Поиск
Всего: 69 1–20 | 21–40 | 41–60 | 61–69
Добавить в вариант
Найдите корень уравнения
Найдите корень уравнения
Найдите корень уравнения
Найдите корень уравнения
Найдите корень уравнения
Найдите корень уравнения
Найдите корень уравнения: Если уравнение имеет более одного корня, укажите меньший из них.
Найдите корень уравнения: Если уравнение имеет более одного корня, укажите меньший из них.
Найдите корень уравнения
Найдите корень уравнения
Найдите корень уравнения
Найдите корень уравнения
Найдите корень уравнения
Источник: ЕГЭ по математике 2021 года. Досрочная волна.
Найдите корень уравнения
Найдите корень уравнения
Найдите корень уравнения
Найдите корень уравнения: Если уравнение имеет более одного корня, укажите меньший из них.
Найдите корень уравнения
Найдите корень уравнения
Источник: Досрочная волна ЕГЭ по математике 29.03.2019. Вариант 1
Найдите корень уравнения
Всего: 69 1–20 | 21–40 | 41–60 | 61–69
1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Иррациональные уравнения (со знаком корня)
Иррациональное уравнение – уравнение, содержащее переменную (x) под знаком корня любой степени.
Стандартное иррациональное уравнение:
[{large{ sqrt[n]{f(x)}=g(x)}}, text{ где }n -text{ натуральное
число.}]
(blacktriangleright) Если (n) – четное, то данное уравнение имеет решения только при (g(x)geqslant 0) и (f(x)geqslant 0) ввиду определения корня четной степени. Значит:
[{large{sqrt[n]{f(x)}=g(x) quad Leftrightarrow quad
begin{cases}
f(x)=g^n(x)\
g(x)geqslant 0
end{cases}}}]
(условие (f(x)geqslant 0) автоматически выполняется в данной системе)
(blacktriangleright) Если (n) – нечетное, то данное уравнение имеет решения при любых (f(x)) и (g(x)). Значит:
[{large{ sqrt[n]{f(x)}=g(x)quad Leftrightarrow quad
f(x)=g^n(x)}}]
Задание
1
#365
Уровень задания: Равен ЕГЭ
Найдите корень уравнения (sqrt{x + 12} = 6).
ОДЗ: (x geq -12). Решим на ОДЗ:
При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.
Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: (x + 12 = 36), что равносильно (x = 24).
Подставим в исходное уравнение: (sqrt{24 + 12} = 6) – верное равенство, таким образом, ответ (x = 24).
Ответ: 24
Задание
2
#366
Уровень задания: Равен ЕГЭ
Найдите корень уравнения (sqrt{4x + 5} = 6).
ОДЗ: (4x + 5 geq 0), что равносильно (x geq -1,25). Решим на ОДЗ:
При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.
Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: (4x + 5 = 36), что равносильно (x = 7,75).
Подставим в исходное уравнение: (sqrt{4 cdot 7,75 + 5} = 6) – верное равенство, таким образом, ответ (x = 7,75).
Ответ: 7,75
Задание
3
#367
Уровень задания: Равен ЕГЭ
Найдите корень уравнения (sqrt{6 — x} = 3).
ОДЗ: (6 — x geq 0), что равносильно (x leq 6). Решим на ОДЗ:
При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.
Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: (6 — x = 9), что равносильно (x = -3).
Подставим в исходное уравнение: (sqrt{6 — (-3)} = 9) – верное равенство, таким образом, ответ (x = -3).
Ответ: -3
Задание
4
#369
Уровень задания: Равен ЕГЭ
Найдите корень уравнения (sqrt{dfrac{2x — 9}{5}} = dfrac{2}{5}).
ОДЗ: (dfrac{2x — 9}{5} geq 0), что равносильно (x geq 4,5). Решим на ОДЗ:
При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.
Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: [dfrac{2x — 9}{5} = dfrac{4}{25}qquadLeftrightarrowqquad 2x — 9 = dfrac{4}{5}qquadLeftrightarrowqquad x = 4,9.] Подставим в исходное уравнение: [sqrt{dfrac{2cdot 4,9 — 9}{5}} = dfrac{2}{5}] – верное равенство, таким образом, ответ (x = 4,9).
Ответ: 4,9
Задание
5
#370
Уровень задания: Равен ЕГЭ
Найдите корень уравнения (sqrt{dfrac{13 — 2x}{10}} = dfrac{4}{25}).
ОДЗ: (dfrac{13 — 2x}{10} geq 0), что равносильно (x leq 6,5). Решим на ОДЗ:
При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.
Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: [dfrac{13 — 2x}{10} = dfrac{16}{625}qquadLeftrightarrowqquad 13 — 2x = dfrac{256}{1000}qquadLeftrightarrowqquad x = 6,372.] Подставим в исходное уравнение: [sqrt{dfrac{13 — 2cdot 6,372}{10}} = dfrac{4}{25}] – верное равенство, таким образом, ответ (x = 6,372).
Ответ: 6,372
Задание
6
#3847
Уровень задания: Равен ЕГЭ
Найдите корень уравнения [sqrt{2x+31}=9]
ОДЗ уравнения: (2x+31geqslant 0). Так как правая часть уравнения неотрицательна, то данное уравнение имеет решения и преобразуется в: [2x+31=81quadRightarrowquad x=25] Данный корень подходит под ОДЗ.
Ответ: 25
Задание
7
#371
Уровень задания: Равен ЕГЭ
Найдите корень уравнения (sqrt{dfrac{x + 23}{6}} = dfrac{5}{sqrt{3}}).
ОДЗ: (dfrac{x + 23}{6} geq 0), что равносильно (x geq -23). Решим на ОДЗ:
При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.
Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: [dfrac{x + 23}{6} = dfrac{25}{3}qquadLeftrightarrowqquad x + 23 = 50qquadLeftrightarrowqquad x = 27.] Подставим в исходное уравнение: [sqrt{dfrac{27 + 23}{6}} = dfrac{5}{sqrt{3}}] – верное равенство, таким образом, ответ (x = 27).
Ответ: 27
При подготовке к ЕГЭ по математике у многих выпускников вызывает трудности решение иррациональных уравнений и неравенств. Вывод переменных из-под знака корня и возведение в степени часто сопровождаются ошибками в вычислениях, поэтому стоит обратить внимание на подобные задания. Мы предлагаем школьникам изучить теоретические материалы, рассмотреть типовые примеры с решениями иррациональных уравнений. Также ученики могут попробовать свои силы в выполнении более сложных задач с неизвестными.
Подготовка к ЕГЭ по математике со «Школково» — залог успеха!
Чтобы легко решать иррациональные уравнения со знаком корня, советуем регулярно заниматься на нашем портале. С помощью «Школково» вы сможете получить всю необходимую теоретическую информацию по теме, а также попрактиковаться в решении типовых задач, которые обязательно будут включены в итоговое тестирование.
Наши преподаватели собрали все полезные материалы, систематизировали и изложили их таким образом, чтобы школьникам было проще вспомнить и усвоить информацию даже по сложным темам. База постоянно обновляется и дополняется новыми упражнениями, поэтому выпускники будут получать и решать задания без повторений.
Мы предлагаем начать с легких уравнений и постепенно переходить к более сложным. Так ученикам проще определить свои слабые стороны и сделать упор на те темы, которые даются сложнее всего.
Если простые примеры не вызывают трудностей, пропускайте несколько упражнений и переходите к уравнениям профильного уровня. При необходимости повторите правила и вернитесь к заданию.
Обратите внимание, что занятия на нашем портале доступны не только старшеклассникам из Москвы, но и учащимся из других городов России.
