Автор материала — Анна Малкова
Какими были задачи с параметрами на ЕГЭ-2022? На этой странице — обзор всех типов задач №17, предложенных на ЕГЭ по математике в этом году, с полным решением и оформлением.
Напомним, что «параметры» — одна из дорогостоящих задач ЕГЭ. Она оценивается в 4 первичных балла.
Основной темой задач с параметрами на ЕГЭ этого года были модули.
Если вы не помните, что такое модуль числа, — вам сюда.
Способы решения — разные. В одних задачах удобнее графический способ, в других — аналитический.
Мы начнем с тех задач, которые решаются графическим способом. В первых трех, которые мы здесь разбираем, нам встретится уравнение окружности.
Почитать о нем подробно можно здесь.
1. При каких значениях параметра уравнение имеет ровно 4 решения?
Решение:
Вспомним, как решать уравнения вида
Поэтому исходное уравнение равносильно системе:
Получим:
Изобразим решения системы в координатах
Уравнение задает окружность с центром и радиусом 5; уравнение задает окружность с центром и радиусом ; при этом должно выполняться условие
Заметим, что обе окружности проходят через точки и
Найдем, при каких значениях параметра исходное уравнение имеет ровно 4 решения.
При прямая проходит через точку общую для двух окружностей; уравнение имеет ровно 3 решения.
Если прямая проходит через точку (нижнюю точку окружности ), уравнение также имеет 3 решения.
При этом поскольку разность ординат точек Q и A равна то есть радиусу окружности
При уравнение имеет 4 решения.
Если решений меньше 4.
Если уравнение имеет ровно 3 решения, т.к. точка O(0; 0) общая для обеих окружностей.
Если прямая проходит через B — верхнюю точку окружности уравнение имеет ровно 3 решения.
В этом случае
При уравнение имеет ровно 4 решения.
Если решений меньше, чем 4.
Объединив случаи, получим ответ.
Ответ:
2. При каких значениях параметра уравнение имеет ровно 2 решения?
Решение:
Раскроем модуль по определению.
Уравнение (1) задает окружность с центром в точке Р (4; 3) и радиусом 5,
уравнение (2) задает окружность с центром в точке Q(-3; 4) и радиусом 5.
Изобразим график совокупности двух систем в системе координат (x;a).
При получаем часть окружности (1), лежащую ниже прямой a = 7x;
при получаем часть окружности (2), лежащую выше прямой a = 7x.
Исходное уравнение имеет ровно два различных решения, если прямая пересекает график совокупности двух систем ровно два раза.
Прямая проходящая через точку С, пересекает график совокупности двух систем один раз.
Найдем координаты С — самой нижней точки и Е — самой верхней точки правой окружности.
Для этих точек x = 4. Найдем координату a:
или
Координаты точек С (4; и Е (4; 8).
Найдем координаты D — самой нижней точки и F — самой верхней точки левой окружности
Для этих точек x = — 3, найдем координату a.
или
Координаты точек: D (3; 1), F(3; 9).
Точки А и В, в которых пересекаются две окружности, лежат на прямой
a = 7x (так как при a = 7x выражение под модулем равно нулю).
Подставив a = 7x в уравнение окружности (1) получим:
x = 0 или x = 1.
Получили точки В (0; 0) и А (1; 7).
Прямая пересекает график совокупности двух систем ровно два раза в следующих случаях:
1) если прямая проходит выше точки С, но ниже точки D:
2) если прямая проходит выше точки В, но ниже точки А:
3) если прямая проходит выше точки Е, но ниже точки F:
Если или то решений нет.
Если или a = 9, уравнение имеет ровно одно решение.
Если или a = 8, ровно три решения.
Если или ровно четыре решения. Эти случаи нам не подходят.
Ответ: a
3. При каких значениях параметра уравнение
имеет ровно 2 корня?
Решение:
Раскрыв модуль, получим:
Решим систему графически в координатах
Прямая — это биссектриса первого и третьего координатных углов.
