11 июля 2022
В закладки
Обсудить
Жалоба
Экологические законы
Раздел 7.1 кодификатора: Среды обитания организмов. Экологические факторы: абиотические, биотические, антропогенный фактор. Их значение.
Презентация: ek-z.pdf
Тест: test.pdf
Источник: vk.com/sdam_ege_oge_legko_bio
Экосистема (греч. oikos — жилище) — единый природный комплекс, образованный живыми организмами и средой
их обитания, находящихся в закономерной взаимосвязи друг с другом и образующих систему.
Вы можете встретить синоним понятия экосистема — биогеоценоз (греч. bios — жизнь + geo — земля + koinos — общий). Следует разделять
биогеоценоз и биоценоз. В понятие биоценоз не входит компонент окружающей среды, биоценоз — совокупность исключительно живых организмов со
связями между ними.
Совокупность биогеоценозов образует живую оболочку Земли — биосферу.
Продуценты, консументы и редуценты
Организмы, населяющие биогеоценоз, по своим функциям разделены на:
- Продуцентов
- Консументы
- Редуценты
Растения, преобразующие энергию солнечного света в энергию химических связей. Создают органические
вещества, потребляемые животными.
Животные — потребители готового органического вещества. Встречаются консументы I порядка — растительноядные
организмы, консументы II, III и т.д. порядка — хищники.
Это сапротрофы (греч. sapros — гнилой + trophos — питание) — грибы и бактерии, а также некоторые
растения, которые разлагают останки мертвых организмов. Редуценты обеспечивают круговорот веществ, они
преобразуют накопленные организмами органические вещества в неорганические.
Продуценты, консументы и редуценты образуют в экосистеме так называемые трофические уровни (греч. trophos — питание), которые
тесно взаимосвязаны между собой переносом питательных веществ и энергии — процессом, который необходим для круговорота веществ,
рождения новой жизни.
Пищевые цепи
Взаимоотношения между организмами разных трофических уровней отражаются в пищевых цепочках (трофических цепях), в которых каждое
предыдущее звено служит пищей для последующего звена. Поток энергии и веществ идет однонаправленно: продуценты → консументы → редуценты.
Трофические цепи бывают двух типов:
- Пастбищные — начинаются с продуцентов (растений), производителей органического вещества
- Детритные (лат. detritus — истертый) — начинаются с органических веществ отмерших растений и животных
В естественных сообществах пищевые цепи часто переплетаются, в результате чего образуются пищевые сети. Это связано с тем,
что один и тот же организм может быть пищей для нескольких разных видов. Например, филины охотятся на полевок, лесных мышей, летучих
мышей, некоторых птиц, змей, зайцев.
Экосистемы обладают важным свойством — устойчивостью, которая противостоит колебаниям внешних факторов
среды и помогает сохранить экосистему и ее отдельные компоненты. Устойчивость экосистемы обусловлена:
- Большим разнообразием обитающих видов
- Длинными пищевыми цепочками
- Разветвленностью пищевых цепочек, образующих пищевую сеть
- Наличием форм взаимоотношений между организмами (симбиоз)
Экологическая пирамида
Экологическая пирамида представляет собой графическую модель отражения числа особей (пирамида чисел), количества их биомассы
(пирамида биомасс), заключенной в них энергии (пирамида энергии) для каждого уровня и указывающая на снижение всех показателей
с повышением трофического уровня.
Существует правило 10%, которое вы можете встретить в задачах по экологии. Оно гласит, что на каждый последующий уровень экологической
пирамиды переходит лишь 10% энергии (массы), остальное рассеивается в виде тепла.
Представим следующую пищевую цепочку: фитопланктон → зоопланктон → растительноядные рыбы → рыбы-хищники → дельфин. В соответствии с
изученным правилом, чтобы дельфин набрал 1кг массы нужно 10 кг рыб хищников, 100 кг растительноядных рыб, 1000 кг зоопланктона и
10000 кг фитопланктона.
