Среды обитания организмов. Экологические факторы: абиотические, биотические,
их значение. Антропогенный фактор
Среды обитания организмов
Организм не может быть полностью изолирован от окружающей среды, поскольку он связан с ней многочисленными прямыми и косвенными взаимодействиями. При этом организм не только испытывает влияние окружающей среды, но и сам активно изменяет ее в процессе своей жизнедеятельности. Например, накопление кислорода в атмосфере вначале было связано с деятельностью фотосинтезирующих бактерий, а затем и растений. В разрушении горных пород немаловажную роль играют такие небольшие организмы, как бактерии и лишайники, которые преобразуют со временем населенные ими участки в пригодные для жизни других существ.
Связи организма с окружающей средой возникают не вдруг, они складываются чаще всего исторически. В результате образуются надорганизменные системы, организацию и функционирование которых изучает наука экология. Кроме того, ее предметом являются взаимосвязи и закономерности сосуществования живых организмов в природе, а также законы «здорового» состояния как нормы и основы существования жизни. Поэтому знание истории образования, структуры сообществ живых организмов и факторов окружающей среды, оказывающих воздействие на них, позволит сохранить необходимую для жизни человека среду и рационально использовать природные ресурсы.
Совокупность всех тел и явлений живой и неживой природы, окружающих организм, составляет его среду обитания. В настоящее время выделяют четыре основные среды обитания: водную, наземно-воздушную, почвенную и внутреннюю среду организма.
Водная среда. Основу водной среды составляет вода, которая, с одной стороны, обладая довольно значительной плотностью, затрудняет передвижение организмов в ней, с другой стороны, обеспечивает им опору, а также большее или меньшее однообразие условий (транспорт газов и питательных веществ, меньшие колебания температуры и т. д.). Вода плохо растворяет кислород и слабо пропускает свет, необходимый для фотосинтеза, что ограничивает, в первую очередь, распространение в ней растительных организмов. Кроме того, в воде не всегда присутствует достаточное количество биогенных элементов. Прибрежные зоны морей и океанов подвержены существенным колебаниям уровня воды, в связи с чем организмы, обитающие в этих зонах, периодически оказываются в наземно-воздушной среде. Водная среда характерна для Мирового океана, морей, континентальных водоемов.
Организмы, приспособившиеся к обитанию в водной среде, называются гидробионтами. В зависимости от того, каким образом они приспособились к среде обитания, гидробионтов делят на четыре основные экологические группы: нейстон, нектон, планктон и бентос.
К нейстону относят организмы, обитающие в поверхностной пленке воды и использующие силу поверхностного натяжения, например клопы-водомерки, личинки некоторых моллюсков, ряд простейших и водорослей.
Активно плавающие в толще воды животные, способные противостоять течениям и преодолевать большие расстояния, называют нектоном. Обычно они имеют обтекаемую форму тела и хорошо развитые органы движения. К ним относятся киты, ластоногие, рыбы, головоногие и др.
Планктон — это совокупность организмов, населяющих толщу воды в различных водоемах и увлекаемых течениями. Планктонные организмы в основном пассивно парят в толще воды, хотя некоторые из них могут активно передвигаться. Их приспособлениями к обитанию в толще воды являются снижение удельной плотности и сопротивление давлению водного столба. Первое достигается за счет образования многочисленных выростов, вакуолей, наполненных маслом или газом и т. д., второе же обеспечивается наличием внешнего или внутреннего скелета. Так, даже одноклеточные обитатели морей и океанов — простейшие раковинные амебы, фораминиферы, солнечники и лучевики — имеют хорошо выраженные внешние раковинки или даже внутренние скелеты. Активное перемещение планктонных организмов в водной среде возможно благодаря наличию у одноклеточных ложноножек, жгутиков и ресничек, а многоклеточные используют реактивное движение (кишечнополостные) или прикладывают мышечные усилия (плоские и кольчатые черви). В зависимости от систематической принадлежности планктонные организмы относят к фитопланктону либо зоопланктону.
Бентосные организмы приспособились к обитанию на дне водоемов и ведут прикрепленный образ жизни (крупные водоросли, кораллы, губки и др.) либо перемещаются по дну (моллюски, черви). Растения водной среды, особенно высшие, вторично вернувшиеся в воду, имеют значительные воздушные полости, обеспечивающие их размещение на поверхности воды или вблизи нее. Кроме того, обитание в водной среде способствует редукции покровной, механической и проводящей тканей, так как функции, выполняемые этими тканями, существенно утрачивают свое значение.
Наземно-воздушная среда отличается от водной не только более низкой плотностью, лучшей обеспеченностью кислородом и большей интенсивностью освещения, но и существенной изменчивостью условий — резкими перепадами температур, влажности, осадками и т. д. Эта среда отличается наибольшим разнообразием условий, в первую очередь, по температурному фактору, влажности и освещенности. Организмы, освоившие эту наиболее сложную для обитания среду, называются аэробионтами. Они отличаются наличием развитой системы опоры или механическими тканями.
Передвижение в наземно-воздушной среде для животных облегчается не только низким сопротивлением воздуха, но и возможностью отталкиваться от твердой опоры (почвы). Ее с успехом освоили многие моллюски, паукообразные и насекомые, а также пресмыкающиеся, птицы и млекопитающие. Для растений же данная среда создает существенные препятствия в осуществлении процессов жизнедеятельности, прежде всего из-за недостатка воды в атмосфере и ее бедности биогенными элементами, поэтому их выход на сушу повлек за собой возникновение покровных, механических и проводящих тканей, а также расчленение тела на вегетативные органы — побег, осуществляющий функцию воздушного питания, и корень, который обеспечивает растение водой и минеральными солями. На суше обитают в основном высшие растения.
Почвенная среда представляет собой поверхностный слой литосферы, преобразованный в результате взаимодействия многих факторов, не последнюю роль среди которых сыграли живые организмы. Она отличается относительно высокой плотностью, низкой освещенностью, неоднородностью состава, хотя, в отличие от наземно-воздушной среды, в ней обычно не наблюдается такого перепада температур и недостатка воды и минеральных солей. В промежутки между частичками почвы может проникать и воздух, однако кислород сравнительно быстро расходуется на процессы окисления, поэтому может наблюдаться его дефицит.
Продвижение организма в почве часто сопряжено с существенными препятствиями, поэтому животные в почве передвигаются либо между ее частичками, либо раздвигая ее, как дождевой червь, либо разгребая при помощи конечностей (крот, слепыш, медведка). Рост корней облегчается слущиванием и ослизнением клеток корневого чехлика. При этом они ориентируются к центру земли, а также по направлению к большим концентрациям воды и питательных веществ. Организмы, населяющие почвенную среду, называются эдафобионтами.
Внутренняя среда многих организмов также может рассматриваться как среда обитания других видов, причем одни из них используют ее только в качестве местообитания, а другие и как источник питания. Внутренняя среда организмов отличается постоянством условий, что существенно облегчает жизнь «квартирантов», однако многим из них приходится бороться с защитными механизмами организма-хозяина, например с иммунной системой. Если сожительство организма-хозяина и его «квартиранта» являются взаимовыгодными, то это является примером симбиоза. В тех же случаях, когда «пришелец» причиняет хозяину какой-либо ущерб, он является паразитом, как ленточные черви, сосальщики, круглые черви и др. Обитание какого-либо вида организмов внутри определенного вида приводит к его значительной специализации, что затрудняет размножение и распространение, однако компенсируется огромной плодовитостью.
Экологические факторы: абиотические, биотические, их значение
Среда обитания, кроме того, что она окружает конкретный организм, оказывает на него определенное влияние, как и он на нее. Поэтому тела и явления природы, способные взаимодействовать с организмом, называются экологическими факторами. Их делят на две группы: абиотические и биотические.
К абиотическим факторам относят все физико-химические влияния, способные вызвать ответную реакцию организма. К ним относят климатические (свет, температура, влажность), химические (химический состав среды обитания), эдафические (типы почв) и другие воздействия.
Светом называется весь диапазон солнечного излучения, который представляет собой поток энергии с длинами волн от 1 до 1000 нм. Далеко не весь свет, излучаемый Солнцем, попадает на поверхность Земли: больше половины его отражает и рассеивает атмосфера. Влияние света, являющегося основным источником энергии на Земле, можно рассматривать с точки зрения его интенсивности, длины волны и фотопериода.
По отношению к интенсивности света растения делятся на светолюбивые, тенелюбивые и теневыносливые, а животные — на дневных и ночных. Приспособление к улавливанию света у растений выражается в том, что они выносят листья к солнцу и располагают их таким образом, чтобы один не затенял другой (листовая мозаика). Однако даже светолюбивые растения не всегда способны выдерживать слишком яркое солнце, и поэтому защищаются от него изменением положения листьев и хлоропластов в них, усилением опушения листьев, рассеивающего свет и т. д. Тенелюбивым растениям присуще несколько иное соотношение фотосинтетических пигментов, чем у светолюбивых, большее количество хлоропластов и другие особенности, вследствие которых они не только приобретают темно-зеленую окраску, но и более эффективно улавливают свет.