Неравенство задает полуплоскость, расположенную ниже прямой
Уравнение задает окружность 1 с центром в точке и радиусом
Уравнение задает окружность 2 с центром в точке и радиусом
Заметим, что обе окружности проходят через точки О(0; 0) и М(1; 1). В этом легко убедиться, подставив координаты этих точек в уравнения окружностей.
Исходное уравнение имеет ровно 2 корня, если прямая пересекает совокупность двух окружностей ровно в двух точках, лежащих не выше прямой a = x.
Это происходит в следующих случаях:
1) Прямая проходит выше точки А и ниже точки В на рисунке, где А — нижняя точка окружности 2, В — нижняя точка окружности 1.
2) Прямая проходит выше точки С и ниже точки D на рисунке, где D — верхняя точка окружности 2, С — верхняя точка окружности 1.
3) Прямая проходит выше точки О(0; 0) и ниже точки М(1;1).
Найдем координаты точек А, В, С, D.
Получим, что
Ответ:
Заметим, что в каждом из уравнений присутствовало выражение — как в уравнении окружности. Именно поэтому становилось понятно, что их можно решить графически в координатах x; a.
Теперь — следующий тип задач. Здесь окружностей уже не будет. Зато будет разложение на множители.
4. При каких значениях параметра уравнение
имеет ровно 4 решения?
Решение:
Раскроем модуль. Уравнение равносильно совокупности двух систем:
Упростим по очереди каждую из них.
1) Случай
Найдем дискриминант и корни этого квадратного уравнения.
2) Случай
В этом случае также найдем дискриминант и корни квадратного уравнения.
Получим:
или .
Решим совокупность двух систем графически в координатах
Если уравнение имеет меньше 4 решений.
Если также меньше 4 решений.
Если прямая проходит через точку A или точку B, уравнение имеет ровно 3 решения.
В точке A пересекаются прямые и , значит, для этой точки
В точке B пересекаются прямые и , то для точки B:
.
Уравнение имеет ровно 4 решения, если или или .
Ответ:
Следующие две задачи мы решим (для разнообразия) аналитическим способом.
5. При каких значениях параметра уравнение
имеет меньше 4 решений?
Решение:
Уравнение равносильно совокупности:
Рассмотрим каждый случай отдельно
1)
2)
Каждое из уравнений — квадратное и не может иметь больше 2 корней.
Если уравнение (1) имеет 2 неотрицательных корня, а уравнение (2) имеет 2 отрицательных корня, исходное уравнение имеет ровно 4 решения. Найдем, при каких значениях это происходит, а затем исключим эти значения. Получим случай, когда исходное уравнение имеет менее 4 корней.
Исходное уравнение имеет ровно 4 решения, если уравнение имеет два неотрицательных корня, а уравнение имеет два отрицательных корня.
1 уравнение:
По теореме Виета,
для уравнения
.
При этом
Оценим и
Сравним т.к.
также
Получим:
2 уравнение:
При этом т.е.
— верно при всех a.
Получим:
Исходное уравнение имеет ровно 4 решения, если выполняется система условий:
При всех остальных значениях a — меньше четырёх решений. Значит, подходят значения
Ответ:
6. Найдите все положительные значения a, при каждом из которых уравнение
имеет ровно 4 корня.
Решение:
Раскроем модуль по определению.
Мы получили совокупность двух систем. Чтобы исходное уравнение имело ровно 4 корня, нужно, чтобы каждая система имела ровно два решения. Решим каждую из систем отдельно.
1) Первая система:
Чтобы квадратное уравнение имело два неотрицательных корня, необходимо и достаточно выполнения условий:
Другой способ: можно рассмотреть квадратичную функцию
и воспользоваться условиями:
Найдем дискриминант соответствующего квадратного уравнения.
при этом
Получим:
Корни уравнения
Отсюда
2) Вторая система:
Чтобы система имела ровно 2 решения, для квадратичной функции
необходимо и достаточно выполнения условий:
— верно для всех
Решение второй системы:
Исходное уравнение имеет ровно 4 различных решения, если
Ответ:
Как всему этому научиться? Если вы решили освоить тему «Параметры» — не нужно начинать со сложных задач. Вначале — подготовительная работа. Элементарные функции и их графики, базовые элементы для решения задач с параметрами. Кроме того, надо отлично знать методы алгебры: разложение выражений на множители, выделение полных квадратов, решение уравнений и неравенств всех типов и многое другое.