Агроценоз
Агроценоз — искусственно созданный биоценоз. Между агроценозом и биоценозом существует ряд важных отличий. Агроценоз
характеризуется:
- Преобладает искусственный отбор — выживают особи с полезными для человека признаками и свойствами
- Источник энергии — солнце (открытая система)
- Круговорот веществ — незамкнутый, так как часть веществ и энергии изымается человеком (сбор урожая)
- Видовой состав — скудный, преобладают 1-2 вида (поле пшеницы, ржи)
- Устойчивость экосистемы — снижена, так как пищевые цепочки короткие, пищевые сети неразветвленные
- Биомассы на единицу площади — мало
Биоценоз характеризуется:
- Преобладает естественный отбор — выживают наиболее приспособленные особи
- Источник энергии — солнце (открытая система)
- Круговорот веществ — замкнутый
- Видовой состав — разнообразный, тысячи видов
- Устойчивость экосистемы — высокая, так как пищевые цепочки длинные, разветвленные
- Биомассы на единицу площади — много
Факторы экосистемы
Любой организм в экосистеме находится под влиянием определенных факторов, называемых экологическими факторами.
Они подразделяются на абиотические, биотические и антропогенные.
- Абиотические (греч. α — отрицание + βίος — жизнь)
- Биотические (греч. βίος — жизнь)
- Антропогенные (греч. anthropos — человек)
К абиотическим факторам относятся факторы неживой природы. Существуют физические — климат, рельеф, химические —
состав воды, почвы, воздуха. В понятие климата можно включить такие важные факторы как освещенность,
температура, влажность.
К биотическим факторам относятся все живые существа и продукты их жизнедеятельности. Например: хищники регулируют
численность своих жертв, животные-опылители влияют на цветковые растения и т.д. Это и самые разнообразные формы
взаимоотношений между животными (нейтрализм, комменсализм, симбиоз).
К антропогенным факторам относится влияние человека на окружающую среду в процессе хозяйственной и другой деятельности.
Человек «разумный» (Homo «sapiens») вырубает леса, осушает болота, распахивает земли — уничтожает дом для сотен видов животных.
В результате деятельности человека произошли глобальные изменения: над Антарктикой появились «озоновые дыры», ускорилось
глобальное потепление, которое ведет к таянию ледников и повышению уровня мирового океана.
За миллионы лет эволюции растения и животные вырабатывают приспособления к тем условиям среды, где они обитают. Так у алоэ,
растения живущего в засушливом климате, имеются толстые мясистые листья с большим запасом воды на случай засухи. У каждого
организма вырабатывается своя адаптация.
Формируются привычные биологические ритмы (биоритмы): организм адаптируется к изменениям освещенности, температуры, магнитного
поля и т.д. Эти факторы играют важную роль в таких событиях как сезонные перелеты птиц, осенний листопад.
Если адаптация не вырабатывается, или это происходит слишком медленно по сравнению с другими видами, то данный вид подвергается
биологическому регрессу: количество особей и ареал их обитания уменьшаются и со временем вид исчезает. Иногда деятельность
человека играет решающую роль в исчезновении видов.
Закон оптимума
Если фактор оказывает на жизнедеятельность организма благоприятное влияние (отлично подходит для животного/растения), то
про фактор говорят — оптимальный, значение фактора в зоне оптимума. Зона оптимума — диапазон действия фактора, наиболее благоприятный
для жизнедеятельности.
За пределами зоны оптимума начинается зона угнетения (пессимума). Если значение фактора лежит в зоне пессимума,
то организм испытывает угнетение, однако процесс жизнедеятельности может продолжаться. Таким образом, зона пессимума лежит в пределах
выносливости организма. За пределами выносливости организма происходит его гибель.
Фактор, по своему значению находящийся на пределе выносливости организма, или выходящий за такое значение, называется ограничивающим
(лимитирующим). Существует закон ограничивающего фактора (закон минимума Либиха), гласящий, что для организма наиболее значим фактор,
который более всего отклоняется от своего оптимального значения.
Метафорически представить этот закон можно с помощью «бочки Либиха». Смысл данной метафоры в том, что вода при заполнении бочки начинает
переливаться через наименьшую доску, таким образом, длина остальных досок уже не играет роли. Так и наличие выраженного ограничивающего фактора
сводит на нет благоприятность остальных факторов.
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
На ЕГЭ не спрашивают про сортировку отходов или электромобили, но могут спросить про круговорот углерода или названия разных типов водных растений. Как не запутаться в большом количестве информации? Собрали все темы, которые могут встретиться в вопросах про экологию, чтобы вам было проще спланировать подготовку к экзамену.