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Дидактические материалы по теме «Корень n — ой степени» составлены по материалам Открытого Банка Заданий Единого Государственного Экзамена по математике (задание 10 ЕГЭ — 2015). Дидактические материалы составлены в 26 вариантах, ответы прилагаются. Методическую разработку можно использовать как для самостоятельных работ на уроке, так и для индивидуальных домашних заданий.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.
ЕГЭ Профиль №4. Вычисление значений иррациональных выражений
Скачать файл в формате pdf.
ЕГЭ Профиль №4. Вычисление значений иррациональных выражений
Задача 1. Найдите значение выражения (sqrt {{{65}^2} — {{56}^2}} )
Ответ
ОТВЕТ: 33. |
Задача 2. Найдите значение выражения (frac{{{{left( {2sqrt 7 } right)}^2}}}{{14}})
Ответ
ОТВЕТ: 2. |
Задача 3. Найдите значение выражения (left( {sqrt {13} — sqrt 7 } right)left( {sqrt {13} + sqrt 7 } right))
Ответ
ОТВЕТ: 6. |
Задача 4. Найдите значение выражения (frac{{sqrt {2,8} cdot sqrt {4,2} }}{{sqrt {0,24} }})
Ответ
ОТВЕТ: 7. |
Задача 5. Найдите значение выражения (left( {sqrt {3frac{6}{7}} — sqrt {1frac{5}{7}} } right):sqrt {frac{3}{{28}}} )
Ответ
ОТВЕТ: 2. |
Задача 6. Найдите значение выражения (left( {sqrt {15} — sqrt {60} } right) cdot sqrt {15} )
Ответ
ОТВЕТ: -15. |
Задача 7. Найдите значение выражения (frac{{sqrt[9]{7} cdot sqrt[{18}]{7}}}{{sqrt[6]{7}}})
Ответ
ОТВЕТ: 1. |
Задача 8. Найдите значение выражения (frac{{sqrt[5]{{10}} cdot sqrt[5]{{16}}}}{{sqrt[5]{5}}})
Ответ
ОТВЕТ: 2. |
Задача 9. Найдите значение выражения (frac{{{{left( {sqrt {13} + sqrt 7 } right)}^2}}}{{10 + sqrt {91} }})
Ответ
ОТВЕТ:2 . |
Задача 10. Найдите значение выражения (frac{{5sqrt x + 2}}{{sqrt x }} — frac{{2sqrt x }}{x}) при (x > 0)
Ответ
ОТВЕТ:5 . |
Задача 11. Найдите значение выражения (frac{{12sqrt[9]{m} cdot sqrt[{18}]{m}}}{{sqrt[6]{m}}}) при (m > 0)
Ответ
ОТВЕТ: 12. |
Задача 12. Найдите значение выражения (x + sqrt {{x^2} — 4x + 4} ) при (x leqslant 2)
Ответ
ОТВЕТ: 2. |
Задача 13. Найдите значение выражения (sqrt {{{left( {a — 6} right)}^2}} + sqrt {{{left( {a — 10} right)}^2}} ) при (6 leqslant a leqslant 10)
Ответ
ОТВЕТ: 4. |
Задача 14. Найдите значение выражения (frac{{sqrt {81sqrt[7]{b}} }}{{sqrt[{14}]{b}}}) при (b > 0)
Ответ
ОТВЕТ: 9. |
Задача 15. Найдите значение выражения (frac{{sqrt[9]{{sqrt m }}}}{{sqrt {16sqrt[9]{m}} }}) при (m > 0)
Ответ
ОТВЕТ: 0,25. |
Задача 16. Найдите значение выражения (frac{{15sqrt[5]{{sqrt[{28}]{a}}} — 7sqrt[7]{{sqrt[{20}]{a}}}}}{{2sqrt[{35}]{{sqrt[4]{a}}}}}) при (a > 0)
Ответ
ОТВЕТ: 4. |
Задача 17. Найдите значение выражения (frac{{sqrt m }}{{sqrt[9]{m} cdot sqrt[{18}]{m}}}) при (m = 64)
Ответ
ОТВЕТ: 4. |
Задача 18. Найдите значение выражения (frac{{7sqrt x — 5}}{{sqrt x }} + frac{{5sqrt x }}{x} + 3x — 4) при (x = 3)
Ответ
ОТВЕТ: 12. |
Задача 19. Найдите значение выражения (frac{{sqrt[9]{a},,sqrt[{18}]{a}}}{{a,sqrt[6]{a}}}) при (a = 1,25)
Ответ
ОТВЕТ: 0,8. |
Задача 20. Найдите значение выражения (sqrt[3]{{49}} cdot sqrt[6]{{49}})
Ответ
ОТВЕТ: 7. |
MATHM
>>
ЕГЭ
>>
ЕГЭ профиль
>>
Задача 9
ЗАДАЧА 9
сортировка
по темам
СПИСОК ТЕМ