Изучить все это можно на Онлайн-курсе подготовки к ЕГЭ по математике. На нем мы решаем и такие задачи, и более сложные. Изучаем не менее 11 методов решения задач с параметрами. Выпускники Онлайн-курса отлично справились с «параметрами» на ЕГЭ-2022.
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Задачи с параметрами на ЕГЭ-2022: модули, окружности, квадратные уравнения» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
09.03.2023
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Найдите все значения параметра k, при каждом из которых уравнение имеет хотя бы одно решение на интервале
2
Найдите все значения k, при каждом из которых уравнение
имеет хотя бы одно решение на отрезке
Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 4. (Часть C).
3
Определите, при каких значениях параметра a уравнение
имеет ровно два решения.
Источник: РЕШУ ЕГЭ — Предэкзаменационная работа 2014 по математике.
4
Найдите все значения параметра a, при каждом из которых уравнение
имеет корни, но ни один из них не принадлежит интервалу (4; 19).
5
Найдите все значения параметра a, при каждом из которых уравнение
имеет хотя бы один корень на отрезке [5; 23].
Пройти тестирование по этим заданиям
Всё варианты 17 задания математика ЕГЭ Профиль 2022
Скачать задания в формате pdf.
Задания 13 ЕГЭ по математике профильного уровня 2022 год (параметры)
1) (28.03.2022 досрочная волна) Найдите все значения параметра a, при каждом из которых система уравнений
[ left{ {begin{array}{*{20}{c}} {frac{{x,{y^2} — 2,x,y — 4y + 8}}{{sqrt {4 — y} }} = 0,} \ {y = a,x,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,} end{array}} right. ]
имеет ровно три различных решения.
ОТВЕТ: (left( {0;1} right) cup left( {1;4} right).)
2) (28.03.2022 досрочная волна) Найдите все значения параметра a, при каждом из которых система уравнений
[ left{ {begin{array}{*{20}{c}} {frac{{x,{y^2} — 3,x,y — 3y + 9}}{{sqrt {x + 3} }} = 0,} \ {y = a,x,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,} end{array}} right. ]
имеет ровно два различных решения.
ОТВЕТ: (left( {0;frac{1}{3}} right] cup left{ 3 right}.)
3) (28.03.2022 досрочная волна) Найдите все значения параметра a, при каждом из которых система уравнений
[ left{ {begin{array}{*{20}{c}} {left( {x,{y^2} — 3,x,y — 3y + 9} right)sqrt {x — 3} = 0,} \ {y = a,x,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,} end{array}} right. ]
имеет ровно три различных решения.
ОТВЕТ: (left( {0;frac{1}{3}} right).)
4) (02.06.2022 основная волна) Найдите все значения параметра a, при каждом из которых уравнение
({x^2} + {a^2} + x — 7a = left| {,7x + a,} right|)
имеет более двух различных решений.
ОТВЕТ: (left[ { — 1;,0} right] cup left[ {,7;,8} right].)
5) (02.06.2022 основная волна) Найдите все значения параметра a, при каждом из которых уравнение
({x^2} + {a^2} — 2x — 6a = left| {,6x — 2a,} right|)
имеет два различных решения.
ОТВЕТ: (left( {2 — 2sqrt 5 ;4 — 2sqrt 5 } right) cup left( {0;,6} right) cup left( {2 + 2sqrt 5 ;4 + 2sqrt 5 } right).)
6) (02.06.2022 основная волна) Найдите все значения параметра a, при каждом из которых уравнение
(left| {{x^2} + {a^2} — 6x — 4a} right| = 2x + 2a)
имеет два различных решения.
ОТВЕТ: (left( { — 2;1 — sqrt 5 } right) cup left( { — 1;,0} right) cup left( {1 + sqrt 5 ;8} right).)