1. Из чего состоит экология?
Тема «экология» в ЕГЭ включает в себя три больших блока:
- Экологические факторы;
- Экосистема;
- Биосфера.
Главный совет для этого раздела биологии: старайтесь не заучивать термины, а понимать суть и приводить примеры. Это поможет и для запоминания во время подготовки, и при ответе на развёрнутые вопросы во второй части экзамена. Не зубрите теорию. Придумывайте ассоциации, вникайте в логику.
Что нужно знать про экологические факторы
- Среды обитания и их характеристики:
- наземно-воздушная;
- водная;
- почвенная;
- организменная.
Нужно уметь их сравнивать по количеству кислорода и света, плотности и другим параметрам.
- Адаптации к каждой среде обитания. Например, форма конечностей, особенности зрения и обоняния, форма тела, особенности метаболизма обитателей разных сред.
- Предел выносливости и зона оптимума для разных видов организмов.
Чтобы редкие вопросы по этой теме не стали сюрпризом, рекомендуем почитать книгу «Биология: модульный триактив курс» от В.С. Рохлова. Например, чтобы узнать, что такое бочка Либиха и лимитирующий фактор.
- Характеристики самих биологических факторов:
- Свет: группы растений по отношению к свету, фотопериодизм;
- Температура: механизмы терморегуляции;
- Вода: группы растений по отношению к воде, экономия воды.
❗️Эти темы часто спрашивают в письменной части экзамена — уделите им время. Стоит не только понять их суть, но и заучить термины, чтобы в них не запутаться.
Ещё нужно уметь отличать биотические факторы от антропогенных. Тут всё просто: биотические относятся к живой природе, антропогенные — это воздействие человека.
Что нужно знать про экосистему
- Общие понятия из экологии:
- Функциональные группы организмов: продуценты, консументы и редуценты;
- Пищевые цепи и сети;
- Устойчивость экосистем: развитость пищевых цепей, ярусность в лесных экосистемах, другие факторы устойчивости;
- Экологические пирамиды.
Есть разные виды пирамид, к экзамену важно выучить пирамиду биомассы, остальные пирамиды построены по схожему принципу.
Обратите внимание на «правило 10 процентов».
- Особенности биоценоза:
- Связи в биоценозе: трофическая, топическая и др. Не обязательно заучивать названия, главное понимать и уметь объяснять;
- Структура популяции: как расположены относительно друг друга разные популяции и особи в одной популяции;
- Экологические характеристики популяции: рождаемость, смертность, плотность, половой состав;
- Разница между биогеоценозом и экосистемой;
- Сравнение искусственной и естественной экосистем: замкнутость/незамкнутость, устойчивость, видовое разнообразие;
- Биотические отношения: симбиоз, мутуализм, квартиранство и т. п.
- Сукцессия: первичная и вторичная. На экзамене часто просят установить последовательность процессов восстановления экосистемы.
Что нужно знать про биосферу
- Границы биосферы: до какого уровня возможна жизнь в атмосфере, гидросфере и литосфере, какие факторы ограничивают распространение организмов.
- Вещества биосферы: косное, биокосное, биогенное, живое. Здесь советуем нарешивать задания, чтобы привыкнуть к типичным вопросам из ЕГЭ.
- Функции живого вещества: концентрационная, окислительно-восстановительная, газовая, деструктивная.
- Биогеохимические циклы:
- Биогенная миграция атомов (обычно не спрашивают, но повторить стоит);
- Круговорот углерода;
- Круговорот азота;
- Сера и фосфор (вряд ли попадется, но на всякий случай можно почитать).
Полезные материалы для подготовки к ЕГЭ по биологии можно скачать на нашем сайте в разделе «Шпаргалки».
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!
Материалы для подготовки к ЕГЭ. Онлайн-Справочник по биологии.
Раздел 8. Экология и учение о биосфере. Глава 8.1. Экология особей.
ВСЕ РАЗДЕЛЫ СПРАВОЧНИКА
8.1. Экология особей
8.1.1. Среды обитания
Среда обитания (жизни) — это часть природы, окружающая живые организмы и оказывающая на них определённое воздействие.
На нашей планете живые организмы освоили четыре среды обитания (табл. 8.1):
- водную;
- наземно-воздушную;
- почвенную;
- организменную.
