Вариант 1 6. Планиметрия
1. Основания трапеции равны 3 и 2. Найдите отрезок, соединяющий середины диагоналей трапеции.
2. Периметр прямоугольника равен 8, а площадь равна 3,5. Найдите диагональ этого прямоугольника.
3. Найдите синус угла АОВ. В ответе укажите значение синуса, умноженное на 2.
4. Основания равнобедренной трапеции равны 7 и 13, а ее площадь равна 40. Найдите периметр трапеции.
5. Острые углы прямоугольного треугольника равны 53° и 37° . Найдите угол между высотой и медианой, проведёнными из вершины прямого угла. Ответ дайте в градусах.
6. Угол между хордой AB и касательной BC к окружности равен 35°. Найдите величину меньшей дуги, стягиваемой хордой AB. Ответ дайте в градусах.
7. Около трапеции описана окружность. Периметр трапеции равен 24, средняя линия равна 11. Найдите боковую сторону трапеции.
8. Найдите величину угла АВС. Ответ дайте в градусах.
9. Угол ACO равен 35°, где O — центр окружности. Его сторона CA касается окружности. Найдите величину меньшей дуги AB окружности, заключенной внутри этого угла. Ответ дайте в градусах.
10. В треугольнике ABC AD — биссектриса, угол C равен 30°, угол BAD равен 22°. Найдите угол ADB. Ответ дайте в градусах.
Вариант 2 6. Планиметрия
В 1. Сторона правильного треугольника равна Найдите радиус окружности, вписанной в этот треугольник.
2. Две стороны параллелограмма относятся как 9:11, а периметр его равен 40. Найдите большую сторону параллелограмма.
3. Найдите угол ACO, если его сторона CA касается окружности, O — центр окружности, а большая дуга AD окружности, заключенная внутри этого угла, равна 152°. Ответ дайте в градусах.
4. Отрезки AC и BD — диаметры окружности с центром O. Угол AOD равен 66°. Найдите вписанный угол ACB. Ответ дайте в градусах.
5. Радиус окружности, вписанной в правильный треугольник, равен 44. Найдите высоту этого треугольника.
6. Найдите радиус окружности, вписанной в треугольник , считая стороны квадратных клеток равными 1.
7. Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 9 и 4, считая от вершины, противолежащей основанию. Найдите периметр треугольника.
8. Площадь прямоугольного треугольника равна 24. Один из его катетов на 2 больше другого. Найдите меньший катет.
9. Около трапеции описана окружность. Периметр трапеции равен 52, средняя линия равна 21. Найдите боковую сторону трапеции.
10. Радиус окружности, вписанной в правильный треугольник, равен 31. Найдите высоту этого треугольника.
Вариант 3 6. Планиметрия
1. Четырехугольник ABCD вписан в окружность. Угол ABC равен 110°, угол ABD равен 70°. Найдите угол CAD. Ответ дайте в градусах.
2. Найдите радиус окружности, вписанной в правильный треугольник, высота которого равна 6.
3. В треугольнике АВС АС = ВС = 4 , cos ВАС = 0,25. Найдите высоту АН.
4. В ромбе ABCD угол DAB равен 136°. Найдите угол BDC. Ответ дайте в градусах.
5. В треугольнике АВС угол С равен 90°, СН – высота, АС = 3, cos А = . Найдите ВН.
6. Основания равнобедренной трапеции равны 14 и 26, а ее боковые стороны равны 10. Найдите площадь трапеции.
7. В треугольнике ABC угол C равен 90°, CH — высота, BC = 25, BH = 20. Найдите
8. Найдите площадь ромба, если его диагонали равны 4 и 12.
9. В треугольнике АВС АС = ВС = 4, угол С равен 30°. Найдите высоту АН.
10. В треугольнике ABC угол A равен 30°, угол B равен 86°, CD — биссектриса внешнего угла при вершине C, причем точка D лежит на прямой AB. На продолжении стороны AC за точку C выбрана такая точка E, что CE = CB. Найдите угол BDE. Ответ дайте в градусах
Вариант 4 6. Планиметрия
1. В треугольнике ABC угол C равен 90°, CH — высота, АВ = 15, tg А = . Найдите BH.
2. Угол ACB равен 42°. Градусная величина дуги AB окружности, не содержащей точек D и E, равна 124°. Найдите угол DAE. Ответ дайте в градусах.