7) (02.06.2022 основная волна) Найдите все значения параметра a, при каждом из которых уравнение
(left| {{x^2} + {a^2} — 6x — 4a} right| = 2x + 2a)
имеет четыре различных решения.
ОТВЕТ: (left( {1 — sqrt 5 ;, — 1} right) cup left( {0;1 + sqrt 5 } right).)
(02.06.2022 основная волна) Найдите все значения параметра a, при каждом из которых уравнение
({a^2} + 2,a,x — 3{x^2} — 4a — 4x + 8left| x right| = 0)
имеет четыре различных решения.
ОТВЕТ: (left( {0;1} right) cup left( {1;,3} right) cup left( {3;4} right).)
9) (02.06.2022 основная волна) Найдите все значения параметра a, при каждом из которых уравнение
({a^2} — 9{x^2} + 18left| x right| — 9 = 0)
имеет два различных решения.
ОТВЕТ: (left( { — infty ; — 3} right) cup left{ 0 right} cup left( {3;infty } right).)
10) (27.06.2022 резервная волна) Найдите все значения параметра a, при каждом из которых уравнение
(sqrt {15{x^2} + 6ax + 9} = {x^2} + ax + 3)
имеет ровно три различных решения.
ОТВЕТ: (left[ { — 4;, — 3} right) cup left( { — 3;3} right) cup left( {3;,4} right].)
11) (27.06.2022 резервная волна) Найдите все значения параметра a, при каждом из которых уравнение
(sqrt {{x^4} — 4{x^2} + {a^2}} = {x^2} + 2x — a)
имеет ровно три различных решения.
ОТВЕТ: (left( { — infty ; — 4} right) cup left( { — 4;0} right).)
12) (27.06.2022 резервная волна) Найдите все значения параметра a, при каждом из которых уравнение
(sqrt x + sqrt {2a — x} = a)
имеет ровно два различных решения.
ОТВЕТ: (left[ {2;,4} right).)
3644 | При каких значениях параметра a уравнение (a^2-6a+8)*x^2+(a^2-4)*x+10-3a-a^2=0 имеет более двух корней Решение График |
При каких значениях параметра a уравнение (a2-6a+8)x2 +(a2-4)x + 10-3a-a2 =0 имеет более двух корней | |
3591 | Найдите все значения a при каждом из которых уравнение a(a+3)x^2+(2a+6)x-3a-9=0 имеет более одного корня Решение График |
Найдите все значения a при каждом из которых уравнение a(a+3)x2 +(2a+6)x -3a -9 =0 имеет более одного корня | |
3585 | Найдите все значения a при каждом из которых уравнение 2sqrt(x^4+(a-3)^4)=abs(x+a-3)+abs(x-a+3) имеет единственное решение Решение График |
Найдите все значения a при каждом из которых уравнение 2sqrt(x4 +(a-3)4) = abs(x+a-3) +abs(x-a+3) имеет единственное решение ! Тренировочная работа по математике №2 СтатГрад 11 класс 13.12.2022 Задание 17 Вариант МА2210209 #Задачи — аналоги 621 104 | |
3544 | Найдите все значения a, при которых система уравнений {(abs(y+x^3)-abs(y+3x)=2y+x^3+3x), (abs(-y-3x+1)-abs(y+x^3-a)=), (= -3y-6x-x^3+a+2) :} имеет единственное решение Решение |
Найдите все значения a, при которых система уравнений {|y+x^3|-|y+3x| = 2y+x^3+3x), |-y-3x+1| -|y+x^3-a| =-3y-6x-x3+a+2 имеет единственное решение ! математика 50 вариантов ЕГЭ 2022 профильный уровень Ященко Вариант 6 Задание 17 |
|
3434 | Найдите все значения параметра a, b при которых неравенство a^3x^4+2ax^3+b <= 2bx^2+b^3x+a выполняется для всех x из отрезка [0; 1] Решение График |
Найдите все значения параметра a, b при которых неравенство выполняется для всех x из отрезка [0; 1] ! ДВИ в МГУ 2022 — 5 поток, Вариант 225 Задание 6 # Решение Натальи Яковлевны Захаровой youtube видео разбор | |
3405 | Найдите все значения a, при которых система уравнений {(abs(y+1/2x^3)-abs(y+3/2x)=2y+1/2x^3+3/2x), (abs(-y-3/2x+1)-abs(y+1/2x^3-a)=), (-4 y-9/2x-1/2x^3+a+3) :}. имеет единственное решение Решение График |
