Урок посвящен разбору задания 7 ЕГЭ по информатике
Содержание:
- Объяснение заданий 7 ЕГЭ по информатике
- Кодирование текстовой информации
- Кодирование графической информации
- Кодирование звуковой информации
- Определение скорости передачи информации
- Решение заданий 7 ЕГЭ по информатике
- Тема: Кодирование изображений
- Тема: Кодирование звука
- Тема: Кодирование видео
- Тема: Скорость передачи данных
7-е задание: «Кодирование графической и звуковой информации, объем и передача информации»
Уровень сложности
— базовый,
Требуется использование специализированного программного обеспечения
— нет,
Максимальный балл
— 1,
Примерное время выполнения
— 5 минут.
Проверяемые элементы содержания: Умение определять объём памяти, необходимый для хранения графической и звуковой информации
До ЕГЭ 2021 года — это было задание № 9 ЕГЭ
Типичные ошибки и рекомендации по их предотвращению:
«Если вычисления получаются слишком громоздкими, значит, Вы неправильно решаете задачу. Удобно выделить во всех множителях степени двойки, тогда умножение сведётся к сложению
показателей степеней, а деление – к вычитанию»
ФГБНУ «Федеральный институт педагогических измерений»
Кодирование текстовой информации
I = n * i
где:
Кодирование графической информации
Рассмотрим некоторые понятия и формулы, необходимые для решения ЕГЭ по информатике данной темы.
- Пиксель – это наименьший элемент растрового изображения, который имеет определенный цвет.
- Разрешение – это количество пикселей на дюйм размера изображения.
- Глубина цвета — это количество битов, необходимое для кодирования цвета пикселя.
- Если глубина кодирования составляет i битов на пиксель, код каждого пикселя выбирается из 2i возможных вариантов, поэтому можно использовать не более 2i различных цветов.
- N — количество цветов
- i — глубина цвета
- В цветовой модели RGB (красный (R), зеленый (G), синий (B)): R (0..255) G (0..255) B (0..255) -> получаем 28 вариантов на каждый из трех цветов.
- R G B: 24 бита = 3 байта — режим True Color (истинный цвет)
- I — объем памяти, требуемый для хранения изображения
- M — ширина изображения в пикселях
- N — высота изображения в пикселях
- i — глубина кодирования цвета или разрешение
- где N – количество пикселей (M * N) и i – глубина кодирования цвета (разрядность кодирования)
- Следует также помнить формулы преобразования:
Формула для нахождения количества цветов в используемой палитре:
i = log2N
Найдем формулу объема памяти для хранения растрового изображения:
I = M * N * i
где:
Или можно формулу записать так:
I = N * i битов
* для указания объема выделенной памяти встречаются разные обозначения (V или I).
1 Мбайт = 220 байт = 223 бит,
1 Кбайт = 210 байт = 213 бит
Кодирование звуковой информации
Познакомимся с понятиями и формулами, необходимыми для решения заданий 7 ЕГЭ по информатике.
- Оцифровка или дискретизация – это преобразование аналогового сигнала в цифровой код.
- T – интервал дискретизации (измеряется в с)
- ƒ — частота дискретизации (измеряется в Гц, кГц)
- Частота дискретизации определяет количество отсчетов, т.е. отдельных значений сигнала, запоминаемых за 1 секунду. Измеряется в герцах, 1 Гц (один герц) – это один отсчет в секунду, а, например, 7 кГц – это 7000 отсчетов в секунду.
- Разрядность кодирования (глубина, разрешение) — это число битов, используемое для хранения одного отсчёта.
- Получим формулу объема звукового файла:
- I — объем
- β — глубина кодирования
- ƒ — частота дискретизации
- t — время
- S — количество каналов
Дискретизация, объяснение задания 7 ЕГЭ
* Изображение взято из презентации К. Полякова
Разрядность кодирования
* Изображение взято из презентации К. Полякова
Для хранения информации о звуке длительностью t секунд, закодированном с частотой дискретизации ƒ Гц и глубиной кодирования β бит требуется бит памяти:
I = β * ƒ * t * S
S для моно = 1, для стерео = 2, для квадро = 4
Пример: при ƒ=8 кГц, глубине кодирования 16 бит на отсчёт и длительности звука 128 с. потребуется:
✍ Решение:
I = 8000*16*128 = 16384000 бит
I = 8000*16*128/8 = 23 * 1000 * 24 * 27 / 23 = 214 / 23 =211 =
= 2048000 байт
Определение скорости передачи информации
- Канал связи всегда имеет ограниченную пропускную способность (скорость передачи информации), которая зависит от свойств аппаратуры и самой линии связи(кабеля)
- I — объем информации
- v — пропускная способность канала связи (измеряется в битах в секунду или подобных единицах)
- t — время передачи
Объем переданной информации I вычисляется по формуле:
I = V * t
* Вместо обозначения скорости V иногда используется q
* Вместо обозначения объема сообщения I иногда используется Q
Скорость передачи данных определяется по формуле:
V = I/t
и измеряется в бит/с
Егифка ©:
Решение заданий 7 ЕГЭ по информатике
Плейлист видеоразборов задания на YouTube:
Задание демонстрационного варианта 2022 года ФИПИ
Тема: Кодирование изображений
7_1:
Какой минимальный объем памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 160 х 160 пикселей при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.
Типовые задания для тренировки
✍ Решение:
- Используем формулу нахождения объема:
- Подсчитаем каждый сомножитель в формуле, стараясь привести числа к степеням двойки:
- M x N:
160 * 160 = 20 * 2³ * 20 * 2³ = 400 * 26 = = 25 * 24 * 26
256 = 28 т.е. 8 бит на пиксель (из формулы кол-во цветов = 2i)
I = 25 * 24 * 26 * 23 = 25 * 213 - всего бит на всё изображение
(25 * 213) / 213 = 25 Кбайт
Результат: 25
Детальный разбор задания 7 ЕГЭ по информатике предлагаем посмотреть в видео:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
Тема: Кодирование изображений:
ЕГЭ по информатике задание 7.2:
Рисунок размером 128 на 256 пикселей занимает в памяти 24 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения.
Типовые задания для тренировки
✍ Решение:
- По формуле объема файла изображения имеем:
- где M * N — общее количество пикселей. Найдем это значение, используя для удобства степени двойки:
128 * 256 = 27 * 28 = 215
i = I / (M*N)
23 * 3 * 210 * 23: i = (23 * 3 * 210 * 23) / 215 = = 3 * 216 / 215 = 6 бит
26 = 64 вариантов цветов в цветовой палитре
Результат: 64
Смотрите видеоразбор задания:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
Тема: Кодирование изображений:
ЕГЭ по информатике задание 7.3:
После преобразования растрового 256-цветного графического файла в 4-цветный формат его размер уменьшился на 18 Кбайт. Каков был размер исходного файла в Кбайтах?