Спектр света делится на несколько областей:
- 10–400 нм — ультрафиолетовая радиация;
- 400–740 нм — видимый свет;
- 740–1000 нм — инфракрасное излучение.
Длина волны света важна для протекания важнейших процессов жизнедеятельности. Так, малые дозы ультрафиолетового излучения необходимы для видения многих насекомых, образования витамина D в коже у человека, а большие являются губительными, вызывая образование злокачественных опухолей (рака) кожи при длительном нахождении на открытом солнце. От избыточного количества ультрафиолета Землю защищает озоновый экран в верхних слоях атмосферы, однако в последние годы его состояние вызывает серьезные опасения вследствие применения различных химических соединений, запусков ракет и т. д.
Видимый свет обеспечивает протекание процесса фотосинтеза и транспирации у растений (открывание и закрывание устьиц регулируется в том числе и светом различной длины волны), видение большинства животных и человека, а также является синхронизатором биологических ритмов для обеих групп организмов.
Более длинноволновой диапазон света называют инфракрасным излучением. Это излучение повышает температуру нагреваемого тела и снижает его у испускающего лучи с данной длиной волны. Инфракрасное излучение используют различные холоднокровные животные и некоторые растения, повышая таким образом температуру тела или отдельных его частей. Однако эти же лучи, отражаемые от поверхности Земли и испускаемые животными и растениями, не могут пройти через атмосферу, насыщенную углекислым газом, и отражаются обратно, способствуя усугублению глобального потепления. Из-за сходства данного явления с процессами, происходящими в закрытом грунте, оно получило название «парникового эффекта».
Фотопериодом называют продолжительность светового дня и ночи, которая имеет суточную и сезонную ритмичность и определяет сроки цветения многих растений и поведение животных вследствие заблаговременного ощущения ими грядущих перемен.
Температура влияет на скорость протекания биохимических реакций, однако значительная часть организмов может существовать только в узком диапазоне температур, поскольку резкие переходы от тепла к холоду и обратно неблагоприятно сказываются на их метаболизме. Исключение составляют, пожалуй, лишь бактерии, споры которых могут выдерживать охлаждение до –200 $°$С и нагревание до 100 $°$С.
Температуры, при которых происходят активные физиологические процессы, называются эффективными, их значения не выходят за пределы летальных температур. Суммы эффективных температур, или суммы тепла, являются величиной постоянной для каждого вида и определяют границы его распространения. Например, ранние сорта картофеля можно выращивать и в Магаданской области, а подсолнечник — нет.
По отношению к температуре все организмы делят на теплолюбивые (термофилы) и холодолюбивые (криофилы). К термофилам относятся бактерии, растения и животные. Так, некоторые виды цианобактерий обитают в геотермальных источниках на Камчатке при температурах 75–80 $°$С, кактусы и верблюжья колючка переносят нагревание воздуха до 70 $°$С, а целый ряд пустынных видов кузнечиков, бабочек и пресмыкающихся предпочитают температуру около 40 $°$С. Вместе с тем какао погибает при снижении температуры до +8 $°$С.
Холодолюбивые виды могут осуществлять свою жизнедеятельность при 8–10 $°$С, однако редко выживают при повышении температуры. Семена растений, споры бактерий и грибов, коловратки и некоторые круглые черви выдерживают замораживание свыше –270 $°$С без особого ущерба для последующей жизнедеятельности, а в активном состоянии при отрицательных температурах существует ряд видов животных (пингвины) и растений (водоросли, голосеменные).
Растения не способны поддерживать постоянную температуру тела, но, в отличие от животных, они вынуждены приспосабливаться к ее действию. Как это ни парадоксально, но приспособления к перенесению высоких и низких температур у растений во многом схожи: накопление в цитоплазме растворимых сахаров, аминокислот и других соединений, связывающих воду, повышение интенсивности дыхания. Многие арктические виды отличаются компактными размерами, тогда как их репродуктивные органы относительно велики. Растения южных широт могут иметь очень мелкие листья или вовсе утрачивают их (молочаи, кактусы), при этом функцию фотосинтеза выполняет стебель.
У животных реакции на температуру окружающей среды направлены на регулирование теплоотдачи. Тех, которые не способны поддерживать постоянную температуру тела, относят к пойкилотермным, а тех, у которых она постоянна, — к гомойотермным.
К пойкилотермным животным относятся все беспозвоночные, рыбы, земноводные и пресмыкающиеся. Они отличаются более низкой интенсивностью метаболизма. Повышение температуры их тела обеспечивается за счет поглощения теплового излучения солнечного света и нагретых предметов (земноводные, пресмыкающиеся), работы мышц (насекомые в полете), общественной жизни (термиты, муравьи, пчелы), интенсивности испарения влаги с поверхности тела и т. д. При существенном снижении температуры пойкилотермные животные впадают в состояние оцепенения (анабиоз).
Гомойотермные животные (птицы и млекопитающие) характеризуются более высоким уровнем обменных процессов, которые и сопровождаются выделением тепла. При низких температурах у гомойотермных животных повышается интенсивность биохимических реакций и возрастает количество тепла, которое распределяется по телу. Высокие температуры сопровождаются у них усилением потоотделения и даже излучением тепла. Важную роль в защите тела от резких перепадов температур играют перьевой или волосяной покровы, а также подкожная жировая клетчатка, выполняющие термоизоляционную функцию. Однако несмотря на столь сложную систему терморегуляции, резервы организма гомойотермных животных не безграничны, и при слишком низких или высоких температурах они погибают.
Вода является необходимым компонентом клетки, однако ее количество и доступность в определенных местах обитания может ограничивать распространение организмов.
По степени потребности в воде растения делят на три основные экологические группы: ксерофиты, мезофиты и гигрофиты. Ксерофиты — это растения засушливых мест обитания, для них характерны удлинение корней, утолщение кутикулы, опушение листьев, уменьшение размеров листьев, а иногда и их сбрасывание. К ним относятся кактусы, толстянки, верблюжья колючка — саксаул и др.
Мезофиты занимают умеренно увлажненные участки земной поверхности, к ним относятся пшеница, горох и др. Некоторые представители этой экологической группы при наступлении неблагоприятных условий способны быстро завершать вегетационный период и переживать засуху в виде семян, луковиц, клубней или корневищ (тюльпан, ландыш, пролески).
Гигрофиты приспособились к обитанию в условиях избыточного увлажнения. К ним относятся кувшинка, тростник, рогоз и др. Специальные приспособления для защиты от испарения отсутствуют, однако избыток влаги в среде, который может вызывать недостаток кислорода, способствует развитию у гигрофитов воздухоносных полостей.
Животные, как и растения, должны восполнять потерю воды, для чего они пьют ее на водопоях, часто расположенных на расстоянии десятков километров, извлекают из пищи или запасают. В случае полного отсутствия воды некоторые животные способны впадать в спячку.
Химический состав среды играет в жизни организмов не меньшую роль, чем другие факторы. Так, снижение содержания кислорода в атмосфере может привести к гибели значительного числа видов растений и животных, например, человека. Поэтому в зависимости от потребности в кислороде все организмы делятся на аэробов и анаэробов. Кислород необходим даже корням растений, надземная часть которых выделяет его в процессе фотосинтеза. Анаэробами же являются многие паразитические организмы, в частности печеночный сосальщик, бычий цепень и др.
Недостаток минеральных солей в почве провоцирует их недостаток в организме, вследствие чего нарушаются процессы жизнедеятельности и, в конечном итоге, отклонение от нормы темпов роста и развития. Например, недостаток кальция у человека может привести к увеличению ломкости костей, а у растений — уменьшению размеров листьев, отмиранию корней и верхушек и т. д.
В случае избытка солей водный обмен растений и животных затрудняется, к тому же многие ионы токсичны для организма. Поэтому биоразнообразие флоры и фауны солончаков намного уступает числу видов в экосистемах, не обремененных столь высокими концентрациями солей. Однако обитающие в этих местах растения приспособились к использованию такого количества солей, которое необходимо им для протекания процессов жизнедеятельности, а избыток солей откладывается в вакуолях или выделяется наружу. Растения и животные, приспособившиеся жить в условиях повышенного засоления, называются галофилами. К ним относятся солерос, тамарикс, кораллы, многие морские беспозвоночные, бактерии и др.
Кислотность также является существенным фактором среды, поскольку многие процессы обмена веществ с окружающей средой происходят в ограниченной зоне рН, а в почве отражается также на составе и деятельности микрофлоры, обеспечивающей жизнедеятельность растений. Так, при низких значениях рН снижается, например, поступление азота из почвы в растения, тогда как доступность кальция, наоборот, повышается. Растения, приспособившиеся к обитанию в условиях повышенной кислотности, называются ацидофилами (мох кукушкин лен, некоторые хвощи и осоки), пониженной — базофилами (тысячелистник, ольха, мятлик), а растения почв с нейтральной реакцией — нейтрофилами (земляника, марьянник, кислица).