3. Сторона ромба равна 20, острый угол равен 30°. Найдите радиус вписанной окружности этого ромба.
4.Острые углы прямоугольного треугольника равны 24° и 66°. Найдите угол между высотой и медианой, проведенными из вершины прямого угла. Ответ дайте в градусах.
5. Угол между биссектрисой и медианой прямоугольного треугольника, проведенными из вершины прямого угла, равен 20°. Найдите меньший угол прямоугольного треугольника.
6. Отрезки AC и BD — диаметры окружности с центром O. Угол AOD равен 66°. Найдите вписанный угол ACB. Ответ дайте в градусах.
7. Катеты равнобедренного прямоугольного треугольника равны 82 + 41
Найдите радиус окружности, вписанной в этот треугольник.
8. В остроугольном треугольнике ABC угол A равен 65°. BD и CE — высоты, пересекающиеся в точке O. Найдите угол DOE. Ответ дайте в градусах.
9. В треугольнике АВС угол С равен 90°, СН – высота, ВС = 4, ВН = 4. Найдите
10. Радиус окружности, описанной около правильного треугольника, равен 3. Найдите высоту этого треугольника.
Вариант 5 6. Планиметрия
1. Найдите косинус угла АОВ. В ответе укажите значение косинуса, умноженное на 2.
2. Два угла вписанного в окружность четырехугольника равны 82° и 58°. Найдите больший из оставшихся углов. Ответ дайте в градусах.
3. В треугольнике АВС угол С равен 90°, СН — высота, ВС = 3, sin А = . Найдите АН.
4. Хорда AB стягивает дугу окружности в 92°. Найдите угол ABC между этой хордой и касательной к окружности, проведенной через точку B. Ответ дайте в градусах.
5. Катеты равнобедренного прямоугольного треугольника равны 2+ Найдите радиус окружности, вписанной в этот треугольник.
6. Основания равнобедренной трапеции равны 43 и 7. Высота трапеции равна 27. Найдите тангенс острого угла трапеции.
7. Площадь ромба равна 6. Одна из его диагоналей в 3 раза больше другой. Найдите меньшую диагональ.
8.Больший угол равнобедренного треугольника равен 98°. Найдите меньший угол. Ответ дайте в градусах.
9. Чему равен острый вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.
10. Стороны параллелограмма равны 38 и 76. Высота, опущенная на первую сторону, равна 57. Найдите высоту, опущенную на вторую сторону параллелограмма.
Вариант 6 6. Планиметрия
1. Сторона АВ треугольника АВС равна 42. Противолежащий ей угол С равен 150° . Найдите радиус окружности, описанной около этого треугольника.
2. Через концы A, B дуги окружности в 114° проведены касательные AC и BC. Найдите угол ACB. Ответ дайте в градусах.
3. В треугольнике АВС АС=ВС, АН – высота, АВ=5, sinВАС= . Найдите
4. В треугольнике ABC проведена биссектриса AD и AB = AD = CD. Найдите меньший угол треугольника ABC. Ответ дайте в градусах.
5. Отрезки AC и BD — диаметры окружности с центром O. Угол ACB равен 38°. Найдите угол AOD. Ответ дайте в градусах.
6. Основания равнобедренной трапеции равны 7 и 51. Тангенс острого угла равен Найдите высоту трапеции.
7. В треугольнике ABC угол C равен 90°, АС = 8, cos А = Найдите АВ.
8. Периметр треугольника равен 76, а радиус вписанной окружности равен 8. Найдите площадь этого треугольника.
9. Стороны параллелограмма равны 9 и 15. Высота, опущенная на первую сторону, равна 10. Найдите высоту, опущенную на вторую сторону параллелограмма.
10. В треугольнике ABC угол ACB равен °, угол B равен °, CD — медиана. Найдите угол ACD. Ответ дайте в градусах.
Вариант 7 6. Планиметрия
1. Пусть тупым является угол C, тогда сторона AB тупоугольного треугольника ABC равна радиусу описанной около него окружности. Найдите угол C. Ответ дайте в градусах.
2. Две стороны параллелограмма относятся как 3:17, а периметр его равен 40. Найдите большую сторону параллелограмма.
3. В треугольнике ABC AC = BC, AB = 22, tg А = . Найдите AC.