Типовые задания для тренировки
✍ Решение:
- По формуле объема файла изображения имеем:
- i можно найти, зная количество цветов в палитре:
где N — общее количество пикселей,
а i — глубина кодирования цвета (количество бит, выделенное на 1 пиксель)
до преобразования: i = 8 (28 = 256) после преобразования: i = 2 (22 = 4)
I = x * 8 I - 18 = x * 2
x = I / 8
I - 18 = I / 4
4I - I = 72
3I = 72
I = 24
Результат: 24
Подробный разбор 7 задания ЕГЭ смотрите на видео:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
Тема: Кодирование изображений:
ЕГЭ по информатике задание 7.4:
Цветное изображение было оцифровано и сохранено в виде файла без использования сжатия данных. Размер полученного файла – 42 Мбайт. Затем то же изображение было оцифровано повторно с разрешением в 2 раза меньше и глубиной кодирования цвета увеличили в 4 раза больше по сравнению с первоначальными параметрами. Сжатие данных не производилось. Укажите размер файла в Мбайт, полученного при повторной оцифровке.
Типовые задания для тренировки
✍ Решение:
- По формуле объема файла изображения имеем:
- В такого рода задачах необходимо учесть, что уменьшение разрешения в 2 раза, подразумевает уменьшение в 2 раза пикселей отдельно по ширине и по высоте. Т.е. в целом N уменьшается в 4 раза!
- Составим систему уравнений на основе имеющихся сведений, в которой первое уравнение будет соответствовать данным до преобразования файла, а второе уравнение — после:
где N — общее количество пикселей или разрешение,
а i — глубина цвета (количество бит, выделенное на 1 пиксель)
42 = N * i I = N / 4 * 4i
i = 42 / N
[ I= frac {N}{4} * 4* frac {42}{N} ]
I = 42
Результат: 42
Тема: Кодирование изображений:
ЕГЭ по информатике задание 7.5:
Изображение было оцифровано и сохранено в виде растрового файла. Получившийся файл был передан в город А по каналу связи за 72 секунды. Затем то же изображение было оцифровано повторно с разрешением в 2 раза больше и глубиной кодирования цвета в 3 раза меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б, пропускная способность канала связи с городом Б в 3 раза выше, чем канала связи с городом А.
Сколько секунд длилась передача файла в город Б?
Типовые задания для тренировки
✍ Решение:
- По формуле скорости передачи файла имеем:
- По формуле объема файла изображения имеем:
- Для данной задачи, необходимо уточнить, что разрешение на самом деле имеет два сомножителя (пикселей по ширине * пикселей по высоте). Поэтому при увеличении разрешения в два раза, увеличатся оба числа, т.е. N увеличится в 4 раза вместо двух.
- Изменим формулу получения объема файла для города Б:
- Для города А и Б заменим значения объема в формуле для получения скорости:
- Подставим значение скорости из формулы для города А в формулу для города Б:
- Выразим t:
где I — объем файла, а t — время
где N — общее количество пикселей или разрешение,
а i — глубина цвета (количество бит, выделенное на 1 пиксель)
[ I= frac {2*N * i}{3} ]
Город А:
[ V= frac {N*i}{72} ]
Город Б:
[ 3*V= frac{frac {4*N*i}{3}}{t} ]
или:
[ t*3*V= frac {4*N*i}{3} ]
[ frac {t*3*N*i}{72}= frac {4*N*i}{3} ]
t = 4 * 72 / (3 * 3) = 32 секунды
Результат: 32
Другой способ решения смотрите в видеоуроке:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
Тема: Кодирование изображений:
ЕГЭ по информатике задание 7.6:
Камера делает фотоснимки размером 1024 х 768 пикселей. На хранение одного кадра отводится 900 Кбайт.
Найдите максимально возможное количество цветов в палитре изображения.
Типовые задания для терировки
✍ Решение:
- Количество цветов зависит от глубины кодирования цвета, которая измеряется в битах. Для хранения кадра, т.е. общего количества пикселей выделено 900 Кбайт. Переведем в биты:
900 Кбайт = 22 * 225 * 210 * 23 = 225 * 215
1024 * 768 = 210 * 3 * 28
[ frac {225 * 2^{15}}{3 * 2^{18}} = frac {75}{8} approx 9 ]
9 бит на 1 пиксель
29 = 512
Результат: 512
Смотрите подробное решение на видео:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
Тема: Кодирование изображений:
7_8: Демоверсия ЕГЭ 2018 информатика:
Автоматическая фотокамера производит растровые изображения размером 640×480 пикселей. При этом объём файла с изображением не может превышать 320 Кбайт, упаковка данных не производится.
Какое максимальное количество цветов можно использовать в палитре?
✍ Решение:
- По формуле объема файла изображения имеем:
- Посмотрим, что из формулы нам уже дано:
I = N * i
где N — общее количество пикселей или разрешение, а i — глубина кодирования цвета (количество бит, выделенное на 1 пиксель)
I = 320 Кбайт, N = 640 * 420 = 307200 = 75 * 212 всего пикселей, i - ?
количество цветов = 2i
320 Кбайт = 320 * 210 * 23 бит = 320 * 213 бит
[ i = frac {I}{N} = frac {320 * 2^{13}}{75 * 2^{12}} approx 8,5 бит ]
2i = 28 = 256
Результат: 256
Подробное решение данного 7 (9) задания из демоверсии ЕГЭ 2018 года смотрите на видео:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
7_21: : ЕГЭ по информатике задание 7.21:
Для хранения в информационной системе документы сканируются с разрешением 300 ppi. Методы сжатия изображений не используются. Средний размер отсканированного документа составляет 5 Мбайт. В целях экономии было решено перейти на разрешение 150 ppi и цветовую систему, содержащую 16 цветов. Средний размер документа, отсканированного с изменёнными параметрами, составляет 512 Кбайт.
Определите количество цветов в палитре до оптимизации.
Типовые задания для тренировки
✍ Решение:
- По формуле объема файла изображения имеем:
- Так как по заданию имеем разрешение, выраженное в пикселях на дюйм, то фактически это означает:
- Формула количества цветов:
- Посмотрим, что из формулы нам уже дано до экономного варианта и при экономном варианте:
I = N * i
где N — общее количество пикселей или разрешение, а i — глубина кодирования цвета (количество бит, выделенное на 1 пиксель).
I = значение ppi2 * N * i
количество цветов = 2i
Неэкономный вариант: I = 5 Мбайт = 5 * 223 бит, N - ?, i - ? 300 ppi Экономный вариант: I = 512 Кбайт = 29 * 213 бит = 222 бит, N - ?, i = 4 бит (24 = 16) 150 ppi
N = I / (i * 150*150 ppi) N = 222 / (4 * 22500)
I = N * 300*300 ppi * i 5 * 223 = (222 * 300 * 300 * i) / (22500 * 4);
i = (5 * 223 * 22500 * 4) / (222 * 300 * 300) = 9000 / 900 = 10 бит
210 = 1024
Результат: 1024
Тема: Кодирование звука
7_7:
На студии при четырехканальной (квадро) звукозаписи с 32-битным разрешением за 30 секунд был записан звуковой файл. Сжатие данных не производилось. Известно, что размер файла оказался 7500 Кбайт.
