Задания егэ с корнями по математике

Поиск

Всего: 69    1–20 | 21–40 | 41–60 | 61–69

Добавить в вариант

Найдите корень уравнения  корень 3 степени из левая круглая скобка x минус 4 правая круглая скобка = 3.


Найдите корень уравнения  корень 3 степени из левая круглая скобка x минус 10 правая круглая скобка = 6.


Найдите корень уравнения  корень 3 степени из левая круглая скобка x плюс 4 правая круглая скобка = 3.


Найдите корень уравнения  корень из 52 минус 6x=4.


Найдите корень уравнения  корень из дробь: числитель: 2, знаменатель: 2x минус 54 конец дроби = дробь: числитель: 1, знаменатель: 3 конец дроби .


Найдите корень уравнения  корень 3 степени из левая круглая скобка x минус 6 правая круглая скобка =2.


Найдите корень уравнения:  корень из минус 72 минус 17x= минус x. Если уравнение имеет более одного корня, укажите меньший из них.


Найдите корень уравнения:  корень из минус 72 минус 17x= минус x. Если уравнение имеет более одного корня, укажите меньший из них.


Найдите корень уравнения  корень 5 степени из левая круглая скобка x минус 3 правая круглая скобка = минус 2.


Найдите корень уравнения  корень из 53 минус 4x=7.


Найдите корень уравнения  корень из дробь: числитель: 10, знаменатель: 4x минус 58 конец дроби = дробь: числитель: 1, знаменатель: 7 конец дроби .


Найдите корень уравнения  корень 3 степени из левая круглая скобка x плюс 9 правая круглая скобка =5.


Найдите корень уравнения  корень 3 степени из левая круглая скобка x минус 5 правая круглая скобка =3.

Источник: ЕГЭ по математике 2021 года. Досрочная волна.


Найдите корень уравнения  корень из x плюс 32=6.


Найдите корень уравнения  корень из дробь: числитель: 7x плюс 28, знаменатель: 18 конец дроби =7.


Найдите корень уравнения  корень из дробь: числитель: 5x плюс 26, знаменатель: 6 конец дроби =6.


Найдите корень уравнения:  корень из минус 72 плюс 17x=x. Если уравнение имеет более одного корня, укажите меньший из них.


Найдите корень уравнения  корень из 6x плюс 4=2.


Найдите корень уравнения  корень из 13 плюс 2x=5.

Источник: Досрочная волна ЕГЭ по математике 29.03.2019. Вариант 1


Найдите корень уравнения  корень из минус 4 минус 5x=4.

Всего: 69    1–20 | 21–40 | 41–60 | 61–69


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Иррациональные уравнения (со знаком корня)

Иррациональное уравнение – уравнение, содержащее переменную (x) под знаком корня любой степени.

Стандартное иррациональное уравнение:

[{large{ sqrt[n]{f(x)}=g(x)}}, text{ где }n -text{ натуральное
число.}]

(blacktriangleright) Если (n) – четное, то данное уравнение имеет решения только при (g(x)geqslant 0) и (f(x)geqslant 0) ввиду определения корня четной степени. Значит:

[{large{sqrt[n]{f(x)}=g(x) quad Leftrightarrow quad
begin{cases}
f(x)=g^n(x)\
g(x)geqslant 0
end{cases}}}]

(условие (f(x)geqslant 0) автоматически выполняется в данной системе)

(blacktriangleright) Если (n) – нечетное, то данное уравнение имеет решения при любых (f(x)) и (g(x)). Значит:

[{large{ sqrt[n]{f(x)}=g(x)quad Leftrightarrow quad
f(x)=g^n(x)}}]


Задание
1

#365

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (sqrt{x + 12} = 6).

ОДЗ: (x geq -12). Решим на ОДЗ:

При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.

Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: (x + 12 = 36), что равносильно (x = 24).

Подставим в исходное уравнение: (sqrt{24 + 12} = 6) – верное равенство, таким образом, ответ (x = 24).

Ответ: 24


Задание
2

#366

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (sqrt{4x + 5} = 6).

ОДЗ: (4x + 5 geq 0), что равносильно (x geq -1,25). Решим на ОДЗ:

При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.

Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: (4x + 5 = 36), что равносильно (x = 7,75).

Подставим в исходное уравнение: (sqrt{4 cdot 7,75 + 5} = 6) – верное равенство, таким образом, ответ (x = 7,75).

Ответ: 7,75


Задание
3

#367

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (sqrt{6 — x} = 3).

ОДЗ: (6 — x geq 0), что равносильно (x leq 6). Решим на ОДЗ:

При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.

Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: (6 — x = 9), что равносильно (x = -3).

Подставим в исходное уравнение: (sqrt{6 — (-3)} = 9) – верное равенство, таким образом, ответ (x = -3).

Ответ: -3


Задание
4

#369

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (sqrt{dfrac{2x — 9}{5}} = dfrac{2}{5}).

ОДЗ: (dfrac{2x — 9}{5} geq 0), что равносильно (x geq 4,5). Решим на ОДЗ:

При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.

Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: [dfrac{2x — 9}{5} = dfrac{4}{25}qquadLeftrightarrowqquad 2x — 9 = dfrac{4}{5}qquadLeftrightarrowqquad x = 4,9.] Подставим в исходное уравнение: [sqrt{dfrac{2cdot 4,9 — 9}{5}} = dfrac{2}{5}] – верное равенство, таким образом, ответ (x = 4,9).