Естественными источниками ионизирующего излучения являются космические лучи, почти полностью задерживаемые верхними слоями атмосферы, а также излучение ряда химических элементов (изотопов урана, радия, калия и др.) и продуктов их распада. В последние десятилетия появились искусственные источники ионизирующего излучения — реакторы атомных электростанций, ледоколов и подводных лодок, ракетные боеголовки и ядерные бомбы, рентгеновские аппараты в медицинских учреждениях, бытовые приборы и др. Небольшие дозы ионизирующего излучения, не превышающие значения природного фона, могут повышать всхожесть семян и скорость роста растений, а их увеличение вызывает мутации, нарушения обмена веществ и деления клеток, роста и развития организма, и может привести к гибели.
Определенное влияние на живые организмы оказывают также рельеф местности, атмосферное давление, атмосферное электричество, пожары, магнитное поле Земли, шум и другие факторы.
Биотическими факторами среды называют совокупность живых организмов, оказывающих влияние на другие живые существа своей жизнедеятельностью. Одним из биотических факторов является также влияние человека. Определяющими в этом отношении являются видовое разнообразие сообщества и численность популяций, образующих его. Живые организмы поселяются друг с другом не случайно, а образуют определенные сообщества, приспособленные к совместному обитанию. По направлению действия на организм все взаимоотношения между организмами в сообществах могут подразделяться на симбиоз, антибиоз и нейтрализм.
Под симбиозом понимают любой вид взаимоотношений, при котором оба партнера или хотя бы один из них извлекает пользу. Формами симбиоза являются мутуализм, кооперация, комменсализм и даже паразитизм.
Мутуализм — это взаимовыгодное сожительство, при котором присутствие партнера является обязательным условием существования каждого из организмов, например сожительство корней растений с клубеньковыми бактериями и грибами.
Кооперацией называется форма симбиоза, при которой сожительство партнеров приносит обоим очевидную пользу, однако их связь необязательна, как между раком-отшельником и актинией.
Комменсализм — это форма взаимоотношений, при которой один из партнеров извлекает из них пользу, а другому это безразлично (эпифитные и древесные растения).
Паразитизм — использование одним организмом другого в качестве места обитания и постоянного источника питания, причем организму-хозяину наносится очевидный ущерб (острица детская и человек).
К антибиозу относят любой вид взаимоотношений, при котором обе взаимодействующие популяции или хотя бы одна из них испытывает отрицательное влияние. Формами антибиоза являются хищничество, растительноядность, конкуренция, аменсализм и аллелопатия. К нему можно причислить также и паразитизм.
Хищничество заключается в умерщвлении одними животными пойманных особей других видов. Хищниками являются не только животные, но и насекомоядные растения, некоторые грибы.
Взаимоотношения между особями одного или разных видов, соревнующихся за одни и те же ресурсы, имеющиеся в ограниченном количестве, называют конкуренцией. Например, грибы могут ограничивать рост бактерий путем выделения антибиотиков, а животные — даже нападать друг на друга.
Аменсализм фактически является крайним случаем конкуренции, если один из конкурентов намного сильнее другого. Например, большое дерево затеняет траву под его кроной, при этом оно практически не ощущает сопротивления.
Аллелопатия в широком значении этого термина подразумевает взаимодействие растений при помощи биологически активных веществ, однако исходно под ней подразумевалось только подавление одними растениями других. Примерами аллелопатии является подавление роста других растений корневыми выделениями пырея.
Нейтрализмом называется любой вид взаимоотношений, при котором совместно обитающие на одной территории организмы не оказывают друг на друга прямого влияния, как, например, дуб и лось в дубраве.
Закон оптимума. Несмотря на то, что ряд экологических факторов практически неизменен в течение длительного времени, как, например, сила земного тяготения, состав и свойства атмосферы, океанических вод и т. п., большинство других факторов изменяются как во времени, так и в пространстве. Эти изменения могут быть регулярно-периодическими (время суток, приливы и отливы, сезоны года), нерегулярными (ураганы, цунами, землетрясения) или направленными (изменения климата, загрязнение атмосферы).
Отдельные организмы, как и надорганизменные системы, вынуждены приспосабливаться к происходящим изменениям, однако резервы их адаптации сформировались в процессе эволюции и не безграничны, поэтому для каждого организма, популяции и экосистемы существует диапазон условий среды — диапазон устойчивости (выживаемости), в рамках которого происходит жизнедеятельность объектов. За границами этого диапазона — границами выживаемости — живая система либо сразу погибает, либо дает семена, споры и т. д., либо переходит во временное состояние покоя (луковицы, клубни и другие запасающие органы растений, анабиоз у животных и т. д.).
В пределах диапазона устойчивости скорость роста и развития организмов не одинакова. Например, продолжительность жизненного цикла плодовой мушки дрозофилы при +24 $°$С составляет в среднем две недели, а при +17 $°$С — уже около трех. Такие значения экологического фактора, при которых организмы и популяции достигают наилучшего развития и максимальной продуктивности, называются оптимальными. Любые отклонения от этого оптимума вызывают угнетение процессов жизнедеятельности.
Выявление этих закономерностей позволило сформулировать закон оптимума: любой экологический фактор имеет определенные пределы положительного влияния на организмы.
Поиск оптимальных значений экологических факторов имеет важное прикладное значение для сельского и лесного хозяйств, а также некоторых отраслей медицины, поскольку только при данном условии реализуется генетически запрограммированный потенциал продуктивности данного вида, а также возможно сохранение здоровья человека.
Закон минимума. Оптимальное соотношение факторов среды встречается в природе довольно редко, и те факторы, которые в наибольшей степени вызывают нарушения роста и развития организма, называются ограничивающими. Именно к ним организм вырабатывает приспособления в первую очередь.
Несмотря на то, что природа ограничивающих факторов неодинакова: дефицит химического элемента в почве, недостаток тепла или влаги, биотические отношения (занятие территории более сильным конкурентом, недостаток опылителей для растений), они могут в существенной мере препятствовать процветанию вида. Так, ареал вида значительно ограничивается двумя показателями: температурным порогом развития и суммой эффективных температур.
Выявление ограничивающих факторов очень важно в практическом отношении. Так, многие культурные растения весьма требовательны к кислотности почвы, поэтому известкование почвы позволяет существенно повысить их продуктивность.
Изучая влияние дефицита элементов минерального питания на растения, немецкий физиолог Ю. Либих сформулировал закон минимума (1840):
Наибольшее влияние на рост и развитие организма оказывает тот фактор, которого в данный момент не достает в наибольшей степени.
Однако не только недостаток какого-либо фактора может приводить к нарушению жизнедеятельности организма, но и его избыток, поэтому в настоящее время более широкое распространение получил закон ограничивающего фактора:
Наиболее значим тот фактор, который больше всего отклоняется от оптимальных для организма значений; именно он определяет в данный момент выживание особей.
Экологические факторы действуют на организмы не по отдельности, а в тесном взаимодействии друг с другом. Избыточные значения одних из них могут снижать неблагоприятные последствия недостатка других, как, например, в случае неблагоприятного фотопериода он может быть заменен повышенными температурами. Это явление называется компенсацией.
Биологические ритмы. Существование ритмических колебаний ряда факторов окружающей среды вынуждает живые организмы согласовывать свою жизнедеятельность с периодами действия наиболее благоприятных значений этих факторов. Такие периодически повторяющиеся изменения интенсивности и направления биологических процессов называются биологическими ритмами.
Биологические ритмы чаще всего наследственно закреплены, однако некоторые из них корректируются изменениями факторов среды. Одним из основных периодически действующих на организмы и экосистемы факторов является свет, поскольку он не только действует на организмы с момента их возникновения, но и наиболее устойчив в своей динамике, автономен и не подвержен другим влияниям.
Суточные ритмы свойственны большинству видов растений и животных. Сигнальным фактором начала и прекращения активности для них служит режим освещения. У многих видов отмечается смена суточных ритмов в течение сезона. У песчанок в середине лета наблюдается два пика активности в течение суток, а ранней весной и поздней осенью — по одному.
Циркадианные (циркадные, околосуточные) ритмы — это повторяющиеся изменения интенсивности и направленности процессов жизнедеятельности с периодом от 20 до 28 ч. К ним относят суточные циклы активности различных органов и систем органов организма человека, открывание и закрывание цветков ряда растений.
В другую очень важную группу биологических ритмов, имеющих огромное значение для высших и низших организмов, входят сезонные (околосезонные), годичные (цирканнуальные, цирканные) ритмы, обусловленные вращением Земли вокруг Солнца.
