ЕГЭ математика — База 2022. Открытый банк заданий с ответами.
- ЕГЭ по математике профиль
Пробные и тренировочные варианты ЕГЭ 2022 по математике (база) из различных источников.
Тренировочные варианты ЕГЭ 2022 по математике (база)
ЕГЭ 100 баллов (с решениями) | |
Вариант 1 | скачать |
Вариант 2 | скачать |
Вариант 3 | скачать |
Вариант 4 | скачать |
Вариант 5 | скачать |
Вариант 6 | скачать |
Вариант 7 | скачать |
Вариант 8 | скачать |
Вариант 9 | скачать |
Вариант 10 | скачать |
variant 11 | скачать |
variant 12 | скачать |
variant 13 | скачать |
variant 14 | скачать |
variant 15 | скачать |
variant 16 | скачать |
variant 17 | скачать |
variant 18 | скачать |
variant 20 | скачать |
variant 21 | скачать |
variant 23 | скачать |
variant 24 | скачать |
variant 25 | скачать |
variant 26 | скачать |
variant 29 | скачать |
variant 30 | скачать |
Ягубов РФ | |
Вариант 22 | скачать |
Вариант 23 | скачать |
Вариант 24 | скачать |
Вариант 25 | скачать |
Вариант 26 | скачать |
Вариант 27 | скачать |
Вариант 28 | скачать |
vk.com/pro_matem | |
variant 1 | разбор |
variant 2 | разбор |
vk.com/matematicalate | |
variant 1 | скачать |
variant 2 | скачать |
variant 3 | скачать |
variant 4 | скачать |
variant 5 | скачать |
variant 6 | скачать |
variant 7 | скачать / разбор 1-13 |
→ Купить сборники тренировочных вариантов ЕГЭ 2022 по математике | |
math100.ru (с ответами) по демоверсии 2021 года | |
Вариант 1 | скачать |
Вариант 2 | скачать |
Вариант 3 | скачать |
Вариант 4 | скачать |
Вариант 5 | скачать |
Вариант 6 | скачать |
Вариант 7 | скачать |
Вариант 8 | скачать |
Вариант 9 | скачать |
Вариант 10 | скачать |
Разные | |
Вариант 1-5 | ответы |
Структура варианта КИМ ЕГЭ 2022 математика база
Экзаменационная работа включает в себя 21 задание с кратким ответом базового уровня сложности.
Все задания направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях. Ответом к каждому из заданий 1–21 является целое число, или конечная десятичная дробь, или последовательность цифр.
Задание с кратким ответом считается выполненным, если верный ответ записан в бланке ответов № 1 в той форме, которая предусмотрена инструкцией по выполнению задания.
Распределение заданий варианта КИМ ЕГЭ по содержанию, видам умений и способам действий
В экзаменационной работе проверяется следующий учебный материал.
1. Математика, 5–6 классы.
2. Алгебра, 7–9 классы.
3. Алгебра и начала анализа, 10–11 классы.
4. Теория вероятностей и статистика, 7–9 классы.
5. Геометрия, 7–11 классы
Связанные страницы:
- ЕГЭ по математике
Пробные варианты ЕГЭ 2022 по математике базового уровня из различных источников.
Пробные варианты ЕГЭ 2022 по математике (базовый уровень)
math100.ru (с ответами) по демоверсии 2022 года | |
Вариант 1 | скачать |
Вариант 2 | скачать |
Вариант 3 | скачать |
Вариант 4 | скачать |
Вариант 5 | скачать |
Вариант 6 | скачать |
Вариант 7 | скачать |
Вариант 8 | скачать |
Вариант 9 | скачать |
Вариант 10 | скачать |
ЕГЭ 100 баллов (с решениями) | |
variant 10 | скачать |
variant 11 | скачать |
variant 12 | скачать |
variant 13 | скачать |
variant 14 | скачать |
variant 15 | скачать |
variant 16 | скачать |
variant 17 | скачать |
variant 18 | скачать |
variant 20 | скачать |
variant 21 | скачать |
Ягубов РФ | |
Вариант 22 | скачать |
Вариант 23 | скачать |
Вариант 24 | скачать |
Вариант 25 | скачать |
Вариант 26 | скачать |
vk.com/matematicalate | |
variant 1 | скачать |
variant 2 | скачать |
variant 3 | скачать |
variant 4 | скачать |
variant 5 | скачать |
variant 6 | скачать |
Инструкция по выполнению работы
Экзаменационная работа включает в себя 21 задание.