4. Основания равнобедренной трапеции равны 6 и 12. Боковые стороны равны 5. Найдите синус острого угла трапеции.
5. В треугольнике ABC угол C равен 90°, АС = 17, sin А = . Найдите BC.
6. Найдите площадь треугольника, две стороны которого равны 21 и 2, а угол между ними равен 30°.
7. Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 10 и 1, считая от вершины, противолежащей основанию. Найдите периметр треугольника.
8. Угол ACO равен 35°, где O — центр окружности. Его сторона CA касается окружности. Найдите величину меньшей дуги AB окружности, заключенной внутри этого угла. Ответ дайте в градусах.
9. Угол ACB равен 51°. Градусная мера дуги AB окружности, не содержащей точек D и E, равна 144°. Найдите угол DAE. Ответ дайте в градусах.
10.Боковая сторона равнобедренного треугольника равна 5, угол при вершине, противолежащей основанию, равен 120°. Найдите диаметр описанной окружности этого треугольника.
Вариант 8 6. Планиметрия
1. Два угла вписанного в окружность четырехугольника равны 82° и 58°. Найдите больший из оставшихся углов. Ответ дайте в градусах.
2. Основания равнобедренной трапеции равны 13 и 25, а ее площадь равна 152. Найдите боковую сторону трапеции.
3. Найдите вписанный угол, опирающийся на дугу, которая составляет окружности. Ответ дайте в градусах.
4. В треугольнике ABC угол C равен 90°, АС = 17, sin А = . Найдите BC.
5. Площадь треугольника ABC равна 136. DE — средняя линия. Найдите площадь треугольника CDE.
6. В треугольнике ABC AC = BC, AB = 8, tg А = . Найдите AC.
7. Найдите угол ACO, если его сторона CA касается окружности, O — центр окружности, а большая дуга AD окружности, заключенная внутри этого угла, равна 116°. Ответ дайте в градусах.
8. Площадь параллелограмма ABCD равна 176. Точка E — середина стороны CD. Найдите площадь треугольника ADE.
9. Найдите сторону правильного шестиугольника, описанного около окружности, радиус которой равен 47.
10. Найдите синус угла АОВ. В ответе укажите значение синуса, умноженное на 2
Вариант 9 6. Планиметрия
1. Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 6 и 10.
2. Диагонали четырехугольника равны 4 и 5. Найдите периметр четырехугольника, вершинами которого являются середины сторон данного четырехугольника.
3. Найдите синус угла АОВ. В ответе укажите значение синуса, умноженное на
4. Найдите угол ACO, если его сторона CA касается окружности, O — центр окружности, а меньшая дуга окружности AB, заключенная внутри этого угла, равна 37°. Ответ дайте в градусах.
5. Боковые стороны трапеции, описанной около окружности, равны 27 и 4. Найдите среднюю линию трапеции.
6. В треугольнике АВС АС = ВС, АВ = 7 , tg ВАС = , Найдите высоту
7. Угол между стороной правильного n-угольника, вписанного в окружность, и радиусом этой окружности, проведенным в одну из вершин стороны, равен 80°. Найдите n.
8. Площадь параллелограмма ABCD равна 189. Точка E — середина стороны AD. Найдите площадь трапеции AECB.
9. Найдите вписанный угол, опирающийся на дугу, которая составляет окружности. Ответ дайте в градусах.
10. Основания равнобедренной трапеции равны 25 и 23. Высота трапеции равна 1. Найдите тангенс острого угла.
Вариант 10 6. Планиметрия
1. Найдите величину угла АВС. Ответ дайте в градусах.
2. В треугольнике ABC угол C равен 76°, AC = BC. Найдите угол A. Ответ дайте в градусах.
3. Площадь треугольника АВС равна 129. ДE – средняя линия, параллельная стороне АВ. Найдите площадь трапеции АВЕД.
4. В треугольнике АВС угол С равен 90°, СН – высота, АН = 12 , cos А = . Найдите АВ.
5. Высота правильного треугольника равна 33. Найдите радиус окружности, описанной около этого треугольника.
6. Основания равнобедренной трапеции равны 5 и 11, а её площадь равна 32. Найдите периметр трапеции.
7. Найдите площадь ромба, если его высота равна 2, а острый угол 30°.
