумулятор заряжён». Получили P(A) = P(B) = 0,85. Событие «оба аккумулятора заряжены» — это пересечение событий A cap B, его вероятность равна P(A cap B) = P(A)cdot P(B) = 0,85cdot 0,85 = 0,7225.

Ответ

0,7225

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1058

Условие

Вероятность того, что новая стиральная машина в течение года поступит в гарантийный ремонт, равна 0,065. В некотором городе в течение года было продано 1200 стиральных машин, из которых 72 штуки было передано в гарантийную мастерскую. Определите, насколько отличается относительная частота наступления события «гарантийный ремонт» от его вероятности в этом городе?

Показать решение

Решение

Частота события «стиральная машина в течение года поступит в гарантийный ремонт» равна frac{72}{1200} = 0,06. От вероятности она отличается на 0,065-0,06=0,005.

Ответ

0,005

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1057

Условие

Вероятность того, что ручка бракованная, равна 0,05. Покупатель в магазине приобретает случайную упаковку, которая содержит две ручки. Найдите вероятность того, что обе ручки в этой упаковке окажутся исправными.

Показать решение

Решение

Вероятность того, что ручка исправная, равна 1-0,05 = 0,95. Найдём вероятность события «обе ручки исправны». Обозначим через A и B события «первая ручка исправна» и «вторая ручка исправна». Получили P(A) = P(B) = 0,95. Событие «обе ручки исправны» — это пересечение событий Acap B, его вероятность равна P(Acap B) = P(A)cdot P(B) = 0,95cdot 0,95 = 0,9025.

Ответ

0,9025

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1056

Условие

На рисунке изображён лабиринт. Жук заползает в лабиринт в точке «Вход». Развернуться и ползти в обратном направлении жук не может, поэтому на каждой развилке он выбирает один из путей, в котором еще не был. С какой вероятностью жук придет к выходу Д, если выбор дальнейшего пути является случайным.

Лабиринт, в котором случайным образом движется жук

Показать решение

Решение

Расставим на перекрёстках стрелки в направлениях, по которым может двигаться жук (см. рис.).

Лабиринт, в котором случайным образом движется жук с ходами к выходу Д

Выберем на каждом из перекрёстков одно направление из двух возможных и будем считать, что при попадании на перекрёсток жук будет двигаться по выбранному нами направлению.

Чтобы жук достиг выхода Д, нужно, чтобы на каждом перекрёстке было выбрано направление, обозначенное сплошной красной линией. Всего выбор направления делается 4 раза, каждый раз независимо от предыдущего выбора. Вероятность того, что каждый раз выбрана сплошная красная стрелка, равна frac12cdotfrac12cdotfrac12cdotfrac12= 0,5^4= 0,0625.

Ответ

0,0625

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1055

Условие

В секции 16 спортсменок, среди них две подруги — Оля и Маша. Спортсменок случайным образом распределяют по 4 равным группам. Найдите вероятность того, что Оля и Маша попадут в одну группу.

Показать решение

Решение

Сформируем группы по 16 : 4 = 4 (человека), последовательно помещая спортсменов на свободные места, при этом начнём с Оли и Маши. Сначала поместим Олю на случайно выбранное место из 16. Теперь помещаем на свободное место Машу (исходом этого эксперимента будем считать выбор места для неё). Всего имеется 15 свободных мест (одно уже заняла Оля), поэтому всего возможны 15 исходов. В одной группе с Олей останется 3 свободных места, поэтому событию «Оля и Маша в одной группе» благоприятствуют 3 исхода. Вероятность этого события равна frac{3}{15}=0,2.

Ответ

0,2

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1054

Условие

В группе туристов 50 человек. Их микроавтобусом в несколько приёмов завозят к отправной точке маршрута по 10 человек за рейс. Порядок перевозки туристов случаен. Найдите вероятность того, что турист П. отправится в первом рейсе микроавтобуса.

Показать решение

Решение

Пусть выбор места в микроавтобусе — исход, выбор места в первом микроавтобусе — благоприятный исход. Общее число исходов равно 50 (общее число мест), благоприятных исходов 10 (число мест на первом рейсе). По определению, вероятность равна frac{10}{50}=0,2.