Тема 1: График параболы
Тема 2: График гиперболы и корня
Тема 3: График модуля
Тема 4: Графики тригонометрических функций
Тема 5: График показательной функции и логарифма
Тема 6: Пересечение графиков
Задачи разделены на темы. Задачи из любой темы вполне реально встретить на настоящем экзамене ЕГЭ. Внутри каждой темы задачи
мы постарались расположить по возрастанию сложности.
Тема 1: График параболы.
посмотреть ответ
посмотреть решение
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение 1
посмотреть решение 2
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение 1
посмотреть решение 2
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение 1
посмотреть решение 2
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение 1
посмотреть решение 2
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение 1
посмотреть решение 2
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение 1
посмотреть решение 2
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение 1
посмотреть решение 2
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение 1
посмотреть решение 2
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
Тема 2: График гиперболы и корня.
посмотреть ответ
посмотреть решение
видеоурок по графику гиперболы
посмотреть ответ
посмотреть решение
видеоурок по графику гиперболы
посмотреть ответ
посмотреть решение
видеоурок по графику гиперболы
посмотреть ответ
посмотреть решение
видеоурок по графику гиперболы
посмотреть ответ
посмотреть решение
видеоурок по графику корня
посмотреть ответ
посмотреть решение
видеоурок по графику корня
посмотреть ответ
посмотреть решение
видеоурок по графику корня
посмотреть ответ
посмотреть решение
видеоурок по графику корня
посмотреть ответ
посмотреть решение
видеоурок по графику корня
посмотреть ответ
посмотреть решение
видеоурок по графику корня
Тема 3: График модуля.
посмотреть ответ
посмотреть решение
видеоурок по графику модуля
посмотреть ответ
посмотреть решение
видеоурок по графику модуля
посмотреть ответ
посмотреть решение
видеоурок по графику модуля
посмотреть ответ
посмотреть решение
видеоурок по графику модуля
Тема 4: Графики тригонометрических функций.
посмотреть ответ
посмотреть решение
видеоурок 1 по графикам тригонометрических функций
видеоурок 2 по графикам тригонометрических функций
посмотреть ответ
посмотреть решение
видеоурок 1 по графикам тригонометрических функций
видеоурок 2 по графикам тригонометрических функций
посмотреть ответ
посмотреть решение
видеоурок 1 по графикам тригонометрических функций
видеоурок 2 по графикам тригонометрических функций
посмотреть ответ
посмотреть решение
видеоурок 1 по графикам тригонометрических функций
видеоурок 2 по графикам тригонометрических функций
посмотреть ответ
посмотреть решение
видеоурок 1 по графикам тригонометрических функций
видеоурок 2 по графикам тригонометрических функций
посмотреть ответ
посмотреть решение
видеоурок 1 по графикам тригонометрических функций
видеоурок 2 по графикам тригонометрических функций
Тема 5: График показательной функции и логарифма.
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
Тема 6: Пересечение графиков.