Ответ: 4,9


Задание
5

#370

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (sqrt{dfrac{13 — 2x}{10}} = dfrac{4}{25}).

ОДЗ: (dfrac{13 — 2x}{10} geq 0), что равносильно (x leq 6,5). Решим на ОДЗ:

При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.

Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: [dfrac{13 — 2x}{10} = dfrac{16}{625}qquadLeftrightarrowqquad 13 — 2x = dfrac{256}{1000}qquadLeftrightarrowqquad x = 6,372.] Подставим в исходное уравнение: [sqrt{dfrac{13 — 2cdot 6,372}{10}} = dfrac{4}{25}] – верное равенство, таким образом, ответ (x = 6,372).

Ответ: 6,372


Задание
6

#3847

Уровень задания: Равен ЕГЭ

Найдите корень уравнения [sqrt{2x+31}=9]

ОДЗ уравнения: (2x+31geqslant 0). Так как правая часть уравнения неотрицательна, то данное уравнение имеет решения и преобразуется в: [2x+31=81quadRightarrowquad x=25] Данный корень подходит под ОДЗ.

Ответ: 25


Задание
7

#371

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (sqrt{dfrac{x + 23}{6}} = dfrac{5}{sqrt{3}}).

ОДЗ: (dfrac{x + 23}{6} geq 0), что равносильно (x geq -23). Решим на ОДЗ:

При возведении в квадрат левой и правой части уравнения в общем случае могут приобретаться лишние корни, но не могут теряться корни исходного уравнения.

Возведём в квадрат левую и правую часть, найдём корни получившегося уравнения и проверим подстановкой, все ли они являются корнями исходного уравнения: [dfrac{x + 23}{6} = dfrac{25}{3}qquadLeftrightarrowqquad x + 23 = 50qquadLeftrightarrowqquad x = 27.] Подставим в исходное уравнение: [sqrt{dfrac{27 + 23}{6}} = dfrac{5}{sqrt{3}}] – верное равенство, таким образом, ответ (x = 27).

Ответ: 27

При подготовке к ЕГЭ по математике у многих выпускников вызывает трудности решение иррациональных уравнений и неравенств. Вывод переменных из-под знака корня и возведение в степени часто сопровождаются ошибками в вычислениях, поэтому стоит обратить внимание на подобные задания. Мы предлагаем школьникам изучить теоретические материалы, рассмотреть типовые примеры с решениями иррациональных уравнений. Также ученики могут попробовать свои силы в выполнении более сложных задач с неизвестными.

Подготовка к ЕГЭ по математике со «Школково» — залог успеха!

Чтобы легко решать иррациональные уравнения со знаком корня, советуем регулярно заниматься на нашем портале. С помощью «Школково» вы сможете получить всю необходимую теоретическую информацию по теме, а также попрактиковаться в решении типовых задач, которые обязательно будут включены в итоговое тестирование.

Наши преподаватели собрали все полезные материалы, систематизировали и изложили их таким образом, чтобы школьникам было проще вспомнить и усвоить информацию даже по сложным темам. База постоянно обновляется и дополняется новыми упражнениями, поэтому выпускники будут получать и решать задания без повторений.

Мы предлагаем начать с легких уравнений и постепенно переходить к более сложным. Так ученикам проще определить свои слабые стороны и сделать упор на те темы, которые даются сложнее всего.

Если простые примеры не вызывают трудностей, пропускайте несколько упражнений и переходите к уравнениям профильного уровня. При необходимости повторите правила и вернитесь к заданию.

Обратите внимание, что занятия на нашем портале доступны не только старшеклассникам из Москвы, но и учащимся из других городов России.

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Дидактические материалы по теме «Корень n — ой степени» составлены по материалам Открытого Банка Заданий Единого Государственного Экзамена по математике (задание 10 ЕГЭ — 2015). Дидактические материалы составлены в 26 вариантах, ответы прилагаются. Методическую разработку можно использовать как для самостоятельных работ на уроке, так и для индивидуальных домашних заданий.

Вы уже знаете о суперспособностях современного учителя?

Тратить минимум сил на подготовку и проведение уроков.

Быстро и объективно проверять знания учащихся.

Сделать изучение нового материала максимально понятным.

Избавить себя от подбора заданий и их проверки после уроков.

Наладить дисциплину на своих уроках.

Получить возможность работать творчески.

Skip to content

ЕГЭ Профиль №4. Вычисление значений иррациональных выражений

ЕГЭ Профиль №4. Вычисление значений иррациональных выраженийadmin2022-08-13T13:19:51+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №4. Вычисление значений иррациональных выражений

Задача 1. Найдите значение выражения   (sqrt {{{65}^2} — {{56}^2}} )

Ответ

ОТВЕТ: 33.

Задача 2. Найдите значение выражения    (frac{{{{left( {2sqrt 7 } right)}^2}}}{{14}})

Ответ

ОТВЕТ: 2.

Задача 3. Найдите значение выражения    (left( {sqrt {13}  — sqrt 7 } right)left( {sqrt {13}  + sqrt 7 } right))

Ответ

ОТВЕТ: 6.

Задача 4. Найдите значение выражения    (frac{{sqrt {2,8}  cdot sqrt {4,2} }}{{sqrt {0,24} }})

Ответ

ОТВЕТ: 7.

Задача 5. Найдите значение выражения     (left( {sqrt {3frac{6}{7}}  — sqrt {1frac{5}{7}} } right):sqrt {frac{3}{{28}}} )

Ответ

ОТВЕТ: 2.