Ответ

0,2

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1053

Условие

Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «сумма очков равна 7»?

Показать решение

Решение

Исходом будем считать пару чисел: очки при первом и втором броске. Тогда указанному событию благоприятствуют следующие исходы: 1-6, 2-5, 3-4, 4-3, 5-2, 6-1. Их количество равно 6.

Ответ

6

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1052

Условие

В классе 25 человек. С помощью жребия они выбирают трёх человек, которые должны пойти на митинг. Найдите вероятность того, что обучающийся в этом классе ученик К., пойдёт на митинг.

Показать решение

Решение

Пусть по жребию пойдут на митинг три человека, которые выберут жребии с номерами «1», «2» и «3» из 25 возможных. Пусть исходом будет получение учеником К. определённого номера. Тогда общее число исходов равно 25, благоприятных исходов 3. По определению, вероятность равна frac{3}{25}=0,12.

Ответ

0,12

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1051

Условие

Стоянка освещается фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,4. Найдите вероятность того, что за год хотя бы одна лампа не перегорит.

Показать решение

Решение

Сначала найдём вероятность события «обе лампы перегорели в течение года», противоположного событию из условия задачи. Обозначим через A и B события «первая лампа перегорела в течение года» и «вторая лампа перегорела в течение года». По условию P(A) = P(B) = 0,4. Событие «обе лампы перегорели в течение года» — это A cap B, его вероятность равна P(A cap B) =  P(A) cdot P(B) =  0,4 cdot 0,4 =  0,16 (так как события A и B независимы).

Искомая вероятность равна 1 — P(A cap B) =  1 — 0,16 =  0,84.

Ответ

0,84

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928

Практика по заданию №2 ЕГЭ 2022 по математике профильного уровня — классическое определение вероятности.

Для выполнения задания №2 необходимо умение решать простейшие задачи по теории вероятностей.

Практика

Примеры заданий:

1. В чемпионате по гимнастике участвуют 56 спортсменок: 27 из Норвегии, 15 из Дании, остальные из Швеции. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Швеции.

2. Перед началом первого тура чемпионата по шахматам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 46 спортсменов, среди которых 28 спортсменов из России, в том числе Дмитрий Тоснин. Найдите вероятность того, что в первом туре Дмитрий Тоснин будет играть с каким либо спортсменом из России.

3. Научная конференция проводится в 4 дня. Всего запланировано 80 докладов – первые два дня по 12 докладов, остальные распределены поровну между третьим и четвёртым днями. На конференции планируется доклад профессора М. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

4. Фабрика выпускает сумки. В среднем на 150 качественных сумок приходится 14 сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.

5. В сборнике билетов по химии всего 15 билетов, в 6 из них встречается вопрос по теме «Кислоты». Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по теме «Кислоты».

Связанные страницы:

4. Введение в теорию вероятностей


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Сложные задачи по теории вероятности

Общая памятка по всем разделам теории вероятностей:


Задание
1

#3858

Уровень задания: Равен ЕГЭ

Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы (4) очка в двух играх. Если команда выигрывает, она получает (3) очка, в случае ничьей — (1) очко, если проигрывает — (0) очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны (0,3).

Чтобы команда в двух играх набрала не менее (4) очков, ей нужно: либо 1) выиграть обе игры, либо 2) выиграть в одной из игр и сыграть вничью в другой игре.
Так как вероятности выиграть и проиграть одинакова и равна (0,3), то вероятность сыграть вничью равна (1-0,3-0,3=0,4).
Следовательно, вероятности в этих случаях равны соответственно:
1) (0,3cdot 0,3)
2) (0,3cdot 0,4+0,4cdot 0,3) (выиграть в первой игре и сыграть вничью во второй или сыграть вничью в первой и выиграть во второй).
Следовательно, вероятность того, что команда выйдет в следующий круг соревнований, равна [0,3cdot 0,3+0,3cdot 0,4+0,4cdot 0,3=0,33]

Ответ: 0,33


Задание
2

#2739

Уровень задания: Сложнее ЕГЭ

Илья решает задачу по геометрии, в которой дан четырёхугольник (ABCD), причём (AB = 5), (BC = 6), (CD = 4), (AD = 10). В условии задачи сказано, что одна из вершин является центром некоторой окружности и Илья думает, какую вершину ему выбрать в качестве центра этой самой окружности.