На выполнение работы отводится 3 часа (180 минут).
Ответы к заданиям записываются по приведённым ниже образцам в виде числа или последовательности цифр. Сначала запишите ответы к заданиям в поле ответа в тексте работы, а затем перенесите их в бланк ответов № 1 справа от номера соответствующего задания.
Если ответом является последовательность цифр, как в приведённом ниже примере, то запишите эту последовательность в бланк ответов № 1 без пробелов, запятых и других дополнительных символов.
Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.
При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.
Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.
После завершения работы проверьте, чтобы ответ на каждое задание в бланке ответов № 1 был записан под правильным номером
Связанные страницы:
3 июня 2022
В закладки
Обсудить
Жалоба
Вариант собран по заданиям прошедшего ЕГЭ 3 июня.
Ответы прилагаются.
Экзаменационная работа включает в себя 21 задание.
На выполнение работы отводится 3 часа.
→ rm-ege2022-baza.pdf
→ Профильный уровень.
Каждое из заданий 1–21 считается выполненными верно, если экзаменуемый дал верный ответ в виде целого числа или конечной десятичной дроби.
Каждое верно выполненное задание оценивается 1 баллом.
Перевод баллов в оценку
0-6 → 2
7-11 → 3
12-16 → 4
17-21 → 5
Источник: yagubov.ru
2022 год
база 6 (2022).pdf
Adobe Acrobat Document
188.2 KB
2022 год
база 8 (2022).pdf
Adobe Acrobat Document
523.5 KB
2022 год
база 10 (2022).pdf
Adobe Acrobat Document
406.8 KB
Прототипы задания 3 ЕГЭ по математике (базовый уровень)
база3.doc
Microsoft Word Document
39.0 KB
Прототипы задания 4 ЕГЭ по математике (базовый уровень)
база4.doc
Microsoft Word Document
157.5 KB
Прототипы задания 5 ЕГЭ по математике (базовый уровень)
база 5.doc
Microsoft Word Document
61.0 KB
Прототипы задания 6 ЕГЭ по математике (базовый уровень)
база 6.doc
Microsoft Word Document
38.0 KB
Прототипы задания 7 ЕГЭ по математике (базовый уровень)
база 7.doc
Microsoft Word Document
43.5 KB
прототипы задания 8 ЕГЭ по математике (базовый уровень)
база 8.doc
Microsoft Word Document
280.5 KB
Прототипы задания 9 ЕГЭ по математике (базовый уровень)
база 9.doc
Microsoft Word Document
114.0 KB
Прототипы задания 10 ЕГЭ по математике (базовый уровень)
база 10.doc
Microsoft Word Document
43.5 KB
Прототипы задания 12 ЕГЭ по математике (базовый уровень)
база 12.doc
Microsoft Word Document
199.0 KB
Прототипы задания 13 ЕГЭ по математике (базовый уровень)
база 13.doc
Microsoft Word Document
252.0 KB
Прототипы задания 14 ЕГЭ по математике (базовый уровень)
база 14.doc
Microsoft Word Document
482.5 KB
Прототипы задания 17 ЕГЭ по математике (базовый уровень)
база17.doc
Microsoft Word Document
379.5 KB
Прототипы задания 18 ЕГЭ по математике (базовый уровень)
база 18.doc
Microsoft Word Document
50.0 KB
Прототипы задания 19 ЕГЭ по математике (базовый уровень)
база 19.doc
Microsoft Word Document
33.5 KB
Прототипы задания 20 ЕГЭ по математике (базовый уровень)
база 20.doc
Microsoft Word Document
31.5 KB
Каким был ЕГЭ по математике в 2022 году?
Мы знаем, что в 2022 году формат ЕГЭ по математике изменился. Поменялась нумерация заданий. Добавились новые задачи: №9 (Функции и графики) и № 10 (Теория вероятностей). И в первой части стало на 1 задачу меньше.
Во второй части ЕГЭ также произошли изменения.
«Экономическая» задача, которая теперь под № 15, оценивается уже не в 3, а только в 2 первичных балла.
А вот задача по стереометрии, №13, наоборот, «подорожала» и теперь оценивается в 3 балла.