Задача 6. Найдите значение выражения     (left( {sqrt {15}  — sqrt {60} } right) cdot sqrt {15} )

Ответ

ОТВЕТ: -15.

Задача 7. Найдите значение выражения      (frac{{sqrt[9]{7} cdot sqrt[{18}]{7}}}{{sqrt[6]{7}}})

Ответ

ОТВЕТ: 1.

Задача 8. Найдите значение выражения      (frac{{sqrt[5]{{10}} cdot sqrt[5]{{16}}}}{{sqrt[5]{5}}})

Ответ

ОТВЕТ: 2.

Задача 9. Найдите значение выражения     (frac{{{{left( {sqrt {13}  + sqrt 7 } right)}^2}}}{{10 + sqrt {91} }})

Ответ

ОТВЕТ:2 .

Задача 10. Найдите значение выражения  (frac{{5sqrt x  + 2}}{{sqrt x }} — frac{{2sqrt x }}{x})   при   (x > 0)

Ответ

ОТВЕТ:5 .

Задача 11. Найдите значение выражения   (frac{{12sqrt[9]{m} cdot sqrt[{18}]{m}}}{{sqrt[6]{m}}})   при  (m > 0)

Ответ

ОТВЕТ: 12.

Задача 12. Найдите значение выражения (x + sqrt {{x^2} — 4x + 4} )   при  (x leqslant 2)

Ответ

ОТВЕТ: 2.

Задача 13. Найдите значение выражения  (sqrt {{{left( {a — 6} right)}^2}}  + sqrt {{{left( {a — 10} right)}^2}} )   при (6 leqslant a leqslant 10)

Ответ

ОТВЕТ: 4.

Задача 14. Найдите значение выражения   (frac{{sqrt {81sqrt[7]{b}} }}{{sqrt[{14}]{b}}})   при   (b > 0)

Ответ

ОТВЕТ: 9.

Задача 15. Найдите значение выражения   (frac{{sqrt[9]{{sqrt m }}}}{{sqrt {16sqrt[9]{m}} }})    при  (m > 0)

Ответ

ОТВЕТ: 0,25.

Задача 16. Найдите значение выражения  (frac{{15sqrt[5]{{sqrt[{28}]{a}}} — 7sqrt[7]{{sqrt[{20}]{a}}}}}{{2sqrt[{35}]{{sqrt[4]{a}}}}})  при (a > 0)

Ответ

ОТВЕТ: 4.

Задача 17. Найдите значение выражения     (frac{{sqrt m }}{{sqrt[9]{m} cdot sqrt[{18}]{m}}})    при   (m = 64)

Ответ

ОТВЕТ: 4.

Задача 18. Найдите значение выражения   (frac{{7sqrt x  — 5}}{{sqrt x }} + frac{{5sqrt x }}{x} + 3x — 4)   при (x = 3)

Ответ

ОТВЕТ: 12.

Задача 19. Найдите значение выражения   (frac{{sqrt[9]{a},,sqrt[{18}]{a}}}{{a,sqrt[6]{a}}})    при    (a = 1,25)

Ответ

ОТВЕТ: 0,8.

Задача 20. Найдите значение выражения   (sqrt[3]{{49}} cdot sqrt[6]{{49}})

Ответ

ОТВЕТ: 7.

верхняя шапка

картинка

MATHM
>>
ЕГЭ
>>
ЕГЭ профиль

>>

Задача 9

картинка

ЗАДАЧА 9
сортировка
по темам

СПИСОК ТЕМ

Тема 1: График параболы
Тема 2: График гиперболы и корня
Тема 3: График модуля
Тема 4: Графики тригонометрических функций
Тема 5: График показательной функции и логарифма
Тема 6: Пересечение графиков

Задачи разделены на темы. Задачи из любой темы вполне реально встретить на настоящем экзамене ЕГЭ. Внутри каждой темы задачи
мы постарались расположить по возрастанию сложности.

Тема 1: График параболы.

  1.  На рисунке изображен график функции вида f(x)=〖ax〗^2+bx+c, где числа a,b и c – целые. Найдите f(-12).
  2. посмотреть ответ

    посмотреть решение

    видеоурок 1 по графику параболы

    yotube

    видеоурок 2 по графику параболы

    yotube

  3. На рисунке изображен график функции вида 𝑓𝑥=𝑎𝑥2+𝑏𝑥−𝑐, где числа 𝑎,𝑏 и 𝑐 – целые. Найдите 𝑓(6).
  4. посмотреть ответ

    посмотреть решение 1

    посмотреть решение 2

    видеоурок 1 по графику параболы

    yotube

    видеоурок 2 по графику параболы

    yotube

  5.  На рисунке изображен график функции вида f(x)=〖ax〗^2+bx+c, где числа a,b и c – целые. Найдите f(-8).
  6. посмотреть ответ

    посмотреть решение 1

    посмотреть решение 2

    видеоурок 1 по графику параболы

    yotube

    видеоурок 2 по графику параболы

    yotube

  7. На рисунке изображен график функции вида f(x)=〖ax〗^2+bx+c, где числа a,b и c – целые. Найдите f(18).
  8. посмотреть ответ

    посмотреть решение 1

    посмотреть решение 2

    видеоурок 1 по графику параболы

    yotube

    видеоурок 2 по графику параболы

    yotube

  9. На рисунке изображен график функции вида f(x)=〖ax〗^2+bx+c, где числа a,b и c – целые. Найдите f(-16).
  10. посмотреть ответ