Фотопериодизм. Реакция организмов на суточный ритм освещения (соотношение продолжительности дня и ночи), которая выражается в изменении интенсивности процессов роста и развития, называется фотопериодизмом. Она присуща как животным, так и растениям.
У растений фотопериодизм является приспособлением к комплексу сезонных изменений внешних условий. Например, растения экваториальной зоны и тропиков, где день и ночь имеют примерно равную продолжительность, зацветают на коротком световом дне, тогда как растения умеренного климата, лето которого характеризуется длинным световым днем (свыше 12 ч), осуществляют этот акт только на длинном дне. Уменьшение же продолжительности светового дня для них означает приближение зимы, и они прекращают рост, переходя к цветению и плодоношению, накоплению запасных веществ.
У животных фотопериодизм также связан с изменениями процессов жизнедеятельности, например, наступлением и прекращением брачного периода, линьками, сезонными миграциями, впадением в спячку и т. д. Он также генетически закреплен, однако во многих случаях происходит согласование его с суточным ритмом освещенности.
Антропогенный фактор
Антропогенным фактором называют совокупность последствий хозяйственной деятельности человека для окружающей среды. Она заключается в эксплуатации природных ресурсов, в том числе исчерпаемых (добыче газа, нефти, руд и т. д.), загрязнении воздуха, воды и почвы, истреблении значительного количества видов животных и растений, что ведет к необратимому нарушению экологического равновесия. В большинстве случаев антропогенный фактор не носит систематического характера, поэтому приспособление организмов к его действию существенно затруднено.
Немецкий учёный Юстут Либих установил, что продуктивность культурных растений в первую очередь зависит от того питательного вещества или минерального элемента, который представлен в почве в наименьшем количестве.
Закон минимума Либиха (или Закон лимитирующих факторов):
наибольшее значение для организма имеет тот экологический фактор, значение которого ближе к минимальному, необходимому для данного организма.
Образное представление закона минимума — так называемая «бочка Либиха».
Рис. (1). «Бочка Либиха»
Суть модели заключается в том, что вода при наполнении бочки будет переливаться через самую низкую доску, а длина других досок уже никакого значения не имеет. Например, если содержание азота в почве составляет лишь (30) % от необходимого количества, а калия — (60) %, то растение будет развиваться только до тех пор, пока не будет использован весь азот. Ограничивающим фактором для дальнейшего роста будет недостаточное содержание азота. Для увеличения продуктивности нужно в первую очередь внести в почву именно азотные удобрение.
Но избыток какого-либо экологического фактора может оказывать такое же негативное влияние на развитие организма, как и его недостаток.
Факторы, препятствующие нормальному развитию живого организма из-за их избытка или недостатка по сравнению с потребностями, называются лимитирующими.
Закон толерантности Шелфорда:
лимитирующим фактором, ограничивающим развитие организма, может быть как минимум, так и максимум воздействия экологического фактора.
Толерантность — это способность живых организмов выдерживать колебания внешних условий (например, изменения температуры, освещённости). Это свойство живых организмов имеет очень важное значение, оно позволяет приспосабливаться к
постоянно изменяющимся условиям. У разных видов толерантность по отношению к тем или иным факторам выражена в разной степени. Так, для растения может оказаться губительным как недостаток, так и избыток влаги в почве.
Закон оптимума:
любому экологическому фактору характерен определённый диапазон благоприятного воздействия на живые организмы.
Закон оптимума можно отобразить графически симметричной куполообразной кривой (кривая толерантности), которая показывает изменение жизненной активности вида с увеличением значения фактора.
Рис. (2). Кривая толерантности
Пределами выносливости (экологической валентностью) называют минимальное и максимальное значения фактора, при которых возможна жизнедеятельность. За их пределами организмы погибают. Эти значения являются нижними и верхними границами выносливости вида. Их называют критическими точками. Например, животные и растения плохо переносят сильную жару и сильные морозы; оптимальными являются средние температуры. Точно так же и засуха, и постоянные проливные дожди одинаково неблагоприятны для урожая.
Самые высокие показатели жизнедеятельности наблюдаются при оптимальных значениях фактора.
У всех организмов в ходе эволюции выработалась способность приспосабливаться к тому или иному диапазону факторов. У некоторых видов пределы выносливости по определённому фактору узкие. Это означает, что они могут существовать только в относительно постоянных условиях среды. В этом случае получаются узкие кривые.
Пологие кривые наблюдаются в том случае, если пределы выносливости вида по данному фактору широкие. У видов с широким диапазоном толерантности больше возможностей для распространение в окружающей среде.
Но по разным факторам пределы выносливости отличаются: по одному фактору вид может иметь широкие пределы, а по другим — узкие.
Закон относительной независимости приспособления организмов:
широкие пределы выносливости вида к одному фактору не означает такой же экологической толерантности по отношению к другим факторам.
Виды, способные переносить значительные изменения влажности, могут быть совсем не приспособлены к широким колебаниям температуры. Например, многие амфибии способны выживать при низких и высоких температурах, но не могут переносить даже кратковременного отсутствия влаги.
Закон совместного действия факторов:
результат воздействия экологического фактора во многом определяется тем, какое влияние оказывают другие факторы.
Так, животные переносят жару гораздо легче, если влажность воздуха низкая.
Закон незаменимости фактора:
нельзя полностью заменить один фактор другим.
Например, кислород, необходимый животным для дыхания, невозможно заменить избытком пищи или тепла.
Источники:
Рис. 1. «Бочка Либиха». Автор: DooFi — собственная работа, Общественное достояние, https://commons.wikimedia.org/w/index.php?curid=6627159. 14.11.2021.
Рис. 2. Кривая толерантности. Автор: Tigran Mitr am — собственная работа, Общественное достояние, https://commons.wikimedia.org/w/index.php?curid=12772203. 14.11.2021.
Образовательный портал для подготовки к экзаменам
Биология
Сайты, меню, вход, новости
Задания
Версия для печати и копирования в MS Word
Какой цифрой обозначен прямоугольник в котором нужно вписать слово «оптимум»?
Спрятать пояснение
Пояснение.
Закон оптимума: любой экологический фактор имеет определённые пределы положительного влияния на живые организмы.
Зона оптимума (2) — это тот диапазон действия фактора, который наиболее благоприятен для жизнедеятельности. Отклонения от оптимума определяют зоны пессимума. В них организмы испытывают угнетение. Минимально и максимально переносимые значения фактора (1 — благоприятные условия) — это критические точки, за которыми организм гибнет (3 и 4).
Источник: Яндекс: Тренировочная работа ЕГЭ по биологии. Вариант 3.
Материалы для подготовки к ЕГЭ. Онлайн-Справочник по биологии.
Раздел 8. Экология и учение о биосфере. Глава 8.1. Экология особей.
ВСЕ РАЗДЕЛЫ СПРАВОЧНИКА
8.1. Экология особей
8.1.1. Среды обитания
Среда обитания (жизни) — это часть природы, окружающая живые организмы и оказывающая на них определённое воздействие.
На нашей планете живые организмы освоили четыре среды обитания (табл. 8.1):
- водную;
- наземно-воздушную;
- почвенную;
- организменную.
Первой была освоена водная среда. Затем появились паразиты и симбионты, использующие организменную среду обитания. В дальнейшем, после выхода жизни на сушу, живые организмы населили наземно-воздушную среду, а одновременно с этим создали и заселили почву. Под почвенной средой обитания подразумевают не только собственно почву, но и горные породы поверхностной части литосферы.
Таблица 8.1. Сравнение сред жизни
Примечание: ПБП — первичная биологическая продукция; ЭМП — элементы минерального питания.
8.1.2. Экологические факторы
Каждая из сред жизни отличается особенностями воздействия экологических факторов — отдельных элементов среды, которые воздействуют на организмы. Существуют различные классификации экологических факторов (табл. 8.2).