Найдите все значения a, при которых система уравнений { |y+1/2×3| -|y+3/2x| = 2y + 1/2×3 +3/2x |-y-3/2x+1| — |y+1/2×3 -a| = -4y -9/2x -1/2×3 +a +3 имеет единственное решение ! математика 50 вариантов ЕГЭ 2022 профильный уровень Ященко Вариант 8 Задание 17 # Ошибка в ответе пособия у Ященко ? : color{red}{a > -1 ?} |
|
3404 | Найдите все значения параметра a, при которых уравнение x^2+(1-a+root(4)(abs(x)))^2=a^2/4. имеет ровно три решения Решение График |
Найдите все значения параметра a, при которых уравнение x2 + (1-a+ корень 4 степени из |x|) 2 = a 2/4 имеет ровно три решения ! ДВИ в МГУ 2022 — 1 поток, Вариант 1 Задание 6 | |
3391 | Найдите все значения параметра a, при каждом из которых уравнение sqrt(15x^2+6ax+9)=x^2+ax+3 имеет три различных решения Решение График |
Найдите все значения параметра a, при каждом из которых уравнение корень из 15×2 +6ax+9 =x2 +ax+3 имеет три различных решения ! ЕГЭ 2022 по математике 27.06.2022 резервный день Задание 17 | |
3379 | Найдите все значения параметра a, при каждом из которых уравнение x^2+a^2+2x-4a=abs(4x+2a). имеет более двух различных корней Решение График |
Найдите все значения параметра a, при каждом из которых уравнение x2 +a2 +2x -4a = |4x+2a| имеет более двух различных корней ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 17 Санкт-Петербург | |
3368 | Оценки экспертов решений задания 17 ЕГЭ по математике профильного уровня. Задание № 17 — это уравнение, неравенство или их системы с параметром. Задачи с параметром допускают весьма разнообразные способы решения. Наиболее распространёнными из них являются: – чисто алгебраический способ решения; – способ решения, основанный на построении и исследовании геометрической модели данной задачи; – функциональный способ, в котором могут быть и алгебраические, и геометрические элементы, но базовым является исследование некоторой функции. Зачастую (но далеко не всегда) графический метод более ясно ведёт к цели. Кроме того, в конкретном тексте решения вполне могут встречаться элементы каждого из трёх перечисленных способов Решение |
Критерии оценивания решений задания 17 ЕГЭ по математике профильного уровня ! Примеры оценивания реальных работ 2016-2021 гг # Приведены типы заданий с развёрнутым ответом, используемые в КИМ ЕГЭ по математике и критерии оценки выполнения заданий с развёрнутым ответом, приводятся примеры оценивания выполнения заданий и даются комментарии, объясняющие выставленную оценку | |
Показать ещё…
Показана страница 1 из 55
1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Задачи с параметром
Задание
1
#1220
Уровень задания: Легче ЕГЭ
Решите уравнение (ax+3=0) при всех значениях параметра (a).
Уравнение можно переписать в виде (ax=-3). Рассмотрим два случая:
1) (a=0). В этом случае левая часть равна (0), а правая – нет, следовательно, уравнение не имеет корней.
2) (ane 0). Тогда (x=-dfrac{3}{a}).
Ответ:
(a=0 Rightarrow xin varnothing; \
ane 0 Rightarrow
x=-dfrac{3}{a}).
Задание
2
#1221
Уровень задания: Легче ЕГЭ
Решите уравнение (ax+a^2=0) при всех значениях параметра (a).
Уравнение можно переписать в виде (ax=-a^2). Рассмотрим два случая:
1) (a=0). В этом случае левая и правая части равны (0), следовательно, уравнение верно при любых значениях переменной (x).
2) (ane 0). Тогда (x=-a).