Известно, что вероятность выбора каждой конкретной вершины пропорциональна сумме длин сторон четырёхугольника (ABCD), проходящих через эту вершину. Какова вероятность того, что Илья выберет вершину (B)?

Через вершину (A) проходят стороны (AB) и (AD), их сумма: (AB + AD = 15).

Через вершину (B) проходят стороны (AB) и (BC), их сумма: (AB + BC = 11).

Через вершину (C) проходят стороны (BC) и (CD), их сумма: (BC + CD = 10).

Через вершину (D) проходят стороны (CD) и (DA), их сумма: (CD + DA = 14).

Обозначим вероятность выбора вершины (A) через (P(A)) (для остальных вершин аналогично). Тогда по условию имеем: [P(A) = 15k,qquad P(B) = 11k,qquad P(C) = 10k,qquad P(D) = 14k,,] но (P(A) + P(B) + P(C) + P(D) = 1), тогда (k = 0,02), откуда находим: (P(B) = 0,22).

Ответ: 0,22


Задание
3

#191

Уровень задания: Сложнее ЕГЭ

Монетку подбросили 10 раз. Какова вероятность того, что выпало не менее 9 орлов? Ответ округлите до тысячных.

Условие того, что выпало не менее 9 орлов эквивалентно тому, что выпало не более 1 решки, то есть либо ровно 1 решка, либо 0 решек.

Количество всевозможных различных исходов в серии из 10 испытаний равно (2^{10} = 1024).

Среди них есть 11 исходов, подходящих под условие: (Орёл; Орёл; …; Орёл), (Орёл; Орёл; …; Орёл; Решка), (Орёл; Орёл; …; Решка; Орёл), …, (Решка; Орёл; …; Орёл), следовательно, искомая вероятность равна [dfrac{11}{1024}.] После округления получим (0,011).

Ответ: 0,011


Задание
4

#190

Уровень задания: Сложнее ЕГЭ

Монетку подбросили 3 раза. Какова вероятность того, что выпало не менее 3 орлов? Ответ округлите до тысячных.

Условие того, что выпало не менее 3 орлов эквивалентно тому, что выпали только орлы.

Количество всевозможных различных исходов в серии из 3 испытаний равно (2^3 = 8) . Среди них есть ровно один исход, подходящий под условие: (Орёл; Орёл; Орёл). Таким образом, искомая вероятность равна [dfrac{1}{8} = 0,125.]

Ответ: 0,125


Задание
5

#189

Уровень задания: Сложнее ЕГЭ

Монетку подбросили 2 раза. Какова вероятность того, что выпало не менее 1 орла? Ответ округлите до тысячных.

Всевозможных исходов в серии из 2 подбрасываний может быть (2^2 = 4): (Орёл; Орёл), (Орёл; Решка), (Решка; Орёл), (Решка; Решка).

Среди выписанных (всевозможных) исходов под условие задачи подходят первые 3, следовательно, искомая вероятность равна [dfrac{3}{4} = 0,75.]

Ответ: 0,75


Задание
6

#2658

Уровень задания: Сложнее ЕГЭ

Игорь трижды подбрасывает правильную игральную кость. Какова вероятность того, что за эти три подбрасывания ровно один раз выпадет число, кратное трём, а сумма результатов подбрасываний не будет делиться на (3)? Ответ округлите до сотых.

Так как игральная кость правильная, то вероятность выпадения каждой грани равна (dfrac{1}{6}). Среди чисел на гранях есть два числа, дающих при делении на (3) остаток (0), два числа, дающих при делении на (3) остаток (1) и два числа, дающих при делении на (3) остаток (2).