Таблица 8.2. Классификация экологических факторов
Группа |
Характеристика |
Примеры |
1. По природе |
||
Абиотические | Воздействие компонентов неживой природы | Свет, температура, влажность |
Биотические | Воздействие живых организмов | Конкуренция за пищу, нападение хищника |
2. По участию человека |
||
Природные | Воздействие природных факторов | Свет, температура, влажность |
Антропогенные | Воздействие человека (в том числе его деятельности) | Вырубка леса, охота, загрязнение, разрушение местообитаний |
3. По среде возникновения (для абиотических) |
||
Климатические | Влияние климатических условий | Ветер, атмосферное давление |
Геологические | Влияние геологических условий | Землетрясения, извержения вулканов, движение |
ледников, радиоактивное излучение | ||
Орографические, или факторы рельефа | Влияние условий рельефа | Высота местности над уровнем моря, крутизна местности, экспозиция местности |
Эдафические, или почвенно-грунтовые | Влияние почвенных условий | Гранулометрический состав, химический состав, плотность, структура, pH |
Гидрологические | Влияние гидрологических условий | Течение, солёность, давление |
4. По природе (для абиотических) |
||
Физические | Влияние физических факторов | Температура, давление, плотность |
Химические | Влияние химических факторов | Химический состав, солёность |
5. По виду воздействующего организма (для биотических) |
||
Внутривидовые | Влияние на организм особей этого же вида | Влияние зайца на зайца, сосны на сосну |
Межвидовые | Влияние на организм особей других видов | Влияние волка на зайца, сосны на берёзу |
6. По принадлежности к определённому царству (для биотических) |
||
Фитогенные факторы | Влияние на организм растений | Ель и растения нижнего яруса |
Зоогенные факторы | Влияние животных | Ковыль и травоядные копытные |
Микогенные факторы | Влияние грибов | Берёза и подберёзовик |
Микробиогенные факторы | Влияние микроорганизмов (вирусов, бактерий, простейших) | Человек и вирус гриппа |
7. По типу взаимодействия (для биотических) |
||
Нейтрализм | Сожительство двух видов на одной территории, не имеющее для них ни положительных, ни отрицательных последствий | Белки и лоси |
Протокооперация | Взаимовыгодное, но не обязательное сосуществование организмов, пользу из которого извлекают оба участника | Раки-отшельники и коралловые полипы актинии |
Мутуализм | Взаимовыгодное сожительство, когда либо один из партнёров, либо оба не могут существовать без сожителя | Травоядные копытные и целлюлозоразрушающие бактерии |
Комменсализм | Взаимоотношения, при которых один из партнёров полу чает пользу от сожительства, а другому присутствие первого безразлично | Крупные хищники и падальщики |
Растительноядность | Взаимоотношения, при которых один из участников (фитофаг) использует в качестве пищи другого (растение) | Зайцы и растения |
Хищничество | Взаимоотношения, при которых один из участников (хищник) использует в качестве пищи другого (жертва) | Волки и зайцы |
Паразитизм | Взаимоотношения, при которых паразит не убивает своего хозяина, а длительное время использует его как среду обитания и источник пищи | Аскарида человеческая и человек |
Конкуренция | Взаимоотношения, при которых организмы соперничают друг с другом за одни и те же ресурсы внешней среды при недостатке последних | Щука и судак |
Аллелопатия | Взаимоотношения, при которых во внешнюю среду выделяются продукты жизнедеятельности одного организма, отравляя её и делая непригодной для жизни другого | Гриб-пеницилл и некоторые сапротрофные бактерии |
Аменсализм | Взаимоотношения, при которых один организм воздействует на другой и подавляет его жизнедеятельность, а сам не испытывает никаких отрицательных влияний со стороны подавляемого | Ель и растения нижнего яруса |
8. По характеру воздействия (для антропогенных) |
||
Прямое влияние | Оказывают прямое (непосредственное) воздействие на организм | Скашивание травы, вырубка леса, отстрел животных, отлов рыбы |
Косвенное влияние | Оказывают косвенное (опосредованное через другие экологические факторы) воз действие на организм | Загрязнение окружающей среды, разрушение местообитаний, беспокойство |
9. По последствиям (для антропогенных) |
||
Положительные | Улучшают жизнь организмов и увеличивают их численность | Разведение и охрана животных, посадка и подкормка растений, охрана окружающей среды |
Отрицательные | Ухудшают жизнь организмов и снижают их численность | Вырубка деревьев, отстрел животных, разрушение местообитаний |
10. По изменчивости в пространстве и во времени |
||
Относительно постоянные | Относительно постоянны в пространстве и во времени | Сила тяготения, солнечная радиация, солёность океана |
Очень изменчивые | Очень изменчивы в пространстве и во времени | Температура и влажность воздуха, сила ветра |
11. По характеру изменения во времени |
||
Регулярно-периодические | Меняют свою силу в зависимости от времени суток, сезона года, ритма приливов и отливов | Освещённость, температура, длина светового дня |
Нерегулярные (непериодические) | Не имеют чётко выраженной периодичности | Наводнение, ураган, землетрясение, извержение вулкана, нападение хищника |
Направленные | Действуют на протяжении длительного промежутка времени в одном направлении | Похолодание или потепление климата, зарастание водоёма, эрозия почвы |
12. По характеру ответной реакции организма на воздействие |
||
Раздражители | Вызывают биохимические и физиологические изменения (адаптации) | Недостаток кислорода в условиях высокогорья приводит к увеличению содержания гемоглобина в крови животных |
Модификаторы | Вызывают морфологические и анатомические изменения (адаптации) | Недостаток влаги привёл к видоизменению листьев в колючки у кактуса |
Ограничители | Обусловливают невозможность существования организма в данных условиях и ограничивают ареал его распространения | Недостаток воды ограничивает распространение жизни в пустынях |
Сигнализаторы | Информируют об изменении других факторов | Длина светового дня для листопадных растений |
13. По расходованию |
||
Ресурсы | Потребляются организма ми, то есть их количество в результате взаимодействия с организмом может уменьшаться | Пища, вода, солнечная энергия, кислород, углекислый газ |
Условия | Не потребляются организмами, то есть их количество не уменьшается, но они могут оказывать влияние на организм | Температура, влажность, атмосферное давление, гравитационное поле, солёность воды |
Действие экологических факторов на организм может быть прямым и косвенным. Косвенное воздействие осуществляется через другие экологические факторы. Например, высокая температура может вызвать ожог (прямое воздействие), а может привести к обезвоживанию организма (косвенное воздействие).
8.1.3. Адаптации
Адаптации — приспособления организмов к среде обитания. Они вырабатываются в процессе эволюции и индивидуального развития организмов. Адаптации развиваются под действием трёх основных факторов: наследственности, изменчивости и естественного (а также искусственного) отбора. Адаптации подразделяют на типы (табл. 8.3).
Таблица 8.3. Типы адаптаций живых организмов
Существуют три основных пути приспособления организмов к условиям окружающей среды (табл. 8.4). Обычно приспособление вида к среде осуществляется тем или иным сочетанием всех трёх возможных путей адаптации.
Таблица 8.4. Пути адаптаций живых организмов
8.1.4. Закономерности действия экологических факторов
Закон оптимума. Экологические факторы среды имеют количественное выражение. Каждый фактор имеет определённые пределы положительного влияния на организмы (рис. 8.2). Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей.
Рис. 8.2. Зависимость действия экологического фактора от его количества
По отношению к каждому фактору можно выделить зону оптимума (зону нормальной жизнедеятельности), зону пессимума (зону угнетения), верхний и нижний пределы выносливости организма.
Зона оптимума — такое количество экологического фактора, при котором интенсивность жизнедеятельности организмов максимальна.
Зона пессимума — такое количество экологического фактора, при котором интенсивность жизнедеятельности организмов угнетена.
Верхний предел выносливости — максимальное количество экологического фактора, при котором возможно существование организма.
Нижний предел выносливости — минимальное количество экологического фактора, при котором возможно существование организма. За пределами выносливости существование организма невозможно.
Значения экологического фактора между верхним и нижним пределами выносливости называются зоной толерантности.
Виды с широкой зоной толерантности называются эврибионтными, с узкой — стенобионтными (рис. 8.3).
Рис. 8.3. Экологическая валентность (пластичность) видов: 1 — эврибионтные; 2 — стенобионтные
Организмы, переносящие значительные колебания температуры, называются эвритермными, а приспособленные к узкому интервалу температур — стенотермными. Таким же образом по отношению к давлению различают эври- и стенобатные организмы, по отношению к степени засоления среды — эври- и стеногалинные и т. д.
Явление акклиматизации. Положение оптимума и пределов выносливости может в определённых пределах сдвигаться. Например, человек легче переносит пониженную температуру окружающей среды зимой, чем летом, а повышенную — наоборот. Это явление называется акклиматизацией (или акклимацией). Акклиматизация происходит при смене сезонов года или при попадании на территорию с другим климатом.
Неоднозначность действия фактора на разные функции организма. Одно и то же количество фактора неодинаково влияет на разные функции организма. Оптимум для одних процессов может являться пессимумом для других. Например, у растений максимальная интенсивность фотосинтеза наблюдается при температуре воздуха +25… +35°С, а дыхания +55°С (рис. 8.4).
Рис. 8.4. Схема зависимости фотосинтеза и дыхания растения от температуры: tмин, tопт, tмакс — температурный минимум, оптимум и максимум для прироста растений (заштрихованная область)
Соответственно, при более низких температурах будет происходить прирост биомассы растений, а при более высоких — потеря биомассы. У холоднокровных животных повышение температуры до +40 °С и более сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. У человека семенники вынесены за пределы таза, так как сперматогенез требует более низких температур. Для многих рыб температура воды, оптимальная для созревания гамет, неблагоприятна для икрометания, которое происходит при другой температуре.