    посмотреть решение 1

    посмотреть решение 2

    видеоурок 1 по графику параболы

    yotube

    видеоурок 2 по графику параболы

    yotube

  11. На рисунке изображен график функции вида f(x)=〖ax〗^2+bx+c, где числа a,b и c – целые. Найдите f(8).
  12. посмотреть ответ

    посмотреть решение

    видеоурок 1 по графику параболы

    yotube

    видеоурок 2 по графику параболы

    yotube

  13. На рисунке изображен график функции вида f(x)=〖a(x+1)〗^2+bx+c, где числа a,b и c – целые. Найдите f(-12).
  14. посмотреть ответ

    посмотреть решение 1

    посмотреть решение 2

    видеоурок 1 по графику параболы

    yotube

    видеоурок 2 по графику параболы

    yotube

  15. На рисунке изображен график функции вида f(x)=〖a(x-2)〗^2+b(x+1)+c, где числа a,b и c – целые. Найдите f(-15).
  16. посмотреть ответ

    посмотреть решение

    видеоурок 1 по графику параболы

    yotube

    видеоурок 2 по графику параболы

    yotube

  17. На рисунке изображен график функции вида f(x)=〖a(x-4)〗^2+b(x+3)+c, где числа a,b и c – целые. Найдите f(-12).
  18. посмотреть ответ

    посмотреть решение 1

    посмотреть решение 2

    видеоурок 1 по графику параболы

    yotube

    видеоурок 2 по графику параболы

    yotube

  19. На рисунке изображен график функции вида f(x)=〖ax〗^2+bx+c, где числа a,b и c – целые. Найдите f(-18).
  20. посмотреть ответ

    посмотреть решение

    видеоурок 1 по графику параболы

    yotube

    видеоурок 2 по графику параболы

    yotube

  21. На рисунке изображен график функции вида f(x)=x^2/a+bx+c, где числа a,b и c – целые. Найдите f(-12).
  22. посмотреть ответ

    посмотреть решение 1

    посмотреть решение 2

    видеоурок 1 по графику параболы

    yotube

    видеоурок 2 по графику параболы

    yotube

  23. На рисунке изображен график функции вида 𝑓𝑥=𝑥2𝑎+𝑏𝑥+𝑐, где числа 𝑎,𝑏 и 𝑐 – целые. Найдите 𝑓(20).
  24. посмотреть ответ

    посмотреть решение 1

    посмотреть решение 2

    видеоурок 1 по графику параболы

    yotube

    видеоурок 2 по графику параболы

    yotube

Тема 2: График гиперболы и корня.

  1.  На рисунке изображен график функции вида f(x)=a/(x+b)+c, где числа a,b и c – целые. Найдите f(-14).
  2. посмотреть ответ

    посмотреть решение

    видеоурок по графику гиперболы

    yotube

  3.  На рисунке изображен график функции вида f(x)=a/(x+b)+c, где числа a,b и c – целые. Найдите f(12).
  4. посмотреть ответ

    посмотреть решение

    видеоурок по графику гиперболы

    yotube

  5.  На рисунке изображен график функции вида f(x)=a/(x+b)+c, где числа a,b и c – целые. Найдите f(15).
  6. посмотреть ответ

    посмотреть решение

    видеоурок по графику гиперболы

    yotube

  7.  На рисунке изображен график функции вида f(x)=a/(x+b)+c, где числа a,b и c – целые. Найдите f(20).
  8. посмотреть ответ

    посмотреть решение

    видеоурок по графику гиперболы

    yotube

  9.  На рисунке изображен график функции вида f(x)=√(ax+b)+c, где числа a,b и c – целые. Найдите f(160).
  10. посмотреть ответ

    посмотреть решение

    видеоурок по графику корня

    yotube

  11.  На рисунке изображен график функции вида f(x)=√(ax+b)+c, где числа a,b и c – целые. Найдите f(399).
  12. посмотреть ответ

    посмотреть решение

    видеоурок по графику корня

    yotube

  13.  На рисунке изображен график функции вида f(x)=√(ax+b)+c, где числа a,b и c – целые. Найдите f(-1056).
  14. посмотреть ответ

    посмотреть решение

    видеоурок по графику корня

    yotube

  15.  На рисунке изображен график функции вида f(x)=√(ax+b)+c, где числа a,b и c – целые. Найдите f(-895).
  16. посмотреть ответ

    посмотреть решение

    видеоурок по графику корня

    yotube

  17.  На рисунке изображен график функции вида f(x)=-√(ax+b)+c, где числа a,b и c – целые. Найдите f(-1056).
  18. посмотреть ответ

    посмотреть решение

    видеоурок по графику корня

    yotube

  19.  На рисунке изображен график функции вида f(x)=-√(ax+b)+c, где числа a,b и c – целые. Найдите f(720).
  20. посмотреть ответ

    посмотреть решение

    видеоурок по графику корня

    yotube

Тема 3: График модуля.

  1.  На рисунке изображен график функции вида f(x)=|ax+b|+c, где числа a,b и c – целые. Найдите f(88).
  2. посмотреть ответ

    посмотреть решение

    видеоурок по графику модуля

    yotube

  3.  На рисунке изображен график функции вида f(x)=|ax+b|+c, где числа a,b и c – целые. Найдите f(-56).
  4. посмотреть ответ

    посмотреть решение

    видеоурок по графику модуля

    yotube

  5.  На рисунке изображен график функции вида f(x)=-|ax+b|+c, где числа a,b и c – целые. Найдите f(81).
  6. посмотреть ответ

    посмотреть решение

    видеоурок по графику модуля

    yotube

  7.  На рисунке изображен график функции вида f(x)=-|ax+b|+c, где числа a,b и c – целые. Найдите f(-23).
  8. посмотреть ответ

    посмотреть решение

    видеоурок по графику модуля

    yotube

Тема 4: Графики тригонометрических функций.