Тогда вероятность за одно подбрасывание получить, например, число, дающее при делении на (3) остаток (1), равна (dfrac{1}{3}). С другими остатками аналогично.

Условие задачи можно переформулировать в следующем виде: какова вероятность за три подбрасывания получить результаты, остатки от деления на (3) которых будут содержать единственный (0) и два одинаковых числа?

Таким образом, нас устраивают исходы, остатки от деления на (3) которых будут иметь вид:

[begin{aligned}
&0,quad 1,quad 1\
&1,quad 0,quad 1\
&1,quad 1,quad 0\
&0,quad 2,quad 2\
&2,quad 0,quad 2\
&2,quad 2,quad 0,.
end{aligned}]

Вероятность любого из выписанных исходов равна [dfrac{1}{3}cdot dfrac{1}{3}cdot dfrac{1}{3},.] При этом различных исходов здесь шесть, следовательно, вероятность получения подходящего исхода равна [6cdot dfrac{1}{3}cdot dfrac{1}{3}cdot dfrac{1}{3} = dfrac{2}{9},.] После округления получим ответ (0,22).

Ответ: 0,22


Задание
7

#2765

Уровень задания: Сложнее ЕГЭ

Таня заметила, что в казино “Подкинем” используют неправильную игральную кость (т.е. не у всех граней вероятности выпадения одинаковы). При этом она установила, что вероятность выпадения чётного числа равна (0,6); вероятность выпадения числа, делящегося на (3), равна (0,3); вероятность того, что выпадет (1) или (5), равна (0,22). Найдите вероятность того, что на этой игральной кости выпадет число (3). Ответ округлите до сотых.

Вероятность выпадения числа (n) обозначим через (P({n})), вероятность выпадения одного из чисел (m) и (n) обозначим через (P({m; n})), а вероятность выпадения одного из чисел (m), (n) и (k) обозначим через (P({m; n; k})). Тогда [P({2; 4; 6}) = 0,6qquadLeftrightarrowqquad P({1; 3; 5}) = 1 — 0,6 = 0,4]

При этом (P({1; 5}) = 0,22), но ведь (P({1; 3; 5}) — P({1; 5}) = P({3})), следовательно, [P({3}) = 0,4 — 0,22 = 0,18,.]

Ответ: 0,18

Если выпускник готовится к сдаче ЕГЭ по математике профильного уровня, ему необходимо научиться решать задачи на применение теории вероятности повышенной сложности. Как показывает практика многих лет, такие задания являются обязательной частью программы аттестационного испытания. Поэтому если учащийся не до конца понимает принцип решения сложных задач на теорию вероятности, ему обязательно стоит вновь разобраться в данной теме.

Вместе с образовательным порталом «Школково» старшеклассники смогут качественно подготовиться к прохождению аттестационного испытания. Наш сайт позволит определить наиболее сложные темы и восполнить пробелы в знаниях. Опытные специалисты «Школково» подготовили весь необходимый материал, изложив его таким образом, чтобы школьники с любым уровнем подготовки смогли легко справиться с решением сложных задач ЕГЭ на теорию вероятности. Базовая информация по данной теме представлена в разделе «Теоретическая справка».

Чтобы попрактиковаться в выполнении сложных задач ЕГЭ по теории вероятности, школьники могут выполнить соответствующие упражнения. Простые и сложные задания, подобранные нашими специалистами, содержат подробные алгоритмы решения и правильные ответы. База заданий регулярно обновляется и дополняется.

Выполнять упражнения школьники из Москвы и других российских городов могут в онлайн-режиме. При необходимости задания по теории вероятности в ЕГЭ можно сохранить в разделе «Избранное». Благодаря этому вы сможете быстро найти интересующие примеры и обсудить алгоритмы нахождения правильного ответа с преподавателем.

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Понравилась статья? Поделить с друзьями:
  • Задание легенд ноэль вступительный экзамен
  • Задание легенд ноэль 2 экзамен гильдии
  • Задание к экзамену учимся сотрудничать формулировка сути конфликтной ситуации на языке фактов
  • Задание интервью английский егэ
  • Задание задача по экономике егэ