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
В этой статье я постараюсь подобрать всю необходимую теорию, которая может понадобится для решения задачи номер 9 в профильном ЕГЭ по математике (или номер 5 в базовой математике).
Тригонометрия.
Таблица значений тригонометрических функций.
Формулы приведения.
Пример: Найдите значение выражения (8cos81°)/sin9°. Решение.
Формулы двойного аргумента.
Пример: Найдите значение выражения cos18·sin18/cos126. Решение.
Основное тригонометрическое тождество и то, что из него следует.
Пример: Найдите значение выражения
34/(cos^2101 + cos^2191)
. Решение.
Знаки тригонометрических функций.
Пример: Найдите sin2a, если cosa=0,6 и π Решение.
Степени
Свойства степени
Хочу добавить к этой таблички еще одно важное свойство, которое многие не знают:
[sqrt[n]{a^m} = a^{frac{m}{n}}]
Пример: Вычислите значение выражения
(–18)^(39)·2^(38)/6^(78)
. Решение.
Логарифмы
Свойства логарифма
Пример: Найдите значение выражения
log27·log74
. Решение.
Иррациональные выражения
Формулы сокращенного умножения
Пример: Найдите значение выражения
(2sqrt(13)–1)(2sqrt(13)+1)
. Решение.
На мой взгляд получился весьма исчерпывающий список теоретического материала, который наверняка поможет Вам справиться с заданием на Вычисление и преобразования
Рекомендую потренироваться здесь.
Просмотры: 21716 |
Статью добавил: slava191 |
Категория: математика
Если задание решено правильно, то получишь 1 балл.
На решение отводится примерно 5 минут.
Чтобы решить задание 9 по математике профильного уровня необходимо знать:
- Задания подразделяются на несколько видов:
- преобразования числовых рациональных выражений;
- преобразования алгебраических выражений и дробей;
- преобразования числовых/буквенных иррациональных выражений;
- действия со степенями;
- преобразование логарифмических выражений;
- преобразования числовых/буквенных тригонометрических выражений.
- Свойства корней и степеней.
- Свойства логарифмов.
- Формулы тригонометрии.
Формулы сокращенного умножения
1) (a + b)^2 = a^2 + 2ab + b^2
2) (a — b)^2 = a^2 — 2ab + b^2
3) a^2 — b^2 =(a + b)(a — b)
Найдите sin2 a если cos a = 0,6 и piltalphalt2 pi
Найдите значение выражения frac { (18y)^2-18y } { 18y^2-y }
Найдите 4*ctg alpha, если sin alpha=frac{4}{sqrt{17}}, alpha in(frac{pi}{2}; pi)
Найдите значение выражения frac { 8cos 34^0 } { sin 56^0 }
Найдите значение выражения log_mfrac { n^3 } { m^5 } , если log_{m}n=3
В прямом эфире расскажем, как победить задание № 9 в ЕГЭ по математике.
Разберём, как преобразовывать буквенные иррациональные выражения:
Эксперт: Виктория Юрьевна Попова, учитель высшей категории МБОУ «Школа № 84» город Ростов-на-Дону, победитель ПНПО «Лучший учитель Российской Федерации», руководитель онлайн школы «Математика на ПЯТь- просто, ясно, точно!».
Участие бесплатное. Все школьники, которые зарегистрируются на стрим на нашем сайте и подключатся к трансляции по ссылке из электронного письма, получат именные сертификаты.
Задание №7 ЕГЭ по математике базового уровня
Простейшие уравнения
В задании №7 базового уровня ЕГЭ по математике необходимо решить
Простейшие (Protozoa) — тип одноклеточных животных.
Разбор типовых вариантов заданий №7 ЕГЭ по математике базового уровня
Вариант 7МБ1
Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.
Алгоритм выполнения
- Раскрыть скобки с левой и с правой стороны равенства, применив формулы приведения.
- Все, выражения, содержащие переменную перенести в левую часть, а не содержащие в правую.
- Преобразовать левую часть.