  1.  На рисунке изображен график функции вида f(x)=〖a∙cos〗⁡(bπx)+c, где числа a,b и c – целые. Найдите f(10/3).
  2. посмотреть ответ

    посмотреть решение

    видеоурок 1 по графикам тригонометрических функций

    yotube

    видеоурок 2 по графикам тригонометрических функций

    yotube

  3.  На рисунке изображен график функции вида f(x)=〖a∙cos〗⁡(bπx)+c, где числа a,b и c – целые. Найдите f(-11/3).
  4. посмотреть ответ

    посмотреть решение

    видеоурок 1 по графикам тригонометрических функций

    yotube

    видеоурок 2 по графикам тригонометрических функций

    yotube

  5.  На рисунке изображен график функции вида f(x)=〖a∙cos〗⁡(bπx)+c, где числа a,b и c – целые. Найдите f(19/3).
  6. посмотреть ответ

    посмотреть решение

    видеоурок 1 по графикам тригонометрических функций

    yotube

    видеоурок 2 по графикам тригонометрических функций

    yotube

  7.  На рисунке изображен график функции вида f(x)=〖a∙cos〗⁡(bπx)+c, где числа a,b и c – целые. Найдите f(-22/3).
  8. посмотреть ответ

    посмотреть решение

    видеоурок 1 по графикам тригонометрических функций

    yotube

    видеоурок 2 по графикам тригонометрических функций

    yotube

  9.  На рисунке изображен график функции вида f(x)=〖a∙sin〗⁡(bπx)+c, где числа a,b и c – целые. Найдите f(23/6).
  10. посмотреть ответ

    посмотреть решение

    видеоурок 1 по графикам тригонометрических функций

    yotube

    видеоурок 2 по графикам тригонометрических функций

    yotube

  11.  На рисунке изображен график функции вида f(x)=〖a∙sin〗⁡(bπx)+c, где числа a,b и c – целые. Найдите f(23/6).
  12. посмотреть ответ

    посмотреть решение

    видеоурок 1 по графикам тригонометрических функций

    yotube

    видеоурок 2 по графикам тригонометрических функций

    yotube

Тема 5: График показательной функции и логарифма.

  1.  На рисунке изображен график функции вида f(x)=2^(ax+b)+c, где числа a,b и c – целые. Найдите f(4).
  2. посмотреть ответ

    посмотреть решение

  3.  На рисунке изображен график функции вида f(x)=3^(ax+b)+c, где числа a,b и c – целые. Найдите f(3).
  4. посмотреть ответ

    посмотреть решение

  5.  На рисунке изображен график функции вида f(x)=log_2⁡(x+b)+c, где числа b и c – целые. Найдите f(510).
  6. посмотреть ответ

    посмотреть решение

  7.  На рисунке изображен график функции вида f(x)=log_2⁡(x+b)+c, где числа b и c – целые. Найдите f(257).
  8. посмотреть ответ

    посмотреть решение

  9.  На рисунке изображен график функции вида f(x)=log_3⁡(ax+b)+c, где числа a,b и c – целые. Найдите f(244).
  10. посмотреть ответ

    посмотреть решение

  11.  На рисунке изображен график функции вида f(x)=log_4⁡(ax+b)+c, где числа a,b и c – целые. Найдите f(65).
  12. посмотреть ответ

    посмотреть решение

  13.  На рисунке изображен график функции вида f(x)=log_2⁡(ax+b)+c, где числа a,b и c – целые. Найдите f(-130).
  14. посмотреть ответ

    посмотреть решение

  15.  На рисунке изображен график функции вида f(x)=log_3⁡(ax+b)+c, где числа a,b и c – целые. Найдите f(-84).
  16. посмотреть ответ

    посмотреть решение

Тема 6: Пересечение графиков.

  1.  На рисунке изображен график функции вида f(x)=2^(ax+b)+c, где числа a,b и c – целые. Найдите f(4).
  2. посмотреть ответ

    посмотреть решение

  3.  На рисунке изображен график функции вида f(x)=3^(ax+b)+c, где числа a,b и c – целые. Найдите f(3).
  4. посмотреть ответ

    посмотреть решение

  5.  На рисунке изображен график функции вида f(x)=log_2⁡(x+b)+c, где числа b и c – целые. Найдите f(510).
  6. посмотреть ответ

    посмотреть решение

  7.  На рисунке изображен график функции вида f(x)=log_2⁡(x+b)+c, где числа b и c – целые. Найдите f(257).
  8. посмотреть ответ

    посмотреть решение

  9.  На рисунке изображен график функции вида f(x)=log_3⁡(ax+b)+c, где числа a,b и c – целые. Найдите f(244).
  10. посмотреть ответ

    посмотреть решение

  11.  На рисунке изображен график функции вида f(x)=log_4⁡(ax+b)+c, где числа a,b и c – целые. Найдите f(65).
  12. посмотреть ответ

    посмотреть решение

  13.  На рисунке изображен график функции вида f(x)=log_2⁡(ax+b)+c, где числа a,b и c – целые. Найдите f(-130).
  14. посмотреть ответ

    посмотреть решение

  15.  На рисунке изображен график функции вида f(x)=log_3⁡(ax+b)+c, где числа a,b и c – целые. Найдите f(-84).
  16. посмотреть ответ

    посмотреть решение

  17.  На рисунке изображен график функции вида f(x)=log_3⁡(ax+b)+c, где числа a,b и c – целые. Найдите f(-84).
  18. посмотреть ответ

    посмотреть решение

нижняя шапка

В этой статье я постараюсь подобрать всю необходимую теорию, которая может понадобится для решения задачи номер 9 в профильном ЕГЭ по математике (или номер 5 в базовой математике).