Ответ:
(a=0 Rightarrow xin mathbb{R}; \
ane 0 Rightarrow x=-a).
Задание
3
#1222
Уровень задания: Легче ЕГЭ
Решите неравенство (2ax+5cosdfrac{pi}{3}geqslant 0) при всех значениях параметра (a).
Неравенство можно переписать в виде (axgeqslant -dfrac{5}{4}). Рассмотрим три случая:
1) (a=0). Тогда неравенство принимает вид (0geqslant
-dfrac{5}{4}), что верно при любых значениях переменной (x).
2) (a>0). Тогда при делении на (a) обеих частей неравенства знак неравенства не изменится, следовательно, (xgeqslant
-dfrac{5}{4a}).
3) (a<0). Тогда при делении на (a) обеих частей неравенства знак неравенства изменится, следовательно, (xleqslant -dfrac{5}{4a}).
Ответ:
(a=0 Rightarrow xin mathbb{R}; \
a>0 Rightarrow xgeqslant -dfrac{5}{4a}; \
a<0 Rightarrow xleqslant -dfrac{5}{4a}).
Задание
4
#1223
Уровень задания: Легче ЕГЭ
Решите неравенство (a(x^2-6) geqslant (2-3a^2)x) при всех значениях параметра (a).
Преобразуем неравенство к виду: (ax^2+(3a^2-2)x-6a geqslant 0). Рассмотрим два случая:
1) (a=0). В этом случае неравенство становится линейным и принимает вид: (-2x geqslant 0 Rightarrow xleqslant 0).
2) (ane 0). Тогда неравенство является квадратичным. Найдем дискриминант:
(D=9a^4-12a^2+4+24a^2=(3a^2+2)^2).
Т.к. (a^2 geqslant 0 Rightarrow D>0) при любых значениях параметра.
Следовательно, уравнение (ax^2+(3a^2-2)x-6a = 0) всегда имеет два корня (x_1=-3a, x_2=dfrac{2}{a}). Таким образом, неравенство примет вид:
[(ax-2)(x+3a) geqslant 0]
Если (a>0), то (x_1<x_2) и ветви параболы (y=(ax-2)(x+3a)) направлены вверх, значит, решением являются (xin (-infty; -3a]cup
big[dfrac{2}{a}; +infty)).
Если (a<0), то (x_1>x_2) и ветви параболы (y=(ax-2)(x+3a)) направлены вниз, значит, решением являются (xin big[dfrac{2}{a};
-3a]).
Ответ:
(a=0 Rightarrow xleqslant 0; \
a>0 Rightarrow xin (-infty; -3a]cup big[dfrac{2}{a}; +infty);
\
a<0 Rightarrow xin big[dfrac{2}{a}; -3abig]).
Задание
5
#1851
Уровень задания: Легче ЕГЭ
При каких (a) множество решений неравенства ((a^2-3a+2)x
-a+2geqslant 0) содержит полуинтервал ([2;3)) ?
Преобразуем неравенство: ((a-1)(a-2)x geqslant a-2). Получили линейное неравенство. Рассмотрим случаи:
1) (a=2). Тогда неравенство примет вид (0 geqslant 0), что верно при любых значениях (x), следовательно, множество решений содержит полуинтервал ([2;3)).
2) (a=1). Тогда неравенство примет вид (0 geqslant -1), что верно при любых значениях (x), следовательно, множество решений содержит полуинтервал ([2;3)).
3) ((a-1)(a-2)>0 Leftrightarrow ain (-infty;1)cup (2;+infty)). Тогда:
(xgeqslant dfrac{1}{a-1}). Для того, чтобы множество решений содержало полуинтервал ([2;3)), необходимо, чтобы
(dfrac{1}{a-1} leqslant 2 Leftrightarrow dfrac{3-2a}{a-1}
leqslant 0
Rightarrow ain (-infty; 1)cup [1,5; +infty)).
Учитывая условие (ain (-infty;1)cup (2;+infty)), получаем (ain
(-infty;1)cup (2;+infty)).