Расскажем о заданиях 2 части ЕГЭ, задачах 13-18, а затем подробно разберем различные типы таких задач.
Задание 12, уравнения. Все стандартно, просто тригонометрия.
Задание 13, стереометрия. По сравнению с прошлыми годами сложность значительно выше. Здесь и теорема Менелая, и произвольная призма, и пересечение сфер.
Задача 14, неравенство. Все стандартно – показательное неравенство, замена переменной. Помним о секретах решения таких задач! Сделав замену, сначала полностью решаем неравенство для новой переменной, затем возвращаемся к первоначальной.
Задача 15, экономическая. В 2022 году были только кредиты и вклады. Обошлись без задач на оптимизацию.
Задача 16, планиметрия. Простые задания, без затей. Подобные треугольники, теорема косинусов, свойство биссектрисы треугольника, в общем, обязательная школьная программа по геометрии.
Задание 17, задачи с параметрами. Составители вариантов порадовали разнообразием: был и графический метод, и аналитический. И решение квадратных уравнений с параметрами. И в каждом задании присутствовали модули, так что кто эту тему не знает, надо повторить!
Изучить «параметры» с нуля можно с помощью Видеокурса Анны Малковой
Полный курс, 26 часов видео, 13 видеоуроков. 11 методов решения задач с параметрами.
И наконец, задание 18, задачи на числа и их свойства. Все типы заданий – новые, нестандартные. Числа на круге, использование делимости и остатков.
Освоить эту необычную задачу можно с помощью видеокурса Анны Малковой.
Полный курс, 10 видеоуроков по 2 часа. 11 методов решения задач на числа и их свойства.
А теперь подробно о каждом задании ЕГЭ-2022, 2 часть.
Уравнения на EГЭ -2022 по математике, задача 12
Cтереометрия на EГЭ-2022 по математике, задача 13
Hеравенства на EГЭ-2022 по математике, задача 14
Экономические задачи и финансовая математика на ЕГЭ-2022, задача 15
Планиметрия на EГЭ-2022 по математике, задача 16
Задачи с параметрами на ЕГЭ-2022: модули, окружности, квадратные уравнения
Задача 18 на числа и их свойства на ЕГЭ-2022 по математике
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «ЕГЭ-2022, математика. Все задачи с решениями» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
09.03.2023
Пробный ЕГЭ № 1 по математике. 11 класс
Вариант 1
Вариант 2
Вариант 3
Вариант 4
Ответы
Скачать:
Предварительный просмотр:
МБОУ «Апраксинская СОШ»
ЕГЭ по МАТЕМАТИКЕ №1
Профильный уровень. 2022г.
Вариант 1
Часть 1
1. Найдите корень уравнения .
Ответ: ___________________
2. Перед началом футбольного матча судья бросает монету, чтобы определить, какая из команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными командами. Найдите вероятность того, что в этих матчах команда «Биолог» начнёт игру с мячом все три раза.
Ответ: ___________________
3. В треугольнике АВС СD – медиана, угол С равен 900, угол В равен 350. Найдите угол АСD. Ответ дайте в градусах.
Ответ: ___________________
4. Найдите значение выражения .
Ответ: ___________________
5. Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 28. Найдите площадь боковой поверхности исходной призмы.
Ответ: ___________________
6. На рисунке изображён график функции . На оси абсцисс отмечены десять точек: х1, х2, х3, х4, х5, х6, х7, х8. В скольких из этих точек производная функции положительна?
Ответ: ___________________
7. Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально. На исследуемом интервале температура вычисляется по формуле , где t – время в минутах, , , b = 98К/мин. Известно, что при температуре нагревателя свыше 1720К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ дайте в минутах.
Ответ: ___________________
8. Имеется два сплава. Первый сплав содержит 5% никеля, второй – 20% никеля. Из этих двух сплавов получили третий сплав массой 225кг, содержащий 15% никеля. На сколько килограммов масса первого сплава меньше массы второго?
Ответ: ___________________
9. На рисунке изображён график функции . Найдите .
Ответ: ___________________
10. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 25% этих стекол, вторая – 75%. Первая фабрика выпускает 4% бракованных стекол, а вторая – 2%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Ответ: ___________________
11. Найдите наибольшее значение функции
на отрезке .
Ответ: ___________________
Часть 2
12. а) Решите уравнение: .