8. Хорда AB делит окружность на две части, градусные величины которых относятся как 3:5. Под каким углом видна эта хорда из точки C, принадлежащей меньшей дуге окружности? Ответ дайте в градусах.
9. В треугольнике известно, что , , угол равен 90°. Найдите радиус вписанной окружности.
10. В треугольнике АВС АС = ВС = 27 , — высота, sin ВАС = . Найдите
6. Планиметрия |
||||
Вариант 1
|
Вариант 2
|
Вариант 3
|
Вариант 4
|
Вариант 5
|
Вариант 6
|
Вариант 7
|
Вариант 8
|
Вариант 9
|
Вариант 10
|
По теме: методические разработки, презентации и конспекты
Решение стереометрической задачи тремя различными способами
Здесь представлено на трех файлах моё решение решение задачи С2 (вариант 13) из пособия «МАТЕМАТИКА. Подготовка к ЕГЭ-2011» под редакцией Ф.Ф. Лысенко, С.Ю. Калабухова. Эта-же задача встречается в пос…
Методическая разработка по теме: «Применение аналитической геометрии к решению стереометрических задач».
ВЫЧИСЛЕНИЕ РАССТОЯНИЙ И УГЛОВ Рассмотрим несколько геометрических задач, для решения которых необходимо вычислить те или иные расстояния или углы в пространст…
Тема 36. ГЕОМЕТРИЯ.ОСНОВНЫЕ СВЕДЕНИЯ ДЛЯ РЕШЕНИЯ СТЕРЕОМЕТРИЧЕСКИХ ЗАДАЧ.
Уважаемые коллеги!Актуальной задачей на сегодняшний день является качественная подготовка учащихся к единому государственному экзамену (ЕГЭ) по математике, а также абитуриентов к вступительным э…
Тема 37.ИТОГОВЫЙ КОНТРОЛЬ ПО ТЕМАМ 34-36: «РЕШЕНИЕ ПЛАНИМЕТРИЧЕСКИХ И СТЕРЕОМЕТРИЧЕСКИХ ЗАДАЧ»
Уважаемые коллеги!Актуальной задачей на сегодняшний день является качественная подготовка учащихся к государственной итоговой аттестации (ГИА) и единому государственному экзамену (ЕГЭ) по математике, …
Методическая разработка по теме: «Применение векторно-координатного метода в решении стереометрических задач»
Учёные всегда стремились упростить себе жизнь – придумывали новые, простые методы решения, универсальные для множества задач, позволяющие быстро решить даже самую трудную задачу. …
Методическая разработка по теме: «Применение векторно-координатного метода в решении стереометрических задач»
Учёные всегда стремились упростить себе жизнь – придумывали новые, простые методы решения, универсальные для множества задач, позволяющие быстро решить даже самую трудную задачу. …
Программа внеурочной деятельности «Практикум решения стереометрических задач». Пропедевтика стереометрических знаний на примере качественных стереометрических задач.
Всем известная трудность в изучении стереометрии, возникающая у учащихся 10 классов, в значительной степени объясняется низким уровнем развитием их пространственных представлений. Ученики теряю…
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
В треугольнике АВС проведена биссектриса АМ. Прямая, проходящая через вершину В перпендикулярно АМ, пересекает сторону АС в точке N. АВ = 6; ВС = 5; АС = 9.
а) докажите, что биссектриса угла С делит отрезок МN пополам
б) пусть Р — точка пересечения биссектрис треугольника АВС. Найдите отношение АР : РN.
Источник: ЕГЭ по математике 19.06.2014. Основная волна, резервная волна. Запад. Вариант 1
2
Диагональ AC прямоугольника ABCD с центром O образует со стороной AB угол 30°. Точка E лежит вне прямоугольника, причём ∠BEC = 120°.
а) Докажите, что ∠CBE = ∠COE.
б) Прямая OE пересекает сторону AD прямоугольника в точке K. Найдите EK, если известно, что BE = 40 и CE = 24.
3
Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M. Известно, что AC = 3MB.
а) Докажите, что треугольник ABC прямоугольный.
б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 12.
4
На сторонах AC и BC треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M — середина стороны AB.
а) Докажите, что
б) Найдите расстояние от точки M до центров квадратов, если AC = 10, BC = 32 и ∠ACB = 30°.
Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016
5
На гипотенузу AB прямоугольного треугольника ABC опустили высоту CH. Из точки H на катеты опустили перпендикуляры HK и HE.
а) Докажите, что точки A, B, K и E лежат на одной окружности.
б) Найдите радиус этой окружности, если AB = 12, CH = 5.
Пройти тестирование по этим заданиям
Скачать материал
Карточка
1
Карточка
2
Карточка
3
Карточка
4
Карточка
5
Карточка
6
Карточка
7
Карточка
8
Карточка
9
Карточка
10
Карточка
11
Карточка
12
Карточка
13
Карточка
14
Карточка
15
Карточка
16
Карточка
17
Карточка
18
Карточка
19
Карточка
20
Карточка
21
№ |
1 |
2 |
3(В9 |
4 |
5 |
1 |
9 |
0,6 |
3 |
8 |
45,90,60 |
2 |
7,5 |
0,8 |
12 |
2 |
90,45,60 |
3 |
10 |
0,75 |
5 |
214 |
60,90,90 |
4 |
8 |
0,8 |
5 |
1,5 |
90,45,60 |
5 |
9 |
0,6 |
2 |
120 |
90,45,60 |
6 |
9 |
0,5 |
2 |
8 |
90,45,90 |
7 |
8 |
0,6 |
4 |
8 |
90,45,60 |
8 |
6 |
-0,8 |
5 |
360 |
60,60,90 |
9 |
1,25 |
-0,75 |
10 |
22 |
90,60,30 |
10 |
4 |
2 |
2 |
27 |
90,45,90 |
11 |
6 |
-2 |
19 |
30 |
90,45,60 |
12 |
10 |
2 |
6 |
8 |
90,45,60 |
13 |
18 |
5 |
6 |
3 |
90,45,60 |
14 |
84 |
10 |
1,5 |
10 |
90,45,90 |
15 |
4 |
4,8 |
12 |
32 |
60,90,90 |
16 |
16 |
12 |
8 |
36 |
90,45,60 |
17 |
6 |
8 |
4 |
64 |
90,90,60 |
18 |
10 |
10 |
8 |
16 |
90,45,90 |
19 |
8 |
135 |
2 |
128 |
90,45,90 |
20 |
25 |
45 |
6 |
2 |
90,45,60 |
21 |
135 |
50 |
2 |
60,90,90 |
Скачать материал
- Сейчас обучается 96 человек из 32 регионов
- Сейчас обучается 82 человека из 34 регионов
- Сейчас обучается 54 человека из 29 регионов
Краткое описание документа:
Цель работы: Подготовка к ЕГЭ — решение геометрических задач.
Не секрет, что геометрические задачи при сдаче ЕГЭ вызывают затруднения у школьников. Для подговки к ЕГЭ предлагаю ключевые задачи по геометрии, встречающиеся в ЕГЭ (часть в).
В работе 21 вариант и ответы. Карточки можно использовать на уроках, на занятиях по поготовке к ЕГЭ.
Хорошо зарекомендовала себя парная работа: два ученика решаю каждый свой вариант, а потом объясняют решение соседу. Надеюсь, данная разработка поможет Вам. Успехов всем на ЕГЭ!