- Преобразовать правую часть.
- Решить уравнение относительно x, то есть найти неизвестный множитель.
Решение:
Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.
(x + 3) 2 = x 2 + 2 · x · 3 + 3 2 = x 2 + 6x + 9
Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.
(x – 9) 2 = x 2 – 2 · x · 9 + 9 2 = x 2 – 18x + 81
После преобразования выражение примет
Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.
x 2 + 6x + 9 = x 2 – 18x + 81
Все выражения, содержащие переменную перенесем в левую часть, а не содержащие – в правую. При переносе из одной части равенства в другую знак меняется на противоположный.
x 2 + 6x – x 2 + 18x = 81 – 9
Преобразуем левую часть. Приведем подобные слагаемые. Объединим в скобки, сохранив знаки, те выражения, где содержится x 2 и x.
x 2 + 6x – x 2 + 18x = (x 2 – x 2 ) + (6x +18x) = 0 + 24x = 24x
Выражение примет вид:
Преобразуем правую часть. 81 – 9 = 72
Выражение примет вид:
Решим уравнение относительно x, то есть найдем неизвестный множитель. Для того чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.
Решение в общем виде:
Вариант 7МБ2
Алгоритм выполнения
- Раскрыть скобки с левой и с правой стороны равенства, применив формулы приведения.
- Все, выражения, содержащие переменную перенести в левую часть, а не содержащие в правую.
- Преобразовать левую часть.
- Преобразовать правую часть.
- Решить уравнение относительно x, то есть найти неизвестный множитель.
Решение:
Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.
(x + 2) 2 = x 2 + 2 · x · 2 + 2 2 = x 2 + 4x + 4
Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.
(x – 2 = x 2 – 2 · x · 8 + 8 2 = x 2 – 16x + 64
После преобразования выражение примет вид:
x 2 + 4x + 4 = x 2 – 16x + 64
Все выражения, содержащие переменную перенесем в левую часть, а не содержащие – в правую. При переносе из одной части равенства в другую знак меняется на противоположный.
x 2 + 4x – x 2 + 16x = 64 – 4
Преобразуем левую часть. Приведем подобные слагаемые. Объединим в скобки, сохранив знаки, те выражения, где содержится x 2 и x.
x 2 + 4x – x 2 + 16x = (x 2 – x 2 ) + (4x +16x) = 0 + 20x = 20x
Выражение примет вид:
Преобразуем правую часть. 64 – 4 = 60
Выражение примет вид:
Решим уравнение относительно x, то есть найдем неизвестный множитель. Для того чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.
Решение в общем виде:
Вариант 7МБ3
Алгоритм выполнения
- Перенести вычитаемое в правую сторону равенства с противоположным знаком.
- Преобразовать правую часть с учетом свойства: logax + logay = loga (x · y).
- Приравнять логарифмические выражения. Можно так поступить, так как основания логарифмов в левой и правой части одинаковы.
- Решить уравнение относительно x.
Решение:
Вариант 7МБ4
Найдите корень уравнения 3 x− 3 = 81.
Алгоритм выполнения
- Привести выражения в степенях к одинаковому основанию. В данном случае – это 3. Теперь необходимо вспомнить, какой степенью тройки является 81.
- Когда основания равны, можно приравнять значения степеней
Если вы забыли, то для этого необходимо делить 81 на 3 до тех пор, пока не получим 3. Чтобы получить три из 81, нам нужно поделить 81 на 3 три раза: при первом делении мы получим 27, при втором – 9, при третьем – три.
Значит, 81 это три в четвертой степени. Запишем это:
Решение:
Ответ: 7
Вариант 7МБ5
Найдите корень уравнения log2( x − 3) = 6 .
Алгоритм выполнения
- Логарифм по основанию два показывает нам число, в степень которого нам необходимо возвести основание, то есть двойку, чтобы получить число под логарифмом.