Первой была освоена водная среда. Затем появились паразиты и симбионты, использующие организменную среду обитания. В дальнейшем, после выхода жизни на сушу, живые организмы населили наземно-воздушную среду, а одновременно с этим создали и заселили почву. Под почвенной средой обитания подразумевают не только собственно почву, но и горные породы поверхностной части литосферы.
Таблица 8.1. Сравнение сред жизни
Примечание: ПБП — первичная биологическая продукция; ЭМП — элементы минерального питания.
8.1.2. Экологические факторы
Каждая из сред жизни отличается особенностями воздействия экологических факторов — отдельных элементов среды, которые воздействуют на организмы. Существуют различные классификации экологических факторов (табл. 8.2).
Таблица 8.2. Классификация экологических факторов
Группа |
Характеристика |
Примеры |
1. По природе |
||
Абиотические | Воздействие компонентов неживой природы | Свет, температура, влажность |
Биотические | Воздействие живых организмов | Конкуренция за пищу, нападение хищника |
2. По участию человека |
||
Природные | Воздействие природных факторов | Свет, температура, влажность |
Антропогенные | Воздействие человека (в том числе его деятельности) | Вырубка леса, охота, загрязнение, разрушение местообитаний |
3. По среде возникновения (для абиотических) |
||
Климатические | Влияние климатических условий | Ветер, атмосферное давление |
Геологические | Влияние геологических условий | Землетрясения, извержения вулканов, движение |
ледников, радиоактивное излучение | ||
Орографические, или факторы рельефа | Влияние условий рельефа | Высота местности над уровнем моря, крутизна местности, экспозиция местности |
Эдафические, или почвенно-грунтовые | Влияние почвенных условий | Гранулометрический состав, химический состав, плотность, структура, pH |
Гидрологические | Влияние гидрологических условий | Течение, солёность, давление |
4. По природе (для абиотических) |
||
Физические | Влияние физических факторов | Температура, давление, плотность |
Химические | Влияние химических факторов | Химический состав, солёность |
5. По виду воздействующего организма (для биотических) |
||
Внутривидовые | Влияние на организм особей этого же вида | Влияние зайца на зайца, сосны на сосну |
Межвидовые | Влияние на организм особей других видов | Влияние волка на зайца, сосны на берёзу |
6. По принадлежности к определённому царству (для биотических) |
||
Фитогенные факторы | Влияние на организм растений | Ель и растения нижнего яруса |
Зоогенные факторы | Влияние животных | Ковыль и травоядные копытные |
Микогенные факторы | Влияние грибов | Берёза и подберёзовик |
Микробиогенные факторы | Влияние микроорганизмов (вирусов, бактерий, простейших) | Человек и вирус гриппа |
7. По типу взаимодействия (для биотических) |
||
Нейтрализм | Сожительство двух видов на одной территории, не имеющее для них ни положительных, ни отрицательных последствий | Белки и лоси |
Протокооперация | Взаимовыгодное, но не обязательное сосуществование организмов, пользу из которого извлекают оба участника | Раки-отшельники и коралловые полипы актинии |
Мутуализм | Взаимовыгодное сожительство, когда либо один из партнёров, либо оба не могут существовать без сожителя | Травоядные копытные и целлюлозоразрушающие бактерии |
Комменсализм | Взаимоотношения, при которых один из партнёров полу чает пользу от сожительства, а другому присутствие первого безразлично | Крупные хищники и падальщики |
Растительноядность | Взаимоотношения, при которых один из участников (фитофаг) использует в качестве пищи другого (растение) | Зайцы и растения |
Хищничество | Взаимоотношения, при которых один из участников (хищник) использует в качестве пищи другого (жертва) | Волки и зайцы |
Паразитизм | Взаимоотношения, при которых паразит не убивает своего хозяина, а длительное время использует его как среду обитания и источник пищи | Аскарида человеческая и человек |
Конкуренция | Взаимоотношения, при которых организмы соперничают друг с другом за одни и те же ресурсы внешней среды при недостатке последних | Щука и судак |
Аллелопатия | Взаимоотношения, при которых во внешнюю среду выделяются продукты жизнедеятельности одного организма, отравляя её и делая непригодной для жизни другого | Гриб-пеницилл и некоторые сапротрофные бактерии |
Аменсализм | Взаимоотношения, при