б) Найдите корни этого уравнения, принадлежащие отрезку .
13. На ребрах DD1 и ВВ1 куба АВСDА1В1С1D1 с ребром 12 отмечены точки Р и Q соответственно, причём DP= 10, а В1Q = 4. Плоскость А1РQ пересекает ребро СС1 в точке М.
а) Докажите, что точка М является серединой ребра СС1.
б) Найдите расстояние от точки С1 до плоскости А1РQ.
14. Решите неравенство .
15. 15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн. рублей. Условия его возврата таковы:
– 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r – целое число;
– со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.
Дата |
15.01 |
15.02 |
15.03 |
15.04 |
15.05 |
15.06 |
15.07 |
Долг (в млн рублей) |
1 |
0,6 |
0,4 |
0,3 |
0,2 |
0,1 |
0 |
Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.
16. В трапеции АВСD основание АD в два раза меньше основания ВС. Внутри трапеции взяли точку М так, что углы ВАМ и СDМ прямые.
а) Докажите, что ВМ = СМ.
б) Найдите угол АВС, если угол ВСD равен 640, а расстояние от точки М до прямой ВС равно стороне АD.
17. Найдите значения a, при каждом из которых уравнение
имеет ровно два различных корня.
18. Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т.д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.
а) Приведите пример задуманных чисел, для которых на доске будет записан набор 1, 2, 3, 4, 5, 6, 7.
б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22?
в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 7, 9, 11, 14, 16, 18. 20, 21, 23, 25, 27, 30, 32, 34, 41.
Предварительный просмотр:
МБОУ «Апраксинская СОШ»
ЕГЭ по МАТЕМАТИКЕ №1
Профильный уровень. 2022г.
Вариант 2
Часть 1
1. Найдите корень уравнения .
Ответ: ___________________
2. Перед началом футбольного матча судья бросает монету, чтобы определить, какая из команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными командами. Найдите вероятность того, что в этих матчах команда «Биолог» начнёт игру с мячом ровно один раз.
Ответ: ___________________
3. В треугольнике АВС СD – медиана, угол С равен 900, угол В равен 410. Найдите угол АСD. Ответ дайте в градусах.
Ответ: ___________________
4. Найдите значение выражения .
Ответ: ___________________
5. Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 32. Найдите площадь боковой поверхности исходной призмы.
Ответ: ___________________
6. На рисунке изображён график функции . На оси абсцисс отмечены десять точек: х1, х2, х3, х4, х5, х6, х7, х8. В скольких из этих точек производная функции отрицательна?
Ответ: ___________________
7. Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально. На исследуемом интервале температура вычисляется по формуле , где t – время в минутах, , , b = 69К/мин. Известно, что при температуре нагревателя свыше 1736К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ дайте в минутах.
Ответ: ___________________
8. Имеется два сплава. Первый сплав содержит 10% никеля, второй – 25% никеля. Из этих двух сплавов получили третий сплав массой 270кг, содержащий 20% никеля. На сколько килограммов масса первого сплава меньше массы второго?
Ответ: ___________________
9. На рисунке изображён график функции . Найдите .
Ответ: ___________________
10. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 35% этих стекол, вторая – 65%. Первая фабрика выпускает 4% бракованных стекол, а вторая – 2%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Ответ: ___________________
11. Найдите наибольшее значение функции
на отрезке .
Ответ: ___________________
Часть 2
12. а) Решите уравнение: .
б) Найдите корни этого уравнения, принадлежащие отрезку .
13. На ребрах DD1 и ВВ1 куба АВСDА1В1С1D1 с ребром 12 отмечены точки Р и Q соответственно, причём DP= 10, а В1Q = 4. Плоскость А1РQ пересекает ребро СС1 в точке М.
а) Докажите, что точка М является серединой ребра СС1.
б) Найдите расстояние от точки С1 до плоскости А1РQ.
14. Решите неравенство .
15. 15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн. рублей. Условия его возврата таковы:
– 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r – целое число;
– со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.
Дата |
15.01 |
15.02 |
15.03 |
15.04 |
15.05 |
15.06 |
15.07 |
Долг (в млн рублей) |
1 |
0,6 |
0,4 |
0,3 |
0,2 |
0,1 |
0 |
Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.
16. В трапеции АВСD основание АD в два раза меньше основания ВС. Внутри трапеции взяли точку М так, что углы ВАМ и СDМ прямые.