Решение:
Вариант 7МБ6
Найдите отрицательный корень уравнения x 2 − x − 6 = 0.
Алгоритм выполнения
- Вычислить дискриминант
- Найти корни
- Выбрать необходимый корень
Решение:
D = -(1) 2 − 4 • 1 • (-6) = 25
Так как нам необходим отрицательный корень – ответ -2
Вариант 7МБ7
Решите уравнение х 2 = –2х + 24.
Если уравнение имеет больше одного
Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.
Алгоритм выполнения
- Переносим влево часть ур-ния, стоящую справа от знака «=». Получаем кв.уравнение стандартного вида.
- Поскольку уравнение является приведенным, используем для нахождения корней т.Виета.
- Записываем в качестве ответа большее из полученных 2 чисел.
Решение:
Поскольку требуется указать больший из корней, то ответом будет 4.
Вариант 7МБ8
Найдите корни уравнения 4 х–6 = 64.
Алгоритм выполнения
- Представляем 64 как степень с основанием 4, т.е. приводим выражения справа и слева к степеням с одинаковым основанием.
- Опускаем одинаковые основания и переходим к равенству показателей. Ур-ние стало простейшим линейным.
- Находим корень ур-ния.
Решение:
Вариант 7МБ9
Найдите корень уравнения log3 (2x – 5) = 2.
Алгоритм выполнения
- Преобразуем часть уравнения справа от знака «=», используя св-ва логарифмов logxx=1 и logxy n =nlogxy.
- Переходим от равенства логарифмов к равенству выражений, стоящих под их знаками.
- Решаем полученное линейное ур-ние.
Решение:
Вариант 7МБ10
Найдите корень уравнения
Алгоритм выполнения
- Преобразовываем обе части ур-ния: приводим их к степеням с основанием 3. Для этого используем св-во степеней (1/а) х =а –х .
- Поскольку основания степеней слева и справа в ур-нии теперь одинаковы, то можем их опустить и приравнять показатели.
- Решаем полученное линейное ур-ние.
Решение:
Вариант 7МБ11
Найдите корень уравнения (х – 2 = (х – 2) 2 .
Алгоритм выполнения
- Раскрываем скобки слева и справа, используя ф-
Луб — это сложная проводящая ткань, по которой продукты фотосинтеза (органические вещества) транспортируются из листьев ко всем органам растения (к корневищам, плодам, семенам и т. д.).
Решение:
х 2 – 2 · х ·8 + 8 2 = х 2 – 2 · х · 2 + 2 2
Вариант 7МБ12
Найдите корень уравнения
Алгоритм выполнения
- Преобразовываем обе части ур-ния так, чтобы привести их к степеням с одинаковым основанием 7. Для выражения слева применяем св-во степеней (1/а) х =а –х .
- Применяем св-во показат.уравнений: если степени с одинаковыми основаниями равны, то равны и их показатели. Отсюда переходим к линейному ур-нию.
- Решаем его.
Решение:
Вариант 7МБ13
Решите уравнение х 2 – 25 = 0
Алгоритм выполнения
- Переносим 25 в правую часть ур-ния.
- Выражаем из ур-ния х путем извлечения корня из 25.
- Определяем корни, сравниваем их, определяем больший.
Решение:
Для ответа берем 5.
Вариант 7МБ14
Найдите корень уравнения
Алгоритм выполнения
- Применим св-во логарифмических равенств: если логарифмы с одинаковыми основания равны, то равны и их подлогарифменные выражения. В результате получаем равенство из выражений, стоящих под знаком логарифма.
- Решаем полученное линейное ур-ние.
Решение:
Вариант 7МБ15
Найдите корень уравнения
Алгоритм выполнения
- Приводим обе части ур-ния к степеням с основанием 2. При этом для преобразования выражения слева используем св-во степеней (1/а) х =а –х .
- Получив слева и справа степени с одинаковым основанием, опускаем это основание и приравниваем показатели этих степеней. Получаем линейное ур-ние.