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
6 153 779 материалов в базе
- Выберите категорию:
- Выберите учебник и тему
- Выберите класс:
-
Тип материала:
-
Все материалы
-
Статьи
-
Научные работы
-
Видеоуроки
-
Презентации
-
Конспекты
-
Тесты
-
Рабочие программы
-
Другие методич. материалы
-
Найти материалы
Другие материалы
Вам будут интересны эти курсы:
-
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
-
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
-
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
-
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
-
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
-
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
-
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
-
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
-
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
-
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
-
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
-
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
-
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
Оставьте свой комментарий
Вариант 1 |
|
Найдите высоту трапеции , опущенную из вершины , если стороны квадратных клеток равны |
5. Задание 8 Два садовода, имеющие прямоугольные участки размерами 35 м на 40 м с общей границей, договорились и сделали общий прямоугольный пруд размером 20 м на 14 м (см. чертёж), причём граница участков проходит точно через центр. Какова площадь (в квадратных метрах) оставшейся части участка каждого садовода? |
Найдите площадь треугольника, две стороны которого равны 8 и 12, а угол между ними равен 30°. |
6. Задание 13 Найдите объем многогранника, вершинами которого являются точки , , , прямоугольного параллелепипеда , у которого , , |
Периметр треугольника равен 12, а радиус вписанной окружности равен 1. Найдите площадь этого треугольника. |
7. Задание 15 На клетчатой бумаге с клетками размером 1 см 1 см изображена трапеция (см. рисунок). Найдите ее площадь в квадратных сантиметрах. |
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). |
8. Задание 16 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины. |
Вариант 2 |
|
На клетчатой бумаге с размером клетки изображён четырёхугольник ABCD. Найдите его периметр. |
Перила лестницы дачного дома для надёжности укреплены посередине вертикальным столбом. Найдите высоту l этого столба, если наименьшая высота h1 перил относительно земли равна 1,5 м, а наибольшая h2 равна 2,5 м. Ответ дайте в метрах. |
Площадь треугольника ABC равна4. DE — средняя линия. Найдите площадь треугольника CDE. |
Аквариум имеет форму прямоугольного параллелепипеда с размерами 60 см × 20 см × 50 см. Сколько литров составляет объём аквариума? В одном литре 1000 кубических сантиметров. |
Около окружности, радиус которой равен 3, описан многоугольник, периметр которого равен 20. Найдите его площадь. |
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). В ответе запишите . |
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). |
Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 16. Найдите его диагональ. |
Вариант 3 |
|
Найдите высоту треугольника , опущенную на сторону , если стороны квадратных клеток равны |
Дачный участок имеет форму прямоугольника со сторонами 20 метров и 30 метров. Хозяин планирует обнести его забором и разделить таким же забором на две части, одна из которых имеет форму квадрата. Найдите общую длину забора в метрах. |
У треугольника со сторонами 9 и 6 проведены высоты к этим сторонам. Высота, проведенная к первой стороне, равна 4. Чему равна высота, проведенная ко второй стороне? |
Плоскость, проходящая через три точки A, B и C, разбивает куб на два многогранника. Сколько граней у многогранника, у которого больше граней? |
Найдите радиус окружности, вписанной в правильный треугольник, высота которого равна 6. |
Найдите косинус угла . В ответе укажите значение косинуса, умноженное на . |
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). |
Прямоугольный параллелепипед описан около единичной сферы. Найдите его площадь поверхности. |
Вариант 4 |
|
На клетчатой бумаге с размером клетки 1 1 изображён прямоугольник. Найдите радиус окружности, описанной около этого прямоугольника. |
Дачный участок имеет форму прямоугольника, стороны которого равны 40 м и 30 м. Размеры дома, расположенного на участке и также имеющего форму прямоугольника, — 9 м × 6 м. Найдите площадь оставшейся части участка. Ответ дайте в квадратных метрах. |
В треугольнике ABC угол A равен 30°, CH — высота, угол BCH равен 22°. Найдите угол ACB. Ответ дайте в градусах. |
В бак, имеющий форму правильной четырёхугольной призмы со стороной основания, равной 20 см, налита жидкость. Для того чтобы измерить объём детали сложной формы, её полностью погружают в эту жидкость. Найдите объём детали, если уровень жидкости в баке поднялся на 20 см. Ответ дайте в кубических сантиметрах. |
Сторона правильного треугольника равна Найдите радиус окружности, вписанной в этот треугольник. |
Хорда делит окружность на две части, градусные величины которых относятся как 5:7. Под каким углом видна эта хорда из точки , принадлежащей меньшей дуге окружности? Ответ дайте в градусах. |
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). |
Площадь грани прямоугольного параллелепипеда равна 12. Ребро, перпендикулярное этой грани, равно 4. Найдите объем параллелепипеда. |
ОТВЕТЫ
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
Вариант 1 |
2 |
24 |
6 |
18 |
1260 |
10 |
14 |
5 |
Вариант 2 |
40 |
1 |
30 |
76 |
2 |
60 |
12 |
3 |
Вариант 3 |
5 |
6 |
2 |
92 |
120 |
7 |
-2 |
24 |
Вариант 4 |
2,5 |
38 |
0,5 |
110 |
1146 |
8000 |
105 |
48 |
Варианты для подготовки к ЕГЭ (задания по геометрии)
Вариант № 1
1. Участок земли под строительство санатория имеет форму прямоугольника, стороны которого равны 800 м и 300 м. Одна из больших сторон участка идёт вдоль моря, а три остальные стороны нужно огородить забором. Найдите длину этого забора. Ответ дайте в метрах.