4) ((a-1)(a-2)<0 Leftrightarrow ain (1;2)). Тогда:
(xleqslant dfrac{1}{a-1} Rightarrow dfrac{1}{a-1} geqslant 3).
Действуя аналогично случаю 3), получаем (ain (1;
dfrac{4}{3}big]).
Ответ:
(ain (-infty;dfrac{4}{3}big]cup [2;+infty)).
Задание
6
#1361
Уровень задания: Легче ЕГЭ
Определить количество корней уравнения (ax^2+(3a+1)x+2=0) при всех значениях параметра (a).
Рассмотрим два случая:
1) (a=0). Тогда уравнение является линейным: (x+2=0 Rightarrow
x=-2). То есть уравнение имеет один корень.
2) (ane 0). Тогда уравнение является квадратным. Найдем дискриминант: (D=9a^2-2a+1).
Рассмотрим уравнение (9a^2-2a+1=0): (D’=4-36<0), следовательно, уравнение (9a^2-2a+1=0) не имеет корней. Значит, выражение ((9a^2-2a+1)) принимает значения строго одного знака: либо всегда положительно, либо отрицательно. В данном случае оно положительно при любых (a) (в этом можно убедиться, подставив вместо (a) любое число).
Таким образом, (D=9a^2-2a+1>0) при всех (ane 0). Значит, уравнение (ax^2+(3a+1)x+2=0) всегда имеет два корня: (x_{1,2}=dfrac{-3a-1pm
sqrt D}{2a})
Ответ:
(a=0Rightarrow) один корень
(ane 0 Rightarrow) два корня.
Задание
7
#1363
Уровень задания: Легче ЕГЭ
Решить уравнение (sqrt{x+2a}cdot (3-ax-x)=0) при всех значениях параметра (a).
Данное уравнение равносильно системе:
[begin{cases}
xgeqslant -2a\
left[ begin{gathered} begin{aligned}
&x=-2a \
&3-(a+1)x=0 qquad (*)
end{aligned} end{gathered} right.
end{cases}]
Рассмотрим два случая:
1) (a+1=0 Rightarrow a=-1). В этом случае уравнение ((*)) равносильно (3=0), то есть не имеет решений.
Тогда вся система равносильна (
begin{cases}
xgeqslant 2\
x=2
end{cases} Leftrightarrow x=2)
2) (a+1ne 0 Rightarrow ane -1). В этом случае система равносильна: [begin{cases}
xgeqslant -2a\
left[ begin{gathered} begin{aligned}
&x_1=-2a \
&x_2=dfrac3{a+1}
end{aligned} end{gathered} right.
end{cases}]
Данная система будет иметь одно решение, если (x_2leqslant -2a), и два решения, если (x_2>-2a):
2.1) (dfrac3{a+1}leqslant -2a Rightarrow a<-1 Rightarrow ) имеем один корень (x=-2a).
2.2) (dfrac3{a+1}>-2a Rightarrow a>-1 Rightarrow ) имеем два корня (x_1=-2a, x_2=dfrac3{a+1}).
Ответ:
(ain(-infty;-1) Rightarrow x=-2a\
a=-1 Rightarrow x=2\
ain(-1;+infty) Rightarrow xin{-2a;frac3{a+1}})
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
17 задание ЕГЭ 2022 профильный уровень математика 11 класс:
- Линейные уравнения, неравенства и системы уравнений с параметрами
Линейные уравнения, неравенства и системы линейных уравнений относятся к числу самых простых задач с параметрами. Поэтому задачи этого раздела являются подготовительными заданиями к решению реальных задач с параметрами, предлагаемых на ЕГЭ.
- Исследование дискриминанта и применение теоремы Виета
Решение многих задач с параметрами сводится к исследованию квадратного трехчлена. Для решение некоторых задач этого вида достаточно исследования дискриминанта и применение теоремы Виета.
- Расположение корней квадратного трёхчлена относительно данных чисел
Решение многих задач с параметрами сводится к исследованию квадратного трехчлена. Для решения некоторых задач этого вида достаточно исследования дискриминанта и применение теоремы Виета. В данном разделе будут рассмотрены задачи связанные с исследованием расположения корней квадратного трехчлена относительно заданных чисел, для решения которых будут использованы материалы, изученные в предыдущем разделе: Исследование дискриминанта и применение теоремы Виета.