Экологическая валентность вида. Экологические валентности отдельных особей не совпадают. Они зависят от наследственных и онтогенетических особенностей отдельных особей: половых, возрастных, морфологических, физиологических и т.д. Поэтому экологическая валентность вида шире экологической валентности каждой отдельной особи. Например, у бабочки мельничной огнёвки — одного из вредителей муки и зерновых продуктов — критическая минимальная температура для гусениц -7 °С, для взрослых форм -22 °С, а для яиц —27 °С. Мороз в —10 °С губит гусениц, но не опасен для имаго и яиц этого вредителя.
Экологический спектр вида. Набор экологических валентностей вида по отношению к разным факторам среды составляет экологический спектр вида. Экологические спектры разных видов отличаются друг от друга. Это позволяет разным видам занимать разные места обитания. Знание экологического спектра вида позволяет успешно проводить интродукцию растений и животных.
Взаимодействие факторов. В природе экологические факторы действуют совместно, то есть комплексно. Зона оптимума и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Например, высокую температуру труднее переносить при дефиците воды, сильный ветер усиливает действие холода, жару легче переносить в сухом воздухе и т. д. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие (рис. 8.5). Соответственно, один и тот же экологический результат может быть получен разными путями. Например, компенсация недостатка влаги может быть осуществлена поливом или снижением температуры. Создаётся эффект частичного взаимозамещения факторов. Однако взаимная компенсация действия факторов среды имеет определённые пределы, и полностью заменить один из них другим нельзя.
Рис. 8.5. Смертность яиц соснового шелкопряда при разных сочетаниях температуры и влажности
Таким образом, абсолютное отсутствие какого-либо из обязательных условий жизни заменить другими экологическими факторами невозможно, но недостаток или избыток одних экологических факторов может быть возмещён действием других экологических факторов.
Например, полное (абсолютное) отсутствие воды нельзя компенсировать другими экологическими факторами. Однако если другие экологические факторы находятся в оптимуме, то перенести недостаток воды легче, чем когда и другие факторы находятся в недостатке или избытке.
Закон лимитирующего фактора. Возможности существования организмов в первую очередь ограничивают те факторы среды, которые наиболее удаляются от оптимума. Экологический фактор, количественное значение которого выходит за пределы выносливости вида, называется лимитирующим (ограничивающим) фактором. Такой фактор будет ограничивать существование (распространение) вида даже в том случае, если все остальные факторы будут благоприятными (рис. 8.6).
Лимитирующие факторы определяют географический ареал вида. Например, продвижение вида к полюсам может лимитироваться недостатком тепла, в аридные районы — недостатком влаги или слишком высокими температурами.
Рис. 8.6. Зависимость урожая от лимитирующего фактора («Бочка Либиха»)
Условия жизни и условия существования. Комплекс факторов, под действием которых осуществляются все основные жизненные процессы организмов, включая нормальное развитие и размножение, называется условиями жизни. Условия, в которых размножения не происходит, называются условиями существования.
8.1.5. Характеристика основных экологических факторов
Свет. В спектре солнечного света выделяют области, различные по своему биологическому действию. Ультрафиолетовые лучи в небольших дозах необходимы живым организмам (бактерицидное действие, стимуляция роста и развития клеток, синтез витамина D и т. д.), в больших дозах губительны из-за способности вызывать мутации. Значительная часть ультрафиолетовых лучей отражается озоновым слоем. Видимые лучи — основной источник жизни на Земле, дающий энергию для фотосинтеза. Инфракрасные лучи — основной источник тепловой энергии.
Для растений солнечный свет необходим прежде всего как источник энергии для фотосинтеза. По отношению к условиям освещённости растения подразделяют на экологические группы (табл. 8.5).
Таблица 8.5. Классификация растений по отношению к условиям освещённости
Для животных свет — это условие ориентации. Животные могут вести дневной, ночной и сумеречный образ жизни.
По отношению к продолжительности дня организмы (в основном растения) делят на короткодневные (обитатели низких широт) и длиннодневные (обитатели умеренных и высоких широт).
Реакция организмов на продолжительность дня называется фотопериодизмом. Это очень важное приспособление, регулирующее сезонные явления у организмов. Изменение длины дня тесно связано с годовым ходом температуры, но в отличие от последней не подвержено случайным колебаниям. Фотопериодизм обусловливает такие сезонные явления, как листопад, перелёты птиц и т. п.
Температура. От температуры окружающей среды зависит температура организмов, а следовательно, скорость всех химических реакций, составляющих обмен веществ. В основном живые организмы способны жить при температуре от 0 до +50 °С, что обусловлено свойствами цитоплазмы клеток. Верхним температурным пределом жизни является + 120…+140°С (близкие к нему значения температуры выдерживают споры, бактерии), нижним —190…273 °С (переносят споры, семена, сперматозоиды).
По отношению к температуре организмы делят на криофилов (обитающих в условиях низких температур) и термофилов (обитающих в условиях высоких температур).
Организмы могут использовать два источника тепловой энергии: внешний (тепловая энергия Солнца или внутреннее тепло Земли) и внутренний (тепло, выделяемое при обмене веществ). В зависимости от того, какой источник преобладает в тепловом балансе, живые организмы делят на пойкилотермных и гомойотермных (табл. 8.6). Если речь идёт только о животных, то их ещё называют холоднокровными и теплокровными соответственно.
Таблица 8.6. Классификация организмов по преобладанию
источника тепла в их тепловом балансе
У живых организмов различают три механизма терморегуляции (табл. 8.7).
Таблица 8.7. Механизмы терморегуляции
Вода. Вода обеспечивает протекание в организме обмена веществ и нормальное функционирование организма в целом. Одни организмы живут в воде, другие приспособились к постоянному недостатку влаги. Среднее содержание воды в клетках большинства живых организмов составляет около 70 %.
По отношению к воде среди живых организмов выделяют следующие экологические группы: гигрофилы (влаголюбивые), ксерофилы (сухолюбивые) и мезофилы (промежуточная группа).
Из наземных животных к гигрофилам относятся ондатра и бобр, к ксерофилам — суслик и варан, к мезофилам — волк и косуля. Среди растений различают гигрофитов, мезофитов и ксерофитов (табл. 8.8).
Таблица 8.8. Классификация растений по отношению к воде
Водные организмы по типу местообитания и образу жизни объединяются в следующие экологические группы (табл. 8.9).
Таблица 8.9. Классификация водных организмов
по типу местообитания и образу жизни
8.1.6. Биологические ритмы
Биологические ритмы представляют собой периодически повторяющиеся изменения интенсивности и характера биологических процессов и явлений. Они в той или иной форме присущи всем живым организмам и отмечаются на всех уровнях организации: от внутриклеточных процессов до биосферных. Биологические ритмы наследственно закреплены и являются следствием естественного отбора и адаптации организмов. Ритмы бывают внутрисуточные, суточные, сезонные, годичные, многолетние и многовековые. Биологические ритмы делят на эндогенные и экзогенные (табл. 8.10).
Таблица 8.10. Биологические ритмы
ВСЕ РАЗДЕЛЫ СПРАВОЧНИКА
Материалы для подготовки к ЕГЭ. Онлайн-Справочник по биологии.
8.1. Экология особей
Просмотров:
41 985
У всякого экологического фактора существуют определенные границы в его положительном воздействии на живой организм. В этом состоит закон оптимума. С другой стороны, существуют законы минимума и максимума.
Закон минимума (закон ограничивающего фактора), или закон Либиха
Разработан в 1840 году немецким химиком Юстусом фон Либихом. Гласит, что самое большое воздействие на организм оказывает такой фактор, количество и качество которого дальше всего отклонилось от оптимального значения (иначе говоря, близится к тому минимуму, который вообще может пережить организм).
Поясним. Ограничивающие (лимитирующие) факторы
оказывают на развитие организма сдерживающее влияние — в случае их избытка или недостатка в сравнении с потребностями организма. Например, на участке почвы с избытком фосфора и азота, но малым содержанием калия, растение сможет расти только до тех пор, пока весь калий не будет усвоен. Недостаток калия — это слабое звено.
Закон минимума Либиха не работает, если имеются факторы взаимозаменяемые. В этом случае рост одного фактора просто компенсирует дефицит другого. Человеку проще перенести сильную жару, если воздух сухой. Он промерзнет быстрее при сильном ветре, чем в тихую погоду при таком же морозе. Если организм получает достаточное количество пищи, он легче переносит избыток или недостаток других факторов (низкую температуру воздуха, тяжелую работу и др.).
Закон Либиха был в 1913 году дополнен американским зоологом Виктором Шелфордом — лимитирующим фактором может быть как минимум, так и максимум экологического фактора. В этом состоит закон максимума.
-
Закон оптимума.
Каждый
фактор имеет лишь определенные пределы
положительного влияния на организмы.