а) Докажите, что ВМ = СМ.
б) Найдите угол АВС, если угол ВСD равен 640, а расстояние от точки М до прямой ВС равно стороне АD.
17. Найдите значения a, при каждом из которых уравнение
имеет ровно два различных корня.
18. Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т.д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.
а) Приведите пример задуманных чисел, для которых на доске будет записан набор 1, 2, 3, 4, 5, 6, 7.
б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22?
в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 7, 9, 11, 14, 16, 18. 20, 21, 23, 25, 27, 30, 32, 34, 41.
Предварительный просмотр:
МБОУ «Апраксинская СОШ»
ЕГЭ по МАТЕМАТИКЕ №1
Профильный уровень. 2022г.
Вариант 3
Часть 1
1. Найдите корень уравнения .
Ответ: ___________________
2. Перед началом футбольного матча судья бросает монету, чтобы определить, какая из команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными командами. Найдите вероятность того, что в этих матчах команда «Биолог» начнёт игру с мячом ровно два раза.
Ответ: ___________________
3. В треугольнике АВС СD – медиана, угол С равен 900, угол В равен 370. Найдите угол АСD. Ответ дайте в градусах.
Ответ: ___________________
4. Найдите значение выражения .
Ответ: ___________________
5. Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 36. Найдите площадь боковой поверхности исходной призмы.
Ответ: ___________________
6. На рисунке изображён график функции . На оси абсцисс отмечены десять точек: х1, х2, х3, х4, х5, х6, х7, х8. В скольких из этих точек производная функции положительна?
Ответ: ___________________
7. Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально. На исследуемом интервале температура вычисляется по формуле , где t – время в минутах, , , b = 96К/мин. Известно, что при температуре нагревателя свыше 1700К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ дайте в минутах.
Ответ: ___________________
8. Имеется два сплава. Первый сплав содержит 5% никеля, второй – 20% никеля. Из этих двух сплавов получили третий сплав массой 240кг, содержащий 15% никеля. На сколько килограммов масса первого сплава меньше массы второго?
Ответ: ___________________
9. На рисунке изображён график функции . Найдите .
Ответ: ___________________
10. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 40% этих стекол, вторая – 60%. Первая фабрика выпускает 5% бракованных стекол, а вторая – 3%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Ответ: ___________________
11. Найдите наибольшее значение функции
на отрезке .
Ответ: ___________________
Часть 2
12. а) Решите уравнение: .
б) Найдите корни этого уравнения, принадлежащие отрезку .
13. На ребрах DD1 и ВВ1 куба АВСDА1В1С1D1 с ребром 12 отмечены точки Р и Q соответственно, причём DP= 10, а В1Q = 4. Плоскость А1РQ пересекает ребро СС1 в точке М.
а) Докажите, что точка М является серединой ребра СС1.
б) Найдите расстояние от точки С1 до плоскости А1РQ.
14. Решите неравенство .
15. 15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн. рублей. Условия его возврата таковы:
– 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r – целое число;
– со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.
Дата |
15.01 |
15.02 |
15.03 |
15.04 |
15.05 |
15.06 |
15.07 |
Долг (в млн рублей) |
1 |
0,6 |
0,4 |
0,3 |
0,2 |
0,1 |
0 |
Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.
16. В трапеции АВСD основание АD в два раза меньше основания ВС. Внутри трапеции взяли точку М так, что углы ВАМ и СDМ прямые.
а) Докажите, что ВМ = СМ.
б) Найдите угол АВС, если угол ВСD равен 640, а расстояние от точки М до прямой ВС равно стороне АD.
17. Найдите значения a, при каждом из которых уравнение
имеет ровно два различных корня.
18. Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т.д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.
а) Приведите пример задуманных чисел, для которых на доске будет записан набор 1, 2, 3, 4, 5, 6, 7.
б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22?
в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 7, 9, 11, 14, 16, 18. 20, 21, 23, 25, 27, 30, 32, 34, 41.
Предварительный просмотр:
МБОУ «Апраксинская СОШ»
ЕГЭ по МАТЕМАТИКЕ №1
Профильный уровень. 2022г.
Вариант 4
Часть 1
1. Найдите корень уравнения .
Ответ: ___________________
2. Перед началом футбольного матча судья бросает монету, чтобы определить, какая из команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными командами. Найдите вероятность того, что в этих матчах команда «Биолог» ни разу не начнёт игру с мячом.