- Квадратные неравенства с параметрами
В данном разделе будут рассмотрены квадратные неравенства с параметрами, для решения которых будут использованы материалы, изученные в предыдущих разделах: Исследование дискриминанта и применение теоремы Виета; Расположение корней квадратного трехчлена относительно данных чисел.
Также для решения задач этого раздела необходимо уметь «легко» решать квадратные неравенства. В целом решение квадратных неравенств с параметрами вызывают больше трудностей, нежели решений квадратных уравнений с параметрами. Это связано с тем, при решении неравенств приходится разбирать больше случаев и проводить более тонкие логические рассуждения, чем при решении уравнений.
Задачи для самостоятельного решения разбиты на два уровня сложности А и В. Уровень А представляет собой простейшие квадратные неравенства с параметрами. Уровень В по сложности максимально приближен к 17 заданиям ЕГЭ по профильной математике.
- Задачи сводящиеся к исследованию квадратного трехчлена
В этом разделе будут рассмотрены задачи с параметрами, решение которых сводится к исследованию расположения корней квадратных уравнений и неравенств относительно некоторых чисел только после определенных предварительных действий: замены переменной, алгебраических действий и т.д. В основном это будут показательные, логарифмические, алгебраические и тригонометрические уравнения и неравенства, которые после замены переменной приводятся к квадратным. Для этого необходимо хорошо знать свойства показательной, логарифмической и тригонометрических функций. В частности, необходимо знать область определения, множество значений, промежутки возрастания и убывания этих функций, а также уметь решать простейшие уравнения и неравенства, содержащие эти функции.
- Применение монотонности и ограниченности функций к решению уравнений и неравенств
В этом разделе будут рассмотрены уравнения и неравенства с параметрами (и не только), решение которых будет опираться на свойства элементарных функций, изучаемых в школьном курсе математики, такие как монотонность и ограниченность.
- Применение инвариантности функций
В этом разделе будут рассмотрены уравнения и системы уравнений с параметрами, ключевым признаком которых является инвариантность. Типичные формулировки таких задач следующие: «Найдите все значения параметра а, при которых уравнение (или система уравнений) имеет единственное решение». Слово «единственное» в формулировке таких задач является ключевым. Оно, как правило, служит сигналом для проверки уравнения, неравенства или системы уравнений на инвариантность. Слово «инвариантность» означает «неизменность». В математике под инвариантностью понимается неизменяемость каких-либо выражений с переменными или функций по отношению к каким-либо преобразованиям над этими самыми переменными.
- Графический метод, преобразование и построение графиков в системе
Ещё одним основным методом решений заданий с параметрами является графический метод. В этом разделе рассмотрим задачи для решения которых потребуется построить график некоторой функции на плоскости ; , при этом в большинстве случаев придется прибегнуть к элементарным преобразованиям заданных функций. На плоскости; задает семейство кривых, зависящих от параметра a. Естественно, для решения задач этого раздела, необходимо знать и уметь строить графики основных элементарных функций. Напомним основные способы преобразования элементарных функций, которые потребуется для построения их графиков.
- Графический метод, метод областей
Рассмотрим задачи для решения которых потребуется строить не только графики функций, но и отмечать области удовлетворяющие определенным условиям, как правило, некоторым неравенствам или системам неравенств. Функции y f x удовлетворяют все точки плоскости Oxy принадлежащие графику этой функции. Тогда, очевидно, что все точки, удовлетворяющие неравенству, y f x расположены выше графика функции y f x, а все точки, удовлетворяющие неравенству, y f x расположены ниже графика функции y f x.
- Уравнение, неравенства и системы с параметрами
В этом разделе представлены уравнения, неравенства и системы с параметрами которые не предлагались в предыдущих разделах.
Смотрите также на нашем сайте:
- Задание 16 планиметрия ЕГЭ 2022 математика профиль
- Задание №8 с ответами ЕГЭ 2022 профиль математика 11 класс