С какой частотой дискретизации (в кГц) велась запись? В качестве ответа укажите только число, единицы измерения указывать не нужно.
Типовые задания для тренировки
✍ Решение:
- По формуле объема звукового файла получим:
- Из задания имеем:
I = β * t * ƒ * S
I= 7500 Кбайт β= 32 бита t= 30 секунд S= 4 канала
[ ƒ = frac {I}{S*B*t} = frac {7500 * 2^{10} * 2^3 бит}{2^7 * 30}Гц = frac { 750 * 2^6}{1000}КГц = 2^4 = 16 ]
24 = 16 КГц
Результат: 16
Для более детального разбора предлагаем посмотреть видео решения данного 7 задания ЕГЭ по информатике:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
Тема: Кодирование звука:
ЕГЭ по информатике задание 7_9:
Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 2 раза выше и частотой дискретизации в 3 раза меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б за 15 секунд; пропускная способность канала связи с городом Б в 4 раза выше, чем канала связи с городом А.
Сколько секунд длилась передача файла в город A? В ответе запишите только целое число, единицу измерения писать не нужно.
Типовые задания для тренировки
✍ Решение:
- Для решения понадобится формула нахождения скорости передачи данных формулы:
- Вспомним также формулу объема звукового файла:
- Выпишем отдельно, все данные, касающиеся города Б (про А практически ничего не известно):
V = I/t
I = β * ƒ * t * s
где:
I — объем
β — глубина кодирования
ƒ — частота дискретизации
t — время
S — кол-во каналов (если не указывается, то моно)
город Б: β - в 2 раза выше ƒ - в 3 раза меньше t - 15 секунд, пропускная способность (скорость V) - в 4 раза выше
город А: βБ / 2 ƒБ * 3 IБ / 2 VБ / 4 tБ / 2, tБ * 3, tБ * 4 - ?
t = t/2
t = t * 3
t = t * 4
[ t_А = frac {15}{2} * 3 * 4 ]
90 секунд
Результат: 90
Подробное решение смотрите на видео:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
Тема: Кодирование звука:
ЕГЭ по информатике задание 7.10:
Музыкальный фрагмент был записан в формате стерео (двухканальная запись), оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла – 30 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате моно и оцифрован с разрешением в 2 раза выше и частотой дискретизации в 1,5 раза меньше, чем в первый раз. Сжатие данных не производилось.
Укажите размер файла в Мбайт, полученного при повторной записи. В ответе запишите только целое число, единицу измерения писать не нужно.
Типовые задания для тренировки
✍ Решение:
- Вспомним формулу объема звукового файла:
- Выпишем отдельно, все данные, касающиеся первого состояния файла, затем второго состояния — после преобразования:
I = β * ƒ * t * S
I — объем
β — глубина кодирования
ƒ — частота дискретизации
t — время
S -количество каналов
1 состояние: S = 2 канала I = 30 Мбайт
2 состояние: S = 1 канал β = в 2 раза выше ƒ = в 1,5 раза ниже I = ?
I = I / 2
I = I * 2
I = I / 1,5
I = 30 Мбайт / 2 * 2 / 1,5 = 20 Мбайт
Результат: 20
Смотрите видеоразбор данной задачи:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
Тема: Кодирование звуковых файлов:
ЕГЭ по информатике задание 7_11:
Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи за 100 секунд. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 3 раза выше и частотой дискретизации в 4 раз меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б за 15 секунд.
✍ Решение:
- Вспомним формулу объема звукового файла:
- Выпишем отдельно, все данные, касающиеся файла, переданного в город А, затем преобразованного файла, переданного в город Б:
I = β * ƒ * t * S
I — объем
β — глубина кодирования
ƒ — частота дискретизации
t — время
А: t = 100 c.
Б: β = в 3 раза выше ƒ = в 4 раза ниже t = 15 c.
✎ 1 способ решения:
tA для преобразов. = 100 секунд * 3 / 4 = 75 секунд
75 / 15 = 5
Ответ: 5
✎ 2 способ решения:
А: tА = 100 c. VА = I / 100
Б: β = в 3 раза выше ƒ = в 4 раза ниже t = 15 c. IБ = (3 / 4) * I VБ = ((3 / 4) * I) / 15
[ frac {V_Б}{V_А} = frac {3/_4 * I}{15} * frac {100}{I} = frac {3/_4 * 100}{15} = frac {15}{3} = 5 ]
(((3/4) * I) / 15) * (100 / I)= (3/4 * 100) / 15 = 15/3 = 5
Результат: 5
Подробный видеоразбор задания:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
Тема: Кодирование звука:
ЕГЭ по информатике задание 7_12:
Производится четырёхканальная (квадро) звукозапись с частотой дискретизации 32 кГц и 32-битным разрешением. Запись длится 2 минуты, её результаты записываются в файл, сжатие данных не производится.
Определите приблизительно размер полученного файла (в Мбайт). В качестве ответа укажите ближайшее к размеру файла целое число, кратное 10.
✍ Решение:
- Вспомним формулу объема звукового файла:
- Для простоты расчетов пока не будем брать во внимание количество каналов. Рассмотрим, какие данные у нас есть, и какие из них необходимо перевести в другие единицы измерения:
I — объем
β — глубина кодирования
ƒ — частота дискретизации
t — время
S — количество каналов
β = 32 бита ƒ = 32кГц = 32000Гц t = 2 мин = 120 с
(32 * 32000 * 120) / 223 = =( 25 * 27 * 250 * 120) / 223 = = (250*120) / 211 = = 30000 / 211 = = (24 * 1875) / 211 = = 1875 / 128 ~ 14,6
14,6 * 4 = 58,5
Результат: 60
Смотрите подробное решение:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
Тема: Кодирование звука:
7_19: Государственный выпускной экзамен ГВЭ 2018 (информатика ГВЭ ФИПИ, задание 7):
Производится двухканальная (стерео) цифровая звукозапись. Значение сигнала фиксируется 48 000 раз в секунду, для записи каждого значения используется 32 бит. Запись длится 5 минут, её результаты записываются в файл, сжатие данных не производится.
Какая из приведённых ниже величин наиболее близка к размеру полученного файла?