Результат действия переменного фактора
зависит прежде всего от силы его
проявления. Как недостаточное, так и
избыточное действие фактора отрицательно
сказывается на жизнедеятельности
особей. Если
все условия среды обитания благоприятны,
за исключением одного, то именно это
условие становится решающим для жизни
рассматриваемого организма.
Оно
ограничивает (лимитирует) развитие
организма, поэтому называется
лимитирующим
фактором.
Благоприятная
сила воздействия называется зоной
оптимума экологического фактора
или просто оптимумом
для организмов данного вида.
Чем
сильнее отклонение от оптимума, тем
больше выражено угнетающее действие
данного фактора на организмы (зона
пессимума). Максимально и минимально
переносимые значения фактора — это
критические точки, за пределами которых
существование уже невозможно, наступает
смерть.
Пределы
выносливости между критическими точками
(нижним и верхнем уровнем толерантности)
называют
экологической
валентностью
живых
существ по oтношению к конкретному
фактору среды.
Представители
разных видов сильно отличаются друг от
друга как по положению оптимума, так и
по экологической валентности. Так,
например песцы в тундре могут переносить
колебания температуры воздуха в диапазоне
около 80
(от +30 до -55 °С), тогда как тепловодные
рачки Соpilia
mirabilis
выдерживают изменения температуры воды
в интервале не более 6С
(от 23 до 29С).
Одна
и та же сила проявления фактора может
быть оптимальной для одного вида,
пессимальной — для другого и выходить
за пределы выносливости для третьего.
Широкую
экологическую валентность вида по
отношению к абиотическим факторам среды
обозначают добавлением к названию
фактора приставки «эври».
Эвритермные
виды
— выносящие значительные колебания
температуры, эврибатные
— широкий диапазон давления, эвригалинные
— разную степень засоления среды.
Неспособность переносить значительные
колебания фактора, или узкая
экологическая валентность, характеризуется
приставкой «стено»- стенотермные,
стенобатные,
стеногалинные
виды
и т. д —
В
более широком смысле слова виды,
для существования которых необходимо
строго определенные экологические
условия, называют
стенобионтными,
а те, которые
способны приспосабливаться к разной
экологической обстановке, —
эврибионтными.
2. Закон минимума
Первоначально
было установлено, что развитие
живых организмов ограничивает недостаток
какого-либо компонента,
например, минеральных солей, влаги,
света и т.п. В середине XIX века немецкий
химикорганик Юстас
Либих
первым
экспериментально доказал,
что рост растения зависит от того
элемента питания, который присутствует
в относительно минимальном количестве.
Он назвал это явление законом
минимума;
в честь автора его еще называют законом
Либиха.
В
современной формулировке закон
минимума
звучит так: выносливость
организма определяется самым слабым
звеном в цепи его экологических
потребностей.
3. Закон толерантности.
Однако,
как выяснилось позже, лимитирующим
может быть не только недостаток, но и
избыток фактора, например, гибель урожая
из-за дождей, перенасыщение почвы
удобрениями и т.п. Понятие о том, что
наравне с минимумом лимитирующим
фактором может быть и максимум, ввел
спустя 70 лет после Либиха американский
зоолог В.Шелфорд,
сформулировавший закон
толерантности.
Согласно закону
толерантности лимитирующим фактором
процветания популяции (организма) может
быть как минимум, так и максимум
экологического воздействия, а диапазон
между ними определяет величину
выносливости (предел толерантности)
или экологическую валентность организма
к данному фактору.
4.
Закон неоднозначного действия фактора
на разные функции организма:
Любой
экофактор неодинаково влияет на разные
функции организма, оптимум для одних
процессов может являться пессимумом
для других.
Так,
температура
воздуха от 40 до 45 °С у холоднокровных
животных сильно увеличивает скорость
обменных процессов в организме, но
тормозит двигательную активность, и
животные впадают в тепловое оцепенение.
Для
многих рыб температура воды, оптимальная
для созревания половых продуктов,
неблагоприятна для икрометания, которое
происходит при другом температурном
интервале.
Жизненный
цикл, в котором в определенные периоды
организм осуществляет преимущественно
те или иные функции (питание, рост,
размножение, расселение и т. п.), всегда
согласован с сезонными изменениями
комплекса факторов среды.
Подвижные организмы могут также
менять места обитания для успешного
осуществления всех своих жизненных
функций.
5.
Изменчивость, вариабельность и
разнообразие ответных реакций на
действие факторов среды у отдельных
особей вида.
Степень
выносливости,
критические
точки, оптимальная и пессимальные зоны
отдельных индивидуумов не совпадают.
Эта
изменчивость определяется как
наследственными качествами особей, так
и половыми, возрастными и физиологическими
различиями.
Например, у бабочки мельничной огневки
— одного из вредителей муки и зерновых
продуктов -критическая минимальная
температура для гусениц -7С,
для взрослых форм -22С,
а для яиц -27С.
Мороз в 10 °С губит гусениц, но не опасен
для имаго и яиц этого вредителя.
Следовательно, экологическая
валентность вида всегда шире экологической
валентности каждой отдельной особи.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
План урока:
Экосистема
Экологические факторы
Закон оптимума
Закон Либиха
Экосистема
В курсе экологии часто можно столкнуться с двумя понятиями — экосистема и окружающая среда. Под экосистемой[1] понимают совокупность живых организмов и измененной ими среды обитания.
Экологические системы одной климатической зоны объединяются в биомы.
Биомы Евразии и Северной Африки
Совокупность всех экосистем на планете называется биосферой.
По происхождению выделяют два вида экосистем:
Возникшие самостоятельно – естественные, или природные экосистемы;
Естественная экосистема – смешанный лес
Созданные человеком из природных экосистем для собственных нужд – искусственные экосистемы.
Примерами искусственных экосистем, или агроценозов, являются огороды, поля, водохранилища и т.д.
Искусственная экосистема – пшеничное поле
Для любой экосистемы обязательно наличие живого — биотического и неживого — абиотического — компонентов. Биотический компонент называется биоценозом[2] и представляет собой совокупность всех живых организмов, которые совместно проживают на одной территории и влияют друг на друга. Между ними формируются определенные связи — в основном пищевые. За счёт этого вещество и энергия в экосистеме постоянно передаются от одного организма другому.
Биоценозом будут являться все живые организмы — обитатели леса: деревья, кустарники, травы и другие растения, все животные (в том числе обитающие в лесной почве), грибы и бактерии. Однако хозяин с собакой, которые каждый день приходят на прогулку в этот лес, не являются частью биоценоза, поскольку пребывают здесь только короткий период времени и практически не взаимодействуют с другими живыми организмами.
Биоценоз леса
Абиотический компонент называется биотопом[3] и представляет собой пространство с более-менее однородными условиями, где обитает биоценоз. Как правило, биотоп имеет более-менее различимые пространственные границы.
Для экосистемы леса её биотопом будет участок суши с определенным типом почвы, температурой и высотой над уровнем моря. Биотопом также может выступать живой организм: так, в теле человека и на его поверхности проживают многочисленные бактерии. На поверхности кожи и внутри желудочно-кишечного тракта создаются разные условия обитания, следовательно, для бактерий человек представляет собой несколько биотопов.
Наземные экосистемы принято называть по доминирующему виду ландшафта, климатическим и географическим особенностям и растительности. Среди лесных экосистем России различают хвойные, смешанные и широколиственные леса. В тропиках и субтропиках их разнообразие дополняется влажными тропическими лесами и мангровыми (вечнозелеными).
Водные экосистемы выделяют по типу водоема и с учетом глубины (пресноводные — речные, болотные, озёрные, морские — экосистемы побережий, литорали — участка приливов и отливов и сублиторали — участка, который всегда покрыт водой и может обнажаться только в сильный шторм, глубоководные экосистемы и так далее).
На данном рисунке можно различить несколько экосистем и указать границы между ними:
- Горная река
- Равнинная река
- Хвойный лес
- Альпийский луг
- Горная вершина
Итак, экосистема представляет собой живые организмы (биоценоз) и их местообитание (биотоп). Среда обитания — это совокупность воздействий любой природы на организм. Все экосистемы планеты Земля составляют биосферу.
Экологические факторы
В экосистеме на организм воздействует большое количество факторов. Так, заяц, обитающий в лесу, может быть съеден волком, при этом сам заяц питается корой деревьев и травянистыми растениями. Ему необходим не только источник питания, но и доступ к пресной воде. После сильного снега заяц может погибнуть, поскольку не может добыть себе корм. В разные сезоны под воздействием температуры он меняет цвет шерсти. Все условия обитания, которые воздействуют на организм, составляют его среду обитания[4] и называются факторами среды.