Тригонометрия.

Таблица значений тригонометрических функций.

Формулы приведения.

Пример: Найдите значение выражения (8cos81°)/sin9°. Решение.

Формулы двойного аргумента.

Пример: Найдите значение выражения cos18·sin18/cos126. Решение.

Основное тригонометрическое тождество и то, что из него следует.

Пример: Найдите значение выражения

34/(cos^2101 + cos^2191)

. Решение.

Знаки тригонометрических функций.

Пример: Найдите sin2a, если cosa=0,6 и π Решение.

Степени

Свойства степени

Хочу добавить к этой таблички еще одно важное свойство, которое многие не знают:

[sqrt[n]{a^m} = a^{frac{m}{n}}]

Пример: Вычислите значение выражения

(–18)^(39)·2^(38)/6^(78)

. Решение.

Логарифмы

Свойства логарифма

Пример: Найдите значение выражения

log27·log74

. Решение.

Иррациональные выражения

Формулы сокращенного умножения

Пример: Найдите значение выражения

(2sqrt(13)–1)(2sqrt(13)+1)

. Решение.

На мой взгляд получился весьма исчерпывающий список теоретического материала, который наверняка поможет Вам справиться с заданием на Вычисление и преобразования

Рекомендую потренироваться здесь.

Просмотры: 21716 |
Статью добавил: slava191 |
Категория: математика

Если задание решено правильно, то получишь 1 балл.

На решение отводится примерно 5 минут.

Чтобы решить задание 9 по математике профильного уровня необходимо знать:

  1. Задания подразделяются на несколько видов:
    • преобразования числовых рациональных выражений;
    • преобразования алгебраических выражений и дробей;
    • преобразования числовых/буквенных иррациональных выражений;
    • действия со степенями;
    • преобразование логарифмических выражений;
    • преобразования числовых/буквенных тригонометрических выражений.
  2. Свойства корней и степеней.
  3. Свойства логарифмов.
  4. Формулы тригонометрии.

Формулы сокращенного умножения

1) (a + b)^2 = a^2 + 2ab + b^2
2) (a — b)^2 = a^2 — 2ab + b^2
3) a^2 — b^2 =(a + b)(a — b)

Найдите sin2 a если cos a = 0,6 и  piltalphalt2 pi

Найдите значение выражения frac { (18y)^2-18y } { 18y^2-y }  

Найдите 4*ctg alpha, если sin alpha=frac{4}{sqrt{17}}, alpha in(frac{pi}{2}; pi)

Найдите значение выражения frac { 8cos 34^0 } { sin 56^0 } 

Найдите значение выражения log_mfrac { n^3 } { m^5 } , если log_{m}n=3

В прямом эфире расскажем, как победить задание № 9 в ЕГЭ по математике.

Разберём, как преобразовывать буквенные иррациональные выражения:  

Эксперт: Виктория Юрьевна Попова, учитель высшей категории МБОУ «Школа № 84» город Ростов-на-Дону, победитель ПНПО «Лучший учитель Российской Федерации», руководитель онлайн школы «Математика на ПЯТь- просто, ясно, точно!». 

Участие бесплатное. Все школьники, которые зарегистрируются на стрим на нашем сайте и подключатся к трансляции по ссылке из электронного письма, получат именные сертификаты.
 

Задание №7 ЕГЭ по математике базового уровня

Простейшие уравнения

В задании №7 базового уровня ЕГЭ по математике необходимо решить

Простейшие (Protozoa) — тип одноклеточных животных.

Разбор типовых вариантов заданий №7 ЕГЭ по математике базового уровня

Вариант 7МБ1

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Алгоритм выполнения
  1. Раскрыть скобки с левой и с правой стороны равенства, применив формулы приведения.
  2. Все, выражения, содержащие переменную перенести в левую часть, а не содержащие в правую.
  3. Преобразовать левую часть.
  4. Преобразовать правую часть.
  5. Решить уравнение относительно x, то есть найти неизвестный множитель.
Решение:

Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.

(x + 3) 2 = x 2 + 2 · x · 3 + 3 2 = x 2 + 6x + 9

Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.

(x – 9) 2 = x 2 – 2 · x · 9 + 9 2 = x 2 – 18x + 81

После преобразования выражение примет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

x 2 + 6x + 9 = x 2 – 18x + 81

Все выражения, содержащие переменную перенесем в левую часть, а не содержащие – в правую. При переносе из одной части равенства в другую знак меняется на противоположный.

x 2 + 6x – x 2 + 18x = 81 – 9

Преобразуем левую часть. Приведем подобные слагаемые. Объединим в скобки, сохранив знаки, те выражения, где содержится x 2 и x.

x 2 + 6x – x 2 + 18x = (x 2 – x 2 ) + (6x +18x) = 0 + 24x = 24x

Выражение примет вид:

Преобразуем правую часть. 81 – 9 = 72

Выражение примет вид:

Решим уравнение относительно x, то есть найдем неизвестный множитель. Для того чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.