2. Электрику ростом 1,8 метра нужно поменять лампочку, закреплённую на стене дома на высоте 4,2 м. Для этого у него есть лестница длиной 3 метра. На каком наибольшем расстоянии от стены должен быть установлен нижний конец лестницы, чтобы с последней ступеньки электрик дотянулся до лампочки? Ответ запишите в метрах.
3. Квартира состоит из двух комнат, кухни, коридора и санузла (см. чертёж). Первая комната имеет размеры 4 м × 4 м, вторая — 4 м × 3,5 м, кухня имеет размеры 4 м × 3,5 м, санузел — 2 м × 1,5 м. Найдите площадь всей квартиры (в квадратных метрах).
4. Детская горка укреплена вертикальным столбом, расположенным посередине спуска. Найдите высоту l этого столба, если высота h горки равна 2 метрам. Ответ дайте в метрах.
5. Участок земли имеет прямоугольную форму. Стороны прямоугольника 25 м и 70 м. Найдите длину забора (в метрах), которым нужно огородить участок, если в заборе нужно предусмотреть ворота шириной 4 м.
6.
Дачный участок имеет форму прямоугольника со сторонами 25 метров и 15 метров. Хозяин отгородил на участке квадратный вольер со стороной 8 метров (см. рисунок). Найдите площадь оставшейся части участка. Ответ дайте в квадратных метрах.
7. Дачный участок имеет форму прямоугольника со сторонами 20 метров и 30 метров. Хозяин планирует обнести его забором и разделить таким же забором на две части, одна из которых имеет форму квадрата. Найдите общую длину забора в метрах.
8. Детская горка укреплена вертикальным столбом, расположенным посередине спуска. Найдите высоту l этого столба, если высота h горки равна 2 метрам. Ответ дайте в метрах.
9. Пол в комнате, имеющей форму прямоугольника со сторонами 4 м и 6 м, требуется покрыть паркетом из прямоугольных дощечек со сторонами 10 см и 30 см. Сколько потребуется таких дощечек?
10. Участок земли имеет прямоугольную форму. Стороны прямоугольника 30 м и 60 м. Найдите длину забора (в метрах), которым нужно огородить участок, если в заборе нужно предусмотреть ворота шириной 3 м.
11. Объем куба равен 8. Найдите площадь его поверхности.
12. Шар вписан в цилиндр. Площадь поверхности шара равна 48. Найдите площадь полной поверхности цилиндра.
13. Плоскость, проходящая через точки A, B и C, рассекает тетраэдр на два многогранника (см. рисунок). Сколько вершин у получившегося многогранника с большим числом граней?
14. В прямоугольном параллелепипеде известно, что , , . Найдите длину диагонали .
15. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
16.В бак цилиндрической формы, площадь основания которого равна 80 квадратным сантиметрам, налита жидкость. Чтобы измерить объём детали сложной формы, её полностью погружают в эту жидкость. Найдите объём детали, если после её погружения уровень жидкости в баке поднялся на 15 см. Ответ дайте в кубических сантиметрах.
17. Найдите квадрат расстояния между вершинами и многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
18. Даны два шара с радиусами 3 и 1. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?
19. Площадь боковой поверхности цилиндра равна , а высота — 1. Найдите диаметр основания.
20. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).
Ключ Вариант № 1
№ п/п |
Ответ |
1 |
1400 |
2 |
1,8 |
3 |
66 |
4 |
1 |
5 |
186 |
6 |
311 |
7 |
120 |
8 |
1 |
9 |
800 |
10 |
177 |
11 |
24 |
12 |
72 |
13 |
6 |
14 |
27 |
15 |
60 |
16 |
1200 |
17 |
11 |
18 |
9 |
19 |
2 |
20 |
93 |
Вариант № 2
1. Участок земли для строительства дачи имеет форму прямоугольника, стороны которого равны 40 м и 30 м. Одна из больших сторон участка идёт вдоль реки, а три остальные стороны нужно огородить забором. Найдите длину этого забора. Ответ дайте в метрах.