1) 14 Мбайт
2) 28 Мбайт
3) 55 Мбайт
4) 110 Мбайт
✍ Решение:
- По формуле объема звукового файла имеем:
I — объем β — глубина кодирования = 32 бита ƒ — частота дискретизации = 48000 Гц t — время = 5 мин = 300 с S — количество каналов = 2
I = 48000 * 32 * 300 * 2
48000 | 2 24000 | 2 12000 | 2 6000 | 2 = 375 * 27 3000 | 2 1500 | 2 750 | 2 375 | 2 - уже не делится 187,5
300 | 2 = 75 * 22 150 | 2 75 | 2 - уже не делится 37,5
I = 375 * 75 * 215
I = 375 * 75 * 215 / 223 = 28125 / 28
210 = 1024 1024 * 2 2048 * 2 4096 * 2 8192 * 2 16384 * 2 32768
210 * 25 = 215 = 32768 210 * 24 = 214 = 16384
215 / 28 = 27 = 128 214 / 28 = 26 = 64
Результат: 4
Подробное решение ГВЭ задания 7 2018 года смотрите на видео:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
Тема: Кодирование звука:
7_20:
Производится двухканальная (стерео) звукозапись с частотой дискретизации 4 кГц и 64-битным разрешением. Запись длится 1 минуту, ее результаты записываются в файл, сжатие данных не производится.
Определите приблизительно размер получившегося файла (в Мбайтах). В качестве ответа укажите ближайшее к размеру файла целое число, кратное 2.
✍ Решение:
- По формуле объема звукового файла имеем:
I — объем β — глубина кодирования = 32 бита ƒ — частота дискретизации = 48000 Гц t — время = 5 мин = 300 с S — количество каналов = 2
ƒ = 4 кГЦ = 4 * 1000 Гц ~ 22 * 210 B = 64 бит = 26 / 223 Мбайт t = 1 мин = 60 c = 15 * 22 c S = 2
I = 26 * 22 * 210 * 15 * 22 * 21 / 223 = 15/4 ~ 3,75
Результат: 4
Видеоразбор задания:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
Тема: Кодирование видео
7_22:
Камера снимает видео без звука с частотой 120 кадров в секунду, при этом изображения используют палитру, содержащую 224 = 16 777 216 цветов. При записи файла на сервер полученное видео преобразуют так, что частота кадров уменьшается до 20, а изображения преобразуют в формат, использующий палитру из 256 цветов. Другие преобразования и иные методы сжатия не используются. 10 секунд преобразованного видео в среднем занимают 512 Кбайт.
Сколько Мбайт в среднем занимает 1 минута исходного видео?
Типовые задания для тренировки
✍ Решение:
- Посмотрим, как изменялись параметры файла до преобразования и после:
ДО: ƒ = 120, i = 24 бит ПОСЛЕ: ƒ = 20, i = 8 бит (28 = 256) t = 10 секунд I = 512 Кбайт = 29 Кбайт
за 10 секунд: I * 18 = 29 * 18 Кбайт = (29 * 18) . 210 Мбайт = 9 Мбайт
за 1 мин: 9 * 6 = 54 Мбайт
Результат: 54
Тема: Скорость передачи данных
ЕГЭ по информатике задание 7_13:
Скорость передачи данных через ADSL-соединение равна 128000 бит/с. Передача текстового файла через это соединение заняла 1 минуту.
Определите, сколько символов содержал переданный текст, если известно, что он был представлен в 16-битной кодировке Unicode.
Типовые задания для тренировки
✍ Решение:
- Вспомним формулу скорости передачи данных:
* Вместо Q можно использовать обозначение I (для объема файла)
V - скорость Q - объем t - время
V = 128000 бит/с = 210 * 125 бит/с t = 1 мин = 60 с = 22 * 15 с 1 символ кодируется 16-ю битами всего символов - ?
Q = 210 * 125 * 22 * 15 = = 212 * 1875 бит на все символы
кол-во символов = 212 * 1875 / 16 = 212 * 1875 / 24 =
= 28 * 1875 = 480000
Результат: 480000
Разбор 7 задания:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
Тема: Скорость передачи информации:
ЕГЭ по информатике задание 7_14:
У Васи есть доступ к Интернет по высокоскоростному одностороннему радиоканалу, обеспечивающему скорость получения им информации 217 бит в секунду. У Пети нет скоростного доступа в Интернет, но есть возможность получать информацию от Васи по низкоскоростному телефонному каналу со средней скоростью 216 бит в секунду. Петя договорился с Васей, что тот будет скачивать для него данные объемом 8 Мбайт по высокоскоростному каналу и ретранслировать их Пете по низкоскоростному каналу. Компьютер Васи может начать ретрансляцию данных не раньше, чем им будут получены первые 1024 Кбайт этих данных.
Каков минимально возможный промежуток времени (в секундах), с момента начала скачивания Васей данных, до полного их получения Петей?
Типовые задания для тренировки
✍ Решение:
- Вспомним формулу скорости передачи данных:
* Вместо Q можно использовать обозначение I (для объема файла)
V - скорость Q - объем t - время
Вася: V = 217 бит/с Петя: V = 216 бит/с Общий объем Q = 8 Мбайт
Q = 8Мбайт = 8 * 223 бит = 23 * 223 = 226 бит
t1 = 1024 Кбайт / 217 = 210 * 213 бит / 217 = = 210 / 24 = 64 с
t2 = 226 / 216 = 210 = 1024 c
t = t1 + t2 = 64 + 1024 = 1088
Результат: 1088
Подробный разбор смотрите на видео:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
Тема: Скорость передачи информации:
ЕГЭ по информатике задание 7_15:
Сколько секунд потребуется модему, передающему сообщения со скоростью 32000 бит/с, чтобы передать 16-цветное растровое изображение размером 800 x 600 пикселей, при условии, что в каждом байте закодировано максимально возможное число пикселей?
Типовые задания для тренировки
✍ Решение:
- Вспомним формулу скорости передачи данных:
* Вместо Q можно использовать обозначение I (для объема файла)
V - скорость Q - объем t - время
N — общее количество пикселей или разрешение, i — глубина кодирования цвета (количество бит, выделенное на 1 пиксель)
Q = 4 * 480000
t = 4 * 480000 / 32000 = 60 секунд
Результат: 60
Тема: Скорость передачи информации:
ЕГЭ по информатике задание 7_16:
Каково время (в минутах) передачи полного объема данных по каналу связи, если известно, что передано 9000 Мбайт данных, причем треть времени передача шла со скоростью 60 Мбит в секунду, а остальное время – со скоростью 90 Мбит в секунду?
✍ Решение:
- Формула скорости передачи данных:
* Вместо Q можно использовать обозначение I (для объема файла)
V - скорость Q - объем t - время
1 Мбайт = 8 Мбит
Q = 9000 Мбайт * 8 = 72000 Мбит
(60 * 1/3t) + (90 * 2/3t) = 72000
вынесем t за скобки, получим уравнение:
t * (20 + 60) = 72000
выразим t:
t = 72000 / 80 = 900 с = 15 мин
Результат: 15
Решение задания можно посмотреть и на видео:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
Тема: Скорость передачи информации:
ЕГЭ по информатике задание 7.17:
Документ объемом 5 Мбайт можно передать с одного компьютера на другой двумя способами:
А) Сжать архиватором, передать архив по каналу связи, распаковать
Б) Передать по каналу связи без использования архиватора.
Какой способ быстрее и насколько, если
- средняя скорость передачи данных по каналу связи составляет 218 бит в секунду,
- объем сжатого архиватором документа равен 20% от исходного,
- время, требуемое на сжатие документа – 7 секунд, на распаковку – 1 секунда?
В ответе напишите букву А, если способ А быстрее или Б, если быстрее способ Б. Сразу после буквы напишите количество секунд, насколько один способ быстрее другого.
Так, например, если способ Б быстрее способа А на 23 секунды, в ответе нужно написать Б23.
Типовые задания для тренировки
✍ Решение:
-
Рассмотрим способ А:
- Сначала найдем объем документа, зная, что он составляет 20% от исходного:
Q (объем) = 5 Мбайт * 0.2 = 1 Мбайт = 1 * 223 бит
V - скорость Q - объем t - время
t = Q / V + 7 + 1 = 8 + 223 / 218 = 8 + 25 = 40 c
Рассмотрим способ Б:
t = Q / V = 5 * 223 / 218 = 5 * 25 = 5 * 32 = 160 c
160 с - 40 с = 120 с
Результат: А120
Решение также можно посмотреть в видеоуроке:
📹 YouTube здесьздесь
Тема: Скорость передачи информации:
ЕГЭ по информатике задание 7_18:
Документ объёмом 20 Мбайт можно передать с одного компьютера на другой двумя способами:
А) сжать архиватором-1, передать архив по каналу связи, распаковать;
Б) сжать архиватором-2, передать архив по каналу связи, распаковать;
Какой способ быстрее и насколько, если
- средняя скорость передачи данных по каналу связи составляет 220 бит в секунду,
- объём документа, сжатого архиватором-1, равен 20% от исходного,
- на сжатие документа архиватором-1 требуется 15 секунд, на распаковку — 2 секунды,
- объём документа, сжатого архиватором-2, равен 10% от исходного,
- на сжатие документа архиватором-2 требуется 20 секунд, на распаковку — 4 секунды?
В ответе напишите букву А, если способ А быстрее или Б, если быстрее способ Б. Сразу после буквы напишите количество секунд, насколько один способ быстрее другого.
Так, например, если способ Б быстрее способа А на 23 секунды, в ответе нужно написать Б23.
✍ Решение:
-
Рассмотрим способ А:
- Сначала найдем объем документа, зная, что он составляет 20% от исходного:
Q (объем) = 20 Мбайт * 0.2 = 4 Мбайт = 22 * 223 бит = 225 бит
V - скорость Q - объем t - время
tA = 225 / 220 + 17 с = 25 + 17 = 49 с
Рассмотрим способ Б:
Q (объем) = 20 Мбайт * 0.1 = 2 Мбайт = 21 * 223 бит = 224 бит
tБ = 224 / 220 + 24 с = 24 + 24 = 40 с
49 - 40 = 9 с
Результат: Б9
Тема: Скорость передачи информации:
Решение 7 ЕГЭ по информатике, задание 7_19:
Документ (без упаковки) можно передать по каналу связи с одного компьютера на другой за 1 минуту и 40 секунд. Если предварительно упаковать документ архиватором, передать упакованный документ, а потом распаковать на компьютере получателя, то общее время передачи (включая упаковку и распаковку) составит 30 секунд. При этом на упаковку и распаковку данных всего ушло 10 секунд. Размер исходного документа 45 Мбайт.
Чему равен размер упакованного документа (в Мбайт)?
✍ Решение:
- Выпишем исходные данные для двух состояний документа, используя неизвестное x для искомого параметра — объема:
неупакованный:
I1 = 45 Мбайт t1 = 100 секунд (60 секунд + 40 секунд = 100)
упакованный:
I2 = x Мбайт t2 = 20 секунд (30 секунд - 10 секунд = 20)
45 = 100 х = 20
х = (45 * 20) / 100 = 9 Мбайт
Результат: 9
Седьмое задание из ЕГЭ по информатике 2022. Отличное задание, которое нужно решать!
Данное задание проверяет умение определять объём памяти, необходимый для хранения графической и звуковой информации.
Приступим к примерным вариантам из ЕГЭ по информатике.
Задача (классика, количество цветов изображения)
Какое максимальное количество цветов может быть в палитре неупакованного растрового изображения, имеющего размер 1024 * 256 пикселей и занимающего на диске не более 165 кб.
Решение:
1. Найдём сколько будет весить один пиксель! У нас всего 1024 * 256 пикселей. Берём максимально возможный объём картинки (165 Кб) и разделим его на количество пикселей.
Важно: Мы не пытаемся сразу вычислить, например, количество пикселей во всём изображении. А записываем сначала в виде действия 1024 * 256. Когда уже получается дробь, пытаемся сократить эту дробь по максимуму. Это позволяет экономить силы при решении седьмого задания из ЕГЭ по информатике 2022.
Нам нужно найти: сколько именно целых бит занимает один пиксель. Округляем количество бит в меньшую сторону, потому что мы не можем «перевалить» за максимальную отметку 165 Кб для всего изображения.
Применим формулу, которую нужно твёрдо знать для решения 7 задания из ЕГЭ по информатике.
Ответ: 32
Задача (Резервирование памяти)
Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 64 * 256 пикселей при условии, что в изображении могут использоваться 4 различных цвета? В ответе запишите только целое число, единицу измерения писать не нужно.
Решение:
Задача обратная предыдущей. Первый вопрос на который нужно ответить: сколько весит 1 пиксель? Снова используется формула N = 2 i.
Видно, что 1 пиксель имеет объём i = 2 бита. Количество пикселей в изображении равно 64 * 256. Важно опять умножать эти два числа не сразу. Тогда объём картинки будет равен: количество пикселей (64 * 256) умножить на объём одного пикселя (2 бита).
В подобных задачах из ЕГЭ по информатике фишка в том, чтобы составить дробь и потом сократить её, тем самым вычисление делается без калькулятора и без лишних усилий.
Ответ: 4
Задача (работа со звуком)
Производится звукозапись музыкального фрагмента в формате квадро (четырёхканальная запись) с частотой дискретизации 16 кГц и 24-битным разрешением. Результаты записываются в файл, сжатие данных не производится; размер полученного файла 60 Мбайт. Затем производится повторная запись этого же фрагмента в формате стерео (двухканальная запись) с частотой дискретизации 64 кГц и 16-битным разрешением. Сжатие данных не производилось. Укажите размер файла в Мбайт, полученного при повторной записи. В ответе запишите только целое число, единицу измерения писать не нужно.
Решение:
Общая формула для решения 7-ого задания на тему звуковых файлов из ЕГЭ по информатике.
Её легко запомнить. Объём записанного файла равен произведению всех остальных параметров. Важно соблюдать единицы измерения.
Распишем формулу дискретизации для первой звукозаписи и для второй. В первом случае у нас режим квадро, значит, нужно к произведению добавить ещё 4. Во втором случае режим стерео, значит, должны поставить коэффициент 2. Т.к. производилась запись этого же фрагмента, то время в обоях случаях одинаковое.
Выражаем время из первого уравнения и подставляем во второе.
Опять удобно решать с помощью сокращение дробей.
Ответ: 80
Закрепим результат, решив ещё одну тренировочную задачу из ЕГЭ по информатике 2021.
Задача (ЕГЭ по информатике 2020, Досрочная волна)
Музыкальный фрагмент был записан в формате квадро (четырёхканальная запись), оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла без учёта размера заголовка файла – 12 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате моно и оцифрован с разрешением в 2 раза выше и частотой дискретизации в 1,5 раза меньше, чем в первый раз. Сжатие данных не производилось. Укажите размер в Мбайт файла, полученного при повторной записи. В ответе запишите только целое число, единицу измерения писать не нужно. Искомый объём не учитывает размера заголовка файла.
Решение:
Вначале выписываем формулу для первого файла и для второго файла. Подставляем всё, что нам известно.
Для второго звукового файла коэффициенты все переносим в одну сторону.
Выражаем из первого уравнения произведение M * i * t и подставляем его во второе уравнение.
После небольших сокращений получаем 4 Мб для второго звукового файла.
Время было для обоих файлов одинаковым, потому что было сказано, что тот же музыкальный файл перезаписали второй раз с другими параметрами.
Ответ: 4
Удачи при решении 7 задания из ЕГЭ по информатике 2022!
Версия для печати и копирования в MS Word
1
Сколько секунд потребуется модему, передающему информацию со скоростью 32000 бит/с, чтобы передать 24─цветное растровое изображение размером 800 на 600 пикселей, при условии что цвет кодируется минимально возможным количеством бит.
Ответ:
2
Сколько секунд потребуется обычному модему, передающему сообщения со скоростью 28800 бит/с, чтобы передать цветное растровое изображение размером 640 х 480 пикселей, при условии, что цвет каждого пикселя кодируется тремя байтами?
Ответ:
3
Сколько секунд потребуется модему, передающему сообщения со скоростью 14400 бит/с, чтобы передать цветное растровое изображение размером 640 на 480 пикселей, при условии, что цвет каждого пикселя кодируется 24 битами?
Ответ:
4
Сколько секунд потребуется модему, передающему сообщения со скоростью 28800 бит/с, чтобы передать растровое изображение размером пикселей, при условии, что в палитре цветов?
Ответ:
5
Сколько секунд потребуется модему, передающему сообщения со скоростью 32000 бит/с, чтобы передать 16-цветное растровое изображение размером пикселей, при условии, что в каждом байте закодировано максимально возможное число пикселей?
Ответ:
6
Сколько секунд потребуется модему, передающему сообщения со скоростью 19200 бит/с, чтобы передать цветное растровое изображение размером пикселей, при условии, что цвет каждого пикселя кодируется 24 битами?
Ответ:
Завершить тестирование, свериться с ответами, увидеть решения.
За это задание ты можешь получить 1 балл. На решение дается около 3 минут. Уровень сложности: базовый.
Средний процент выполнения: 80.4%
Ответом к заданию 7 по информатике может быть цифра (число) или слово.
Разбор сложных заданий в тг-канале
Задачи для практики
Задача 1
Документ объёмом 16 Мбайт можно передать с одного компьютера на другой двумя способами.
А. Сжать архиватором, передать архив по каналу связи, распаковать.
Б. Передать по каналу связи без использования архиватора.
Какой способ быстрее и насколько, если
- средняя скорость передачи данных по каналу связи составляет $2^22$ бита в секунду;
- объём сжатого архиватором документа равен 25% исходного;
- время, требуемое на сжатие документа, — 15 секунд, на распаковку — 4 секунды?
В ответе напишите букву А, если быстрее способ А, или Б, если быстрее способ Б. Сразу после буквы напишите число, обозначающее, на сколько секунд один способ быстрее другого. Так, например, если способ Б быстрее способа А на 13 секунды, в ответе нужно написать Б13. Единицы измерения к ответу добавлять не нужно.
Решение
В случае А на сжатие файла потребуется 15 секунд. Объём сжатого файла будет равен 16 ∗ 0,25 = 4 Мбайта = 4 · 223 бит. На передачу сжатого файла потребуется 4 · 223/222 = 8 секунд. На распаковку файла — 4 секунды. Итого 15 + 8 + 4 = 27 секунд.
В случае Б объём исходного файла равен 16 Мбайт = 16 · 223 бит. На передачу этого файла потребуется 16 · 223/222 = 32 секунды.
Следовательно, способ А быстрее на 32 − 27 = 5 секунд.
Ответ: а5
Задача 2
Растровое изображение было передано в город А по каналу связи за 9 секунд. Затем это изображение по высоте увеличили в 2 раза, а по ширине уменьшили в 3 раза. Полученное изображение было передано в город Б; пропускная способность канала связи с городом Б в 5 раз меньше, чем канала связи с городом А.
Сколько секунд длилась передача файла в город Б? В ответе запишите только целое число, единицу измерения писать не нужно.
Решение
Пусть I — информационный объём, требуемый для хранения исходного изображения. Информационный объём требуемой для хранения изображения видеопамяти можно рассчитать по формуле: T = I · X · Y , где T — информационный объём видеопамяти в битах; X · Y — количество точек изображения (X — количество точек по горизонтали, Y — по вертикали); I — глубина цвета в битах на точку.
Пусть VА — скорость передачи данных в город А. Учитывая, что передача данных осуществлялась 9 секунд, имеем ${A}/{V_А}$ = 20.
После того как изображение было изменено, количество пикселей по высоте X1 = 2X, а по ширине Y1 = ${Y}/{3}$. Размер полученного изображения T1 = I · X1 · Y1 = I · 2X · ${Y}/{3}$ = ${2}/{3}$ I · X · Y = ${2}/{3}$ · T .
Скорость передачи данных в город Б в 5 раз меньше, чем в город А, то есть VБ = ${V_А}/{5}$. Следовательно, в город Б передача данных продолжалась ${T_1}/{V_Б} = {2T · 5}/{3 · V_А} = {10T}/{3V_А} = {90}/{3} = 30$ (сек.)
Ответ: 30
Задача 3
Найдите наибольшее возможное количество цветов в растровом изображении, если известно, что его размер — 256 на 512 пикселей, а объём памяти, которую занимает изображение, — 80 Кбайт.
Решение
В первую очередь определим количество бит, необходимое для хранения цвета одного пикселя. Всего изображение состоит из 256·512 = 28 ·29 = 217 пикселей. Изображение занимает 80 Кбайт = 80 · 21 3 бит. Следовательно, под один пиксель отводится ${80 · 2^{1}3}/{2^{1}7} = 5$ бит. Наибольшее возможное количество цветов в растровом изображении соответствует количеству различных значений, которое можно закодировать 5 битами: 25 = 32.
Ответ: 32
Задача 4
Для хранения растрового изображения размером 128 × 240 пикселей отвели 30 Кбайт памяти. Каково максимально возможное число цветов в палитре изображения?
Задача 5
Для хранения растрового изображения размером 512 × 400 пикселей отвели 250 Кбайт памяти. Каково максимально возможное число цветов в палитре изображения?
Задача 6
Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 96 × 160 пикселей при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.
Задача 7
Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 128 × 64 пикселей при условии, что в изображении могут использоваться 16 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.
Задача 8
Для хранения произвольного растрового изображения размером 768 × 256 пикселей отведено 168 Кбайт памяти, при этом для каждого пикселя отведено двоичное число—код цвета этого пикселя. Для хранения кода каждого пикселя выделено одинаковое количество бит. Сжатие данных не производится. Какое максимальное количество цветов можно использовать в изображении?
Задача 9
Для хранения произвольного растрового изображения размером 512 × 256 пикселей отведено 0, 125 Мбайт памяти, при этом для каждого пикселя отведено двоичное число — код цвета этого пикселя. Для хранения кода каждого пикселя выделено одинаковое количество бит. Сжатие данных не производится. Какое максимальное количество цветов можно использовать в изображении?
Задача 10
Автоматическая фотокамера производит растровые изображения размером 1024 × 640 пикселей. При этом объём файла с изображением не может превышать 256 Кбайт, упаковка данных не производится. Какое максимальное количество цветов можно использовать в палитре?
Задача 11
Автоматическая фотокамера производит растровые изображения размером 256×512 пикселей. При этом объём файла с изображением не может превышать 84 Кбайт, упаковка данных не производится. Какое максимальное количество цветов можно использовать в палитре?
Рекомендуемые курсы подготовки
- ЕГЭ по информатике
Подборки заданий по кодированию информации.
Задание 7 ЕГЭ по информатике — умение определять объём памяти, необходимый для хранения графической и звуковой информации.
37 задач с решениями (ссылки в конце документа).
→ скачать задания
Источник: vk.com/inform_web
Примеры заданий:
1. Данные объемом 60 Мбайт передаются из пункта А в пункт Б по каналу связи, обеспечивающему скорость передачи данных 220 бит в секунду, а затем из пункта Б в пункт В по каналу связи, обеспечивающему скорость передачи данных 223 бит в секунду. От начала передачи данных из пункта А до их полного получения в пункте В прошло 10 минут. Сколько времени в секундах составила задержка в пункте Б, т.е. время между окончанием приема данных из пункта А и началом передачи данных в пункт В?
2. У Васи есть доступ к Интернет по высокоскоростному одностороннему радиоканалу, обеспечивающему скорость получения им информации 219 бит в секунду. У Пети нет скоростного доступа в Интернет, но есть возможность получать информацию от Васи по низкоскоростному телефонному каналу со средней скоростью 215 бит в секунду. Петя договорился с Васей, что тот будет скачивать для него данные объемом 10 Мбайт по высокоскоростному каналу и ретранслировать их Пете по низкоскоростному каналу. Компьютер Васи может начать ретрансляцию данных не раньше, чем им будут получены первые 1024 Кбайт этих данных. Каков минимально возможный промежуток времени (в секундах), с момента начала скачивания Васей данных, до полного их получения Петей? В ответе укажите только число, слово «секунд» или букву «с» добавлять не нужно.
3. Изображение было оцифровано и сохранено в виде растрового файла. Получившейся файл был передан в город А по каналу связи за 30 секунд. Затем то же изображение было оцифровано повторно с разрешением в 3 раза больше и глубиной кодирования цвета в 2 раза меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б, пропускная способность канала связи с городом Б в 1.5 раза выше, чем канала связи с городом А. Сколько секунд длилась передача файла в город Б?
Связанные страницы:
Автор материалов — Лада Борисовна Есакова.
Microsoft Excel (в дальнейшем просто — Excel) — это программа выполнения расчетов и управления так называемыми электронными таблицами.
Excel позволяет выполнять сложные расчеты, в которых могут использоваться данные, расположенные в разных областях электронной таблицы и связанные между собой определенной зависимостью. Для выполнения таких расчетов в Excel существует возможность вводить различные формулы в ячейки таблицы. Excel выполняет вычисления и отображает результат в ячейке с формулой.
Важной особенностью использования электронной таблицы является автоматический пересчет результатов при изменении значений ячеек. Excel также может строить и обновлять графики, основанные на введенных числах.
Адрес ячейки в электронных таблицах состоит из имени столбца и следующего за ним номера строки, например, C15.
Для написания формул используют адреса ячеек и знаки арифметических операций (+, -, *, /, ^). Формула начинается знаком =.
В Excel предусмотрены стандартные функции, которые могут быть использованы в формулах. Это математические, логические, текстовые, финансовые и другие функции. Однако, на экзамене Вам могут встретиться только самые простые функции: СЧЕТ (количество непустых ячеек), СУММ (сумма), СРЗНАЧ (среднее значение), МИН (минимальное значение), МАКС (максимальное значение).
Диапазон ячеек обозначается следующим образом: A1:D4 (все ячейки прямоугольника от A1 до D4.
Адреса ячеек бывают относительными, абсолютными и смешанными.
Они по-разному ведут себя при копировании формулы из ячейки в ячейку.
Относительная адресация:
Если в ячейке B2 мы напишем формулу =D1+3, то таблица воспримет это как «взять значение ячейки на две правее и на одну выше текущей, и прибавить к нему 3».
Т.е. адрес D1 воспринимается таблицей, как положение относительно ячейки, куда вводится формула. Такой адрес называется относительным. При копировании такой формулы в другую ячейку, таблица автоматически пересчитает адрес относительно нового расположения формулы:
Абсолютная адресация:
Если нам не нужно, чтобы адрес пересчитывался при копировании формулы, мы можем его «закрепить» в формуле — поставить знак $ перед буквой и индексом ячейки: =$D$1+3. Такой адрес называется абсолютным. Такая формула не будет изменяться при копировании:
Смешанная адресация:
Если же мы хотим, чтобы при копировании формулы автоматически пересчитывался, к примеру, только индекс ячейки, а буква оставалась неизменной, мы можем «закрепить» в формуле только букву (или наоборот): =$D1+3. Такой адрес называется смешанным. При копировании формулы будет меняться только индекс в адресе ячейки:
Электронные таблицы. Копирование формул.
Пример 1.
В ячейке C2 записана формула =$E$3+D2. Какой вид приобретет формула, после того как ячейку C2 скопируют в ячейку B1?
1) =$E$3+C1 2) =$D$3+D2 3) =$E$3+E3 4) =$F$4+D2
Решение:
Место расположения формулы меняется с C2 на B1, т.е. формула сдвигается на одну ячейку влево и на одну ячейку вверх (буква «уменьшается» на единицу и индекс уменьшается на единицу). Значит, так же изменятся все относительные адреса, а абсолютные (закрепленные знаком $) останутся неизменными:
=$E$3+С1.
Ответ: 1
Пример 2.
В ячейке В11 электронной таблицы записана формула. Эту формулу скопировали в ячейку А10. В результате значение в ячейке А10 вычисляется по формуле х—Зу, где х — значение в ячейке С22, а у — значение в ячейке D22. Укажите, какая формула могла быть написана в ячейке В11.
1) =C22-3*D22 2) =D$22-3*$D23 3) =C$22-3*D$22 4) =$C22-3*$D22
Решение:
Проанализируем поочередно каждую формулу:
Место расположения формулы меняется с B11 на A10, т.е. буква «уменьшается» на 1 и индекс уменьшается на 1.
Тогда при копировании формулы изменятся следующим образом:
1) =B21-3*C21
2) =C$22-3*$D22
3) =B$22-3*C$22
4) =$C21-3*$D21
Условию задачи соответствует формула 2).
Ответ: 2
Электронные таблицы. Определение значения формулы.
Пример 3.
Дан фрагмент электронной таблицы:
А |
В |
С |
D |
|
1 |
1 |
2 |
3 |
|
2 |
4 |
5 |
6 |
|
3 |
7 |
8 |
9 |
В ячейку D1 введена формула =$А$1*В1+С2, а затем скопирована в ячейку D2. Какое значение в результате появится в ячейке D2?
1) 10 2) 14 3) 16 4) 24
Решение:
Место расположения формулы меняется с D1 на D2, т.е. буква не меняется, а индекс увеличивается на 1.
Значит, формула примет вид: =$А$1*В2+С3. Подставим в формулу числовые значения ячеек:1*5+9=14. Правильный ответ указан под номером 2.
Ответ: 2
Пример 4.
В электронной таблице значение формулы =СРЗНАЧ(A6:C6) равно (-2). Чему равно значение формулы =СУММ(A6:D6), если значение ячейки D6 равно 5?
1) 1 2) -1 3) -3 4) 7
Решение:
По определению среднего значения:
СРЗНАЧ(A6:C6) = СУММ(A6:С6)/3 = -2
Значит, СУММ(A6:С6) = -6
СУММ(A6:D6) = СУММ(A6:С6)+D6 = -6+5 = -1
Ответ: 2
Электронные таблицы и диаграммы.
Пример 5.
Дан фрагмент электронной таблицы в режиме отображения формул.
После выполнения вычислений построили диаграмму по значениям диапазона A1:D1. Укажите полученную диаграмму:
Решение:
Вычислим по формулам значения ячеек A1:D1.
B1 = 3-2 =1
A1 = 2-1 =1
C1 = 1+2 =3
D1 = 1*3 =3
Этим данным соответствует диаграмма 3.
Ответ:3
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Задача №7. Электронные таблицы. Абсолютная и относительная адресация. Графики и диаграммы.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
08.03.2023
ЕГЭ информатика 7 задание разбор, теория, как решать.
Кодирование графической-звуковой информации. Передача информации, (Б) — 1 балл
Е7.40 с разрешением в 3,5 раза выше и частотой дискретизации в 2 раза меньше
Музыкальный фрагмент был записан в формате моно, оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла – 28 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате стерео (двухканальная запись) и оцифрован с разрешением в 3,5 раза выше и частотой дискретизации в 2 раза меньше, чем в первый раз. …
Читать далее
Е7.39 Суммарно (сведения и фотография) информация об объекте занимает 7 Мбайт.
В информационной системе хранятся сведения о некотором объекте и его чёрно-белая фотография, содержащая 256 оттенков цвета. Суммарно (сведения и фотография) информация об объекте занимает 7 Мбайт. Фотографию объекта заменили на цветную, сделанную в режиме TrueColor (224 цветов), при этом разрешение и коэффициент сжатия изображения не изменились. После замены информация об объекте стала занимать 11 Мбайт. …
Читать далее
Е7.38 размером 1024х1536 пикселей отведено не более 2 Мбайт памяти
Для хранения произвольного растрового изображения размером 1024х1536 пикселей отведено не более 2 Мбайт памяти без учёта размера заголовка файла. Для кодирования цвета каждого пикселя используется одинаковое количество бит, коды пикселей записываются в файл один за другим без промежутков. Какое максимальное количество цветов можно использовать в изображении? Ответ: Апробация ЕГЭ по информатике 19 февраля 2022 – …
Читать далее
Е7.37 Во время эксперимента автоматическая фотокамера каждые n секунд
Во время эксперимента автоматическая фотокамера каждые n секунд (n – целое число) делает чёрно-белые снимки с разрешением 320×240 пикселей и использованием 256 оттенков цвета. Известно, что для хранения полученных в течение часа фотографий (без учёта сжатия данных и заголовков файлов) достаточно 27 Мбайт. Определите минимально возможное значение n. Ответ: СтатГрад Вариант ИН2110301 08.02.2022 – задание …
Читать далее
Е7.36 Какой способ быстрее и на сколько?
Стоит задача передать файл размером 500 Мбайт между компьютерами в одной локальной сети. При этом есть два способа: А) записать файл на USB-накопитель, перенести физически накопитель до приемника, выгрузить файл, Б) передать по локальной сети со скоростью 10 Мбит/сек. Известно, что скорость записи и чтения файла через У$В составляет 100 Мбит/сек. На перемещение USB-накопителя понадобится …
Читать далее
Е7.35 Рисунок размером 5×6 дюймов отсканировали с разрешением 128 dpi
Рисунок размером 5×6 дюймов отсканировали с разрешением 128 dpi и использованием 8192 цветов. Определите размер полученного файла без учёта служебных данных и возможного сжатия. В ответе запишите целое число – размер файла в Кбайтах. Ответ:
Читать далее
Е7.34 с разрешением в 3 раза выше и частотой дискретизации в 1,5 раза меньше
с разрешением в 3 раза выше и частотой дискретизации в 1,5 раза меньше Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи за 50 секунд. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 3 раза выше и частотой …
Читать далее
Е7.33 с разрешением в 4 раза выше и частотой дискретизации в 8 раз меньше
с разрешением в 4 раза выше и частотой дискретизации в 8 раз меньше Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 4 раза выше и частотой дискретизации в 8 …
Читать далее
Е7.32 с разрешением в 6 раз ниже и частотой дискретизации в 1,5 раза больше
с разрешением в 6 раз ниже и частотой дискретизации в 1,5 раза больше. Музыкальный фрагмент был записан в формате моно, оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла – 18 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате стерео (двухканальная запись) и оцифрован с разрешением в 6 …
Читать далее
Е7.31 Во сколько раз размер повторной записи будет больше изначальной?
Во сколько раз размер повторной записи будет больше изначальной? Музыкальный фрагмент был записан в формате моно, оцифрован и сохранён в виде файла с использованием сжатия данных. При этом производилось сжатие данных, объем сжатого фрагмента стал равен 40% от первоначальной записи. Затем тот же музыкальный фрагмент был записан повторно в формате стерео (двухканальная запись) и оцифрован …
Читать далее