Решение в общем виде:

Вариант 7МБ2

Алгоритм выполнения
  1. Раскрыть скобки с левой и с правой стороны равенства, применив формулы приведения.
  2. Все, выражения, содержащие переменную перенести в левую часть, а не содержащие в правую.
  3. Преобразовать левую часть.
  4. Преобразовать правую часть.
  5. Решить уравнение относительно x, то есть найти неизвестный множитель.
Решение:

Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.

(x + 2) 2 = x 2 + 2 · x · 2 + 2 2 = x 2 + 4x + 4

Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.

(x – 8) 2 = x 2 – 2 · x · 8 + 8 2 = x 2 – 16x + 64

После преобразования выражение примет вид:

x 2 + 4x + 4 = x 2 – 16x + 64

Все выражения, содержащие переменную перенесем в левую часть, а не содержащие – в правую. При переносе из одной части равенства в другую знак меняется на противоположный.

x 2 + 4x – x 2 + 16x = 64 – 4

Преобразуем левую часть. Приведем подобные слагаемые. Объединим в скобки, сохранив знаки, те выражения, где содержится x 2 и x.

x 2 + 4x – x 2 + 16x = (x 2 – x 2 ) + (4x +16x) = 0 + 20x = 20x

Выражение примет вид:

Преобразуем правую часть. 64 – 4 = 60

Выражение примет вид:

Решим уравнение относительно x, то есть найдем неизвестный множитель. Для того чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.

Решение в общем виде:

Вариант 7МБ3

Алгоритм выполнения
  1. Перенести вычитаемое в правую сторону равенства с противоположным знаком.
  2. Преобразовать правую часть с учетом свойства: logax + logay = loga (x · y).
  3. Приравнять логарифмические выражения. Можно так поступить, так как основания логарифмов в левой и правой части одинаковы.
  4. Решить уравнение относительно x.
Решение:

Вариант 7МБ4

Найдите корень уравнения 3 x− 3 = 81.

Алгоритм выполнения
  1. Привести выражения в степенях к одинаковому основанию. В данном случае – это 3. Теперь необходимо вспомнить, какой степенью тройки является 81.
  2. Когда основания равны, можно приравнять значения степеней

Если вы забыли, то для этого необходимо делить 81 на 3 до тех пор, пока не получим 3. Чтобы получить три из 81, нам нужно поделить 81 на 3 три раза: при первом делении мы получим 27, при втором – 9, при третьем – три.

Значит, 81 это три в четвертой степени. Запишем это:

Решение:

Ответ: 7

Вариант 7МБ5

Найдите корень уравнения log2( x − 3) = 6 .

Алгоритм выполнения
  1. Логарифм по основанию два показывает нам число, в степень которого нам необходимо возвести основание, то есть двойку, чтобы получить число под логарифмом.
Решение:

Вариант 7МБ6

Найдите отрицательный корень уравнения x 2 − x − 6 = 0.

Алгоритм выполнения
  1. Вычислить дискриминант
  2. Найти корни
  3. Выбрать необходимый корень
Решение:

D = -(1) 2 − 4 • 1 • (-6) = 25

Так как нам необходим отрицательный корень – ответ -2

Вариант 7МБ7

Решите уравнение х 2 = –2х + 24.

Если уравнение имеет больше одного

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Алгоритм выполнения
  1. Переносим влево часть ур-ния, стоящую справа от знака «=». Получаем кв.уравнение стандартного вида.
  2. Поскольку уравнение является приведенным, используем для нахождения корней т.Виета.
  3. Записываем в качестве ответа большее из полученных 2 чисел.
Решение:

Поскольку требуется указать больший из корней, то ответом будет 4.

Вариант 7МБ8

Найдите корни уравнения 4 х–6 = 64.

Алгоритм выполнения
  1. Представляем 64 как степень с основанием 4, т.е. приводим выражения справа и слева к степеням с одинаковым основанием.
  2. Опускаем одинаковые основания и переходим к равенству показателей. Ур-ние стало простейшим линейным.
  3. Находим корень ур-ния.
Решение:

Вариант 7МБ9

Найдите корень уравнения log3 (2x – 5) = 2.

Алгоритм выполнения
  1. Преобразуем часть уравнения справа от знака «=», используя св-ва логарифмов logxx=1 и logxy n =nlogxy.
  2. Переходим от равенства логарифмов к равенству выражений, стоящих под их знаками.
  3. Решаем полученное линейное ур-ние.
Решение:

Вариант 7МБ10

Найдите корень уравнения

Алгоритм выполнения
  1. Преобразовываем обе части ур-ния: приводим их к степеням с основанием 3. Для этого используем св-во степеней (1/а) х =а –х .
  2. Поскольку основания степеней слева и справа в ур-нии теперь одинаковы, то можем их опустить и приравнять показатели.
  3. Решаем полученное линейное ур-ние.
Решение:

Вариант 7МБ11

Найдите корень уравнения (х8) 2 = (х – 2) 2 .

Алгоритм выполнения
  1. Раскрываем скобки слева и справа, используя ф-

Луб — это сложная проводящая ткань, по которой продукты фотосинтеза (органические вещества) транспортируются из листьев ко всем органам растения (к корневищам, плодам, семенам и т. д.).