- Решаем его.
Решение:
Вариант 7МБ16
Найдите корень уравнения
Репетитор по математике
Меня зовут Виктор Андреевич, — я репетитор по математике . Последние десять лет я занимаюсь только преподаванием. Я не «натаскиваю» своих учеников. Моя цель — помочь ребенку понять предмет, научить его мыслить, а не применять шаблоны, передать свои знания, а не просто «добиться результата».
Предусмотрен дистанционный формат занятий (через Skype или Zoom). На первом же уроке оцениваем уровень подготовки ребенка. Если ребенка устраивает моя подача материала, то принимаем решение о дальнейшем сотрудничестве — составляем расписание и индивидуальный план работы. После каждого занятия дается домашнее задание — оно всегда обязательно для выполнения. [в личном кабинете родители могут контролировать успеваемость ребенка]
Стоимость занятий
Набор на 2020/2021 учебный год открыт. Предусмотрен дистанционный формат.
Видеокурсы подготовки к ЕГЭ-2021
Решения авторские, то есть мои (автор ютуб-канала mrMathlesson — Виктор Осипов). На видео подробно разобраны все задания.
Теория представлена в виде лекционного курса, для понимания методик, которые используются при решении заданий.
Группа Вконтакте
В группу выкладываются самые свежие решения и разборы задач. Подпишитесь, чтобы быть в курсе и получать помощь от других участников.
Преимущества
Педагогический стаж
Сейчас существует много сайтов, где вам подберут репетитора по цене/опыту/возрасту, в зависимости от желаний. Но большинство анкет там принадлежат либо студентам, либо школьным учителям. Для них репетиторство — дополнительный временный заработок, из этого формируется отношение к деятельности. У студентов нет опыта и желания совершенствоваться, у школьных учителей — нет времени и сил после основной деятельности. Я занимаюсь только репетиторством с 2010 года. Все свои силы и знания трачу на совершенствование только в этой области.
Собственная методика
За время работы я накопил огромное количество материала для подготовки к итоговым экзаменам. Ребенку не будет даваться неадаптированная школьная программа. С каждым я разберу поэтапно специфичные примеры, темы, способы решений, необходимые для успешной сдачи ЕГЭ и ОГЭ. При этом это не будет «натаскиванием» на решение конкретных задач, но полноценная структурированная подготовка. Естественно, если таковые найдутся, устраню «пробелы» и в школьной программе.
Гарантированный результат
За время моей работы не было ни одного случая, где не прослеживалась бы четкая тенденция к улучшению знаний у ученика. Ни один откровенно не «завалил» экзамен. Каждый вырос в «понимании» математики в сравнении со своим первоначальным уровнем. Естественно, я не могу гарантировать, что двоечник за полгода подготовится на твердую «пять». Но могу с уверенностью сказать, что я подготовлю ребенка на его максимально возможный уровень за то время, что осталось до экзамена.
Индивидуальная работа
Все дети разные, поэтому способ и форма объяснения корректируются в зависимости от уровня понимания ребенком предмета. Индивидуальная работа с каждым учеником — каждому даются отдельные задания, теоретический материал.
Уравнения. Базовый уровень
Автор: Толмачева Надежда Алексеевна.
Шкала перевода баллов ОГЭ 2022
Рекомендации по переводу суммы первичных баллов за экзаменационные работы основного государственного экзамена (ОГЭ) в пятибалльную систему оценивания в 2022 году.
Итоги собеседования по русскому языку
98,7% девятиклассников, сдававших итоговое собеседование по русскому языку в основной срок 9 февраля, успешно справились с заданиями и получили «зачёт». Участие в итоговом собеседовании приняли 1 млн. 373 тыс. учащихся 9 классов из 1 млн. 462 тыс. зарегистрированных.
источники:
http://mathlesson.ru/node/151
http://4ege.ru/trening-matematika/55300-uravneniya-bazovyy-uroven.html