Поскольку некоторые воздействия влияют на организм настолько сильно, что вызывают у него приспособительные реакции, их выделили в отдельную группу экологических факторов[5]. Один и тот же фактор среды для одного вида для одного организма является экологическим, для другого — нет. Если из-за сильного ветра в горах одиноко стоящие деревья характеризуются мощным стволом и сильными корнями, которые позволяют закрепиться в почве, то для этих организмов сильный ветер будет являться экологическим фактором. В то же время для птиц, которые вьют гнёзда в кроне этого дерева, данный фактор не будет экологическим, поскольку не вызывает никаких приспособительных реакций у них.
Влияние экологических факторов всегда ведет к адаптации (приспособлению) организма к ним. Эти адаптации могут быть связаны с особенностями строения, физиологией или поведением организма.
В экологии принята следующая классификация экологических факторов:
- Абиотические (или физико-химические)
- Биотические
- Антропогенные
В основе выделения этих групп лежит природа источника воздействия.
Абиотические факторы связаны с воздействием биотопа на организм. Это температура, солёность воды, влажность почвы, климатические и погодные условия, смена сезонов, газовый состав воздуха и так далее.
Биотические факторы объясняются взаимодействиями живых организмов в биоценозе.
Антропогенные факторы составляют особую группу и связанные с влиянием человека на природу. Поскольку сам человек является живым существом, данные факторы можно отнести к биотическим. Однако в некоторых случаях непосредственное действие на живые организмы оказывают неживые объекты (определенные химические вещества или мусор, попавшие в среду обитания в результате действий человека), следовательно, они же могут быть отнесены к абиотическим. Еще одна особенность, благодаря которой антропогенные факторы выделены в отдельную группу, — масштаб воздействия. Ни один живой организм не оказывает столь глобального влияния на окружающую среду, как человек. Считается, что в мире сохранилось всего 4% экосистем, которые не подвержены его воздействию.
По влиянию на организм можно говорить о следующем действии факторов среды:
- Положительно влияющие (способствующие росту и развитию организма);
- Отрицательно влияющие (препятствующие нормальной жизнедеятельности);
- Нейтральные (влияющие незначительно или совсем не влияющие).
Очень часто один и тот же фактор, в зависимости от силы действия на организм, может влиять как положительно, так и отрицательно. Сила экологического фактора называется интенсивностью воздействия. Она измеряется в тех единицах измерения, которые характеризуют само воздействие: интенсивность атмосферного давления измеряется в миллиметрах ртутного столба, солености — в промилле, температуры — в градусах Цельсия и т.д.
Иногда характер воздействия на организм объясняется взаимодействием нескольких факторов среды. Такое явление получило название эффекта синергизма. До конца это явление не изучено, но известны следующее примеры синергизма. Высокие значения температуры усиливают негативное воздействие давления на насекомых. Повышение влажности почвы усиливает влияние освещенности и нитратов на растения.
- Итак, факторы среды включают любые воздействия на организм, экологические факторы — только те, которые приводят к адаптации организма.
- Интенсивность воздействия характеризуется силой и результатом (негативным, положительным или нейтральным).
- Экологические факторы отличаются по своей природе и характеру воздействия на организмы.
- Иногда тип влияния сложно оценить, поскольку некоторые факторы способны взаимодействовать, ослабляя или усиливая друг друга (синергизм).
Закон оптимума
Организм способен воспринимать каждый экологический фактор только в определенных пределах. Ярким примером этого явления являются иглокожие (морские звёзды и морские ежи): они могут выжить при высокой солёности, но при её значении менее 28 промилле погибают. (Именно поэтому они отсутствуют в Каспийском море).
Такие значения, при которых организм больше не способен переносить воздействие фактора и погибает, называются пределами. Как правило, у любого фактора можно выделить два предела — верхний и нижний. Если интенсивность факторов[6] выше или ниже указанных пределов, то это приводит к гибели организма. Данная формулировка получила название закон толерантности Шелфорда. Бытовым примером его реализации является поговорка «так хорошо, что аж плохо» — избыток фактора, который в целом положительно влияет на организм, может привести к гибели.
Кривая выживаемости
Зависимость качества жизнедеятельности организма от интенсивности фактора может быть представлена кривой выживаемости. Зона между верхним и нижним пределом отражает диапазон выносливости вида. Чем шире это зона, тем более организм толерантен к воздействию данного фактора. Живые существа с широким диапазоном выносливости называются эврибионты, с узким — стенобионты. Эврибионты могут адаптироваться к широкому диапазону интенсивности факторов и поэтому встречаются во многих экосистемах. К ним относят лис, бурых медведей, волков, тростник, ряску и крапиву. Стенобионты обитают в строго определенных экосистемах. В качестве примера можно привести форель (обитает только в чистых, холодных, быстротекущих реках, богатых кислородом), глубоководные рыбы (являются стенобионтами по отношению к давлению, взрываются при попытке поднять их на поверхность), орхидеи (обитают в тёплом влажном климате на коре определённых деревьев). Важно, что один и тот же организм может быть стенобионтом по отношению к одному фактору и эврибионтом — по отношению к другому. Иглокожие являются эвритермными (то есть толерантны к широкому диапазону значений температуры) стеногалинными (то есть могут обитать только в условиях высокой солености).
Стенобионты и эврибионты: кривые выживаемости
Внутри диапазона выносливости можно выделить такое значение интенсивности фактора, которое наиболее благоприятно сказывается на жизнедеятельности организма – его называют зоной оптимума. На графике она находится в центре и включает максимальную точку подъема. Например, для человека европеоидной расы оптимальной температурой является 19-23 °С.
Участки под кривой между пределами выносливости и границами зоны оптимума называются зонами пессимума[7] (угнетения). Под влиянием такой интенсивности фактора жизнедеятельность организма возможна, но фактор действует на него негативно. Чем ближе значение интенсивности к пределу выносливости, тем сильнее проявляется его негативное воздействие.
Закон Либиха
Факторы, наиболее существенно влияющие на жизнедеятельность организмов и на расселение вида, называется ограничивающим[8]. Для белых медведей таким фактором является температура, для иглокожих — солёность, для форели — чистота воды и количество кислорода в ней. Близость интенсивности этого фактора к верхнему или нижнему пределу будет наиболее существенно влиять на живой организм.
Однако как определить ограничивающий фактор в случае, если многие из действующих на организм условий среды близки к предельным значениям? Ответ на этот вопрос был впервые сформулирован в 1840 году химиком Либихом. Установленное им правило гласит, что тот фактор, интенсивность которого ближе всего к предельному значению, будет в наибольшей степени влияют на жизнедеятельность организма. Бытовой формулировкой данного закона является утверждение «где тонко, там и рвётся».
В качестве модели данного закона Либих описал бочку, которая состоит из досок разной высоты. Вода будет вытекать через самую низкую из них, при этом высота остальных досок не важна. Именно поэтому открытое им правило получило название «закон бочки».
Иллюстрация закона Либиха
Пример закона Либиха[9] можно встретить при минеральной подкормке домашних растений. Если регулярно вносить различные удобрения, но при этом игнорировать один из микроэлементов, то именно его недостаток повлияет на гибель растений, при этом неважно, что в целом минеральное питание можно охарактеризовать как достаточное. Внесение недостающего микроэлемента позволит существенно повысить урожай от данного вида растений.
Стоит отметить, что хотя закон бочки до сих пор признан многими специалистами, он был существенно дополнен. В исследованиях было показано, что в случае минерального питания вместо недостающего микроэлемента может быть использован схожий с ним по химическому строению. Так, морские моллюски в условиях недостатка кальция вместо него используют для строительства раковины стронций.
Итак, способность переносить воздействие экологического фактора ограничена, и для любого из них можно обозначить верхнее и нижнее предельное значение (закон Шелфорда[10]). За пределами наступает гибель организма. Взаимосвязь интенсивности[] воздействия фактора и благополучия организма описывается законом оптимума[11]. Силу угнетающего воздействия нескольких факторов можно оценить при помощи закона бочки.
Словарь
1. Экосистема — совокупность живых организмов и измененной ими среды обитания.
2. Биоценоз — совокупность живых организмов, находящихся в постоянном взаимодействии друг с другом и длительное время проживающие на одной территории.
3. Биотоп – местообитание биоценоза.
4. Среда обитания – совокупность условий жизни конкретного организма или биоценоза.
5. Экологический фактор – такое воздействие среды обитания, которое приводит к реакциям адаптации у живой системы.
6. Интенсивность фактора – сила его воздействия на организм.
7. Пессимум (угнетение) – значение интенсивности фактора, отличное от оптимального, при котором организм еще способен функционировать, но претерпевает негативное воздействие.
8. Ограничивающий фактор – влияющий на расселение вида и его продуктивность.
9. Закон Либиха – если значения нескольких экологических факторов далеки от оптимальных, то ограничивающим будет тот, что находится ближе всего к предельному значению.
10. Закон Шелфорда – для любого фактора существуют верхнее и нижнее предельные значения интенсивности.
11. Оптимум – такое значение интенсивности фактора среды, что его воздействие наиболее благоприятно сказывается на организме.