Решение:

х 2 – 2 · х ·8 + 8 2 = х 2 – 2 · х · 2 + 2 2

Вариант 7МБ12

Найдите корень уравнения

Алгоритм выполнения
  1. Преобразовываем обе части ур-ния так, чтобы привести их к степеням с одинаковым основанием 7. Для выражения слева применяем св-во степеней (1/а) х =а –х .
  2. Применяем св-во показат.уравнений: если степени с одинаковыми основаниями равны, то равны и их показатели. Отсюда переходим к линейному ур-нию.
  3. Решаем его.
Решение:

Вариант 7МБ13

Решите уравнение х 2 – 25 = 0

Алгоритм выполнения
  1. Переносим 25 в правую часть ур-ния.
  2. Выражаем из ур-ния х путем извлечения корня из 25.
  3. Определяем корни, сравниваем их, определяем больший.
Решение:

Для ответа берем 5.

Вариант 7МБ14

Найдите корень уравнения

Алгоритм выполнения
  1. Применим св-во логарифмических равенств: если логарифмы с одинаковыми основания равны, то равны и их подлогарифменные выражения. В результате получаем равенство из выражений, стоящих под знаком логарифма.
  2. Решаем полученное линейное ур-ние.
Решение:

Вариант 7МБ15

Найдите корень уравнения

Алгоритм выполнения
  1. Приводим обе части ур-ния к степеням с основанием 2. При этом для преобразования выражения слева используем св-во степеней (1/а) х =а –х .
  2. Получив слева и справа степени с одинаковым основанием, опускаем это основание и приравниваем показатели этих степеней. Получаем линейное ур-ние.
  3. Решаем его.
Решение:

Вариант 7МБ16

Найдите корень уравнения

Репетитор по математике

Меня зовут Виктор Андреевич, — я репетитор по математике . Последние десять лет я занимаюсь только преподаванием. Я не «натаскиваю» своих учеников. Моя цель — помочь ребенку понять предмет, научить его мыслить, а не применять шаблоны, передать свои знания, а не просто «добиться результата».

Предусмотрен дистанционный формат занятий (через Skype или Zoom). На первом же уроке оцениваем уровень подготовки ребенка. Если ребенка устраивает моя подача материала, то принимаем решение о дальнейшем сотрудничестве — составляем расписание и индивидуальный план работы. После каждого занятия дается домашнее задание — оно всегда обязательно для выполнения. [в личном кабинете родители могут контролировать успеваемость ребенка]

Стоимость занятий

Набор на 2020/2021 учебный год открыт. Предусмотрен дистанционный формат.

Видеокурсы подготовки к ЕГЭ-2021

Решения авторские, то есть мои (автор ютуб-канала mrMathlesson — Виктор Осипов). На видео подробно разобраны все задания.

Теория представлена в виде лекционного курса, для понимания методик, которые используются при решении заданий.

Группа Вконтакте

В группу выкладываются самые свежие решения и разборы задач. Подпишитесь, чтобы быть в курсе и получать помощь от других участников.

Преимущества

Педагогический стаж

Сейчас существует много сайтов, где вам подберут репетитора по цене/опыту/возрасту, в зависимости от желаний. Но большинство анкет там принадлежат либо студентам, либо школьным учителям. Для них репетиторство — дополнительный временный заработок, из этого формируется отношение к деятельности. У студентов нет опыта и желания совершенствоваться, у школьных учителей — нет времени и сил после основной деятельности. Я занимаюсь только репетиторством с 2010 года. Все свои силы и знания трачу на совершенствование только в этой области.

Собственная методика

За время работы я накопил огромное количество материала для подготовки к итоговым экзаменам. Ребенку не будет даваться неадаптированная школьная программа. С каждым я разберу поэтапно специфичные примеры, темы, способы решений, необходимые для успешной сдачи ЕГЭ и ОГЭ. При этом это не будет «натаскиванием» на решение конкретных задач, но полноценная структурированная подготовка. Естественно, если таковые найдутся, устраню «пробелы» и в школьной программе.

Гарантированный результат

За время моей работы не было ни одного случая, где не прослеживалась бы четкая тенденция к улучшению знаний у ученика. Ни один откровенно не «завалил» экзамен. Каждый вырос в «понимании» математики в сравнении со своим первоначальным уровнем. Естественно, я не могу гарантировать, что двоечник за полгода подготовится на твердую «пять». Но могу с уверенностью сказать, что я подготовлю ребенка на его максимально возможный уровень за то время, что осталось до экзамена.

Индивидуальная работа

Все дети разные, поэтому способ и форма объяснения корректируются в зависимости от уровня понимания ребенком предмета. Индивидуальная работа с каждым учеником — каждому даются отдельные задания, теоретический материал.

Уравнения. Базовый уровень

Автор: Толмачева Надежда Алексеевна.

Шкала перевода баллов ОГЭ 2022

Рекомендации по переводу суммы первичных баллов за экзаменационные работы основного государственного экзамена (ОГЭ) в пятибалльную систему оценивания в 2022 году.

Итоги собеседования по русскому языку

98,7% девятиклассников, сдававших итоговое собеседование по русскому языку в основной срок 9 февраля, успешно справились с заданиями и получили «зачёт». Участие в итоговом собеседовании приняли 1 млн. 373 тыс. учащихся 9 классов из 1 млн. 462 тыс. зарегистрированных.

источники:

http://mathlesson.ru/node/151

http://4ege.ru/trening-matematika/55300-uravneniya-bazovyy-uroven.html

Понравилась статья? Поделить с друзьями:
  • Задания егэ рыночное равновесие
  • Задания егэ расы человека
  • Задания егэ профильная математика по сложности
  • Задания егэ про хрущева
  • Задания егэ про семейное право