2. Квартира состоит из двух комнат, кухни, коридора и санузла (см. чертёж). Первая комната имеет размеры 3,5 м × 4,5 м, вторая — 3,5 м × 3 м, санузел имеет размеры 1,5 м × 2 м, длина коридора — 9 м. Найдите площадь всей квартиры (в квадратных метрах).
3. Диагональ прямоугольного телевизионного экрана равна 58 см, а ширина экрана — 42 см. Найдите высоту экрана. Ответ дайте в сантиметрах.
4. Рыболовное хозяйство строит бассейн для разведения рыбы. Бассейн имеет форму прямоугольника со сторонами 4 м и 12 м. В центре бассейна находится техническая постройка, которая имеет форму прямоугольника со сторонами 2 м и 3 м. Найдите площадь оставшейся части бассейна.
5. Участок земли имеет прямоугольную форму. Стороны прямоугольника 25 м и 70 м. Найдите длину забора (в метрах), которым нужно огородить участок, если в заборе нужно предусмотреть ворота шириной 4 м.
6.
Участок земли имеет прямоугольную форму. Стороны прямоугольника равны 30 м и 75 м. Найдите длину забора (в метрах), которым нужно огородить участок, если в заборе предусмотрен проезд шириной 4 м.
7. План местности разбит на клетки. Каждая клетка обозначает квадрат 1м × 1м . Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных метрах.
8. Дачный участок имеет форму прямоугольника, стороны которого равны 40 м и 50 м. Дом, расположенный на участке, имеет на плане форму квадрата со стороной 9 м. Найдите площадь оставшейся части участка, не занятой домом. Ответ дайте в квадратных метрах.
9. Какой угол (в градусах) образуют минутная и часовая стрелки в 16:00?
10. Перила лестницы дачного дома для надёжности укреплены посередине вертикальным столбом. Найдите высоту l этого столба, если наименьшая высота h1 перил равна 0,7 м, а наибольшая h2 равна 1,5 м. Ответ дайте в метрах.
11. Высота конуса равна 15, а диаметр основания – 16. Найдите образующую конуса.
12. Конус вписан в цилиндр. Объем конуса равен 21. Найдите объем цилиндра.
13.
В сосуде, имеющем форму конуса, уровень жидкости достигает высоты. Объём сосуда 960 мл. Чему равен объём налитой жидкости? Ответ дайте в миллилитрах.
14. Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 3 и 4, и боковым ребром, равным 3.
15. Найдите квадрат расстояния между вершинами и многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
16. В бак, имеющий форму правильной четырёхугольной призмы со стороной основания, равной 40 см, налита жидкость. Чтобы измерить объём детали сложной формы, её полностью погружают в эту жидкость. Найдите объём детали, если после её погружения уровень жидкости в баке поднялся на 2 см. Ответ дайте в кубических сантиметрах.
17. В цилиндрический сосуд налили 5000 см3 воды. Уровень воды при этом достигает высоты 14 см. В жидкость полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 7 см. Чему равен объем детали? Ответ выразите в .
18. В правильной треугольной пирамиде медианы основания пересекаются в точке . Площадь треугольника равна 4; объем пирамиды равен 6. Найдите длину отрезка .
19. Однородный шар диаметром 3 см имеет массу 162 грамма. Чему равна масса шара, изготовленного из того же материала, с диаметром 2 см? Ответ дайте в граммах.
20.
К правильной шестиугольной призме с ребром основания 1 приклеили правильную шестиугольную пирамиду с ребром основания 1 так, что основания совпали. Сколько граней у получившегося многогранника (невидимые рёбра на рисунке не изображены)?
Ключ
№ п/п |
Вариант № 1 |
Вариант № 2 |
1 |
1400 |
100 |
2 |
1,8 |
55 |
3 |
66 |
40 |
4 |
1 |
42 |
5 |
186 |
186 |
6 |
311 |
206 |
7 |
120 |
12 |
8 |
1 |
1919 |
9 |
800 |
120 |
10 |
177 |
1,1 |
11 |
24 |
17 |
12 |
72 |
63 |
13 |
6 |
120 |
14 |
27 |
42 |
15 |
60 |
11 |
16 |
1200 |
3200 |
17 |
11 |
2500 |
18 |
9 |
4,5 |
19 |
2 |
48 |
20 |
93 |
13 |