Ответ: ___________________
3. В треугольнике АВС СD – медиана, угол С равен 900, угол В равен 390. Найдите угол АСD. Ответ дайте в градусах.
Ответ: ___________________
4. Найдите значение выражения .
Ответ: ___________________
5. Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 35. Найдите площадь боковой поверхности исходной призмы.
Ответ: ___________________
6. На рисунке изображён график функции . На оси абсцисс отмечены десять точек: х1, х2, х3, х4, х5, х6, х7, х8. В скольких из этих точек производная функции отрицательна?
Ответ: ___________________
7. Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально. На исследуемом интервале температура вычисляется по формуле , где t – время в минутах, , , b = 196К/мин. Известно, что при температуре нагревателя свыше 1800К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ дайте в минутах.
Ответ: ___________________
8. Имеется два сплава. Первый сплав содержит 10% никеля, второй – 25% никеля. Из этих двух сплавов получили третий сплав массой 210кг, содержащий 15% никеля. На сколько килограммов масса первого сплава меньше массы второго?
Ответ: ___________________
9. На рисунке изображён график функции . Найдите .
Ответ: ___________________
10. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая – 55%. Первая фабрика выпускает 6% бракованных стекол, а вторая – 4%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Ответ: ___________________
11. Найдите наибольшее значение функции
на отрезке .
Ответ: ___________________
Часть 2
12. а) Решите уравнение: .
б) Найдите корни этого уравнения, принадлежащие отрезку .
13. На ребрах DD1 и ВВ1 куба АВСDА1В1С1D1 с ребром 12 отмечены точки Р и Q соответственно, причём DP= 10, а В1Q = 4. Плоскость А1РQ пересекает ребро СС1 в точке М.
а) Докажите, что точка М является серединой ребра СС1.
б) Найдите расстояние от точки С1 до плоскости А1РQ.
14. Решите неравенство .
15. 15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн. рублей. Условия его возврата таковы:
– 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r – целое число;
– со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.
Дата |
15.01 |
15.02 |
15.03 |
15.04 |
15.05 |
15.06 |
15.07 |
Долг (в млн рублей) |
1 |
0,6 |
0,4 |
0,3 |
0,2 |
0,1 |
0 |
Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.
16. В трапеции АВСD основание АD в два раза меньше основания ВС. Внутри трапеции взяли точку М так, что углы ВАМ и СDМ прямые.
а) Докажите, что ВМ = СМ.
б) Найдите угол АВС, если угол ВСD равен 640, а расстояние от точки М до прямой ВС равно стороне АD.
17. Найдите значения a, при каждом из которых уравнение
имеет ровно два различных корня.
18. Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т.д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.
а) Приведите пример задуманных чисел, для которых на доске будет записан набор 1, 2, 3, 4, 5, 6, 7.
б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22?
в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 7, 9, 11, 14, 16, 18. 20, 21, 23, 25, 27, 30, 32, 34, 41.
Предварительный просмотр:
МБОУ «Апраксинская СОШ»
ЕГЭ по МАТЕМАТИКЕ №1
Профильный уровень. 2022г.
Ответы
Часть 1
Вариант 1
1) 7; 2) 0,125; 3) 55; 4) – 10; 5) 56; 6) 5; 7) 6 75; 9) 34; 10) 0,025; 11) 28.
Вариант 2
1) 11; 2) 0,375; 3) 49; 4) – 6; 5) 64; 6) 3; 7) 7 90; 9) 7; 10) 0,027; 11) 23.
Вариант 3
1) 8; 2) 0,375; 3) 53; 4) – 20; 5) 72; 6) 5; 7) 5 80; 9) 23; 10) 0,038; 11) 30.
Вариант 4
1) 3; 2) 0,125; 3) 51; 4) – 16; 5) 70; 6) 3; 7) 8 70; 9) 47; 10) 0,049; 11) 11.
Часть 2
12) а) . 13) мой ответ: .
14) . 15) 7%. 16) 710. 17) мой ответ: .
18) а) 1, 2, 4 (1,1,1,1,1,1,1; 1,1,2,3); б) нет; в) 7, 7, 7, 9, 11 или 7, 9, 11, 14.
По теме: методические разработки, презентации и конспекты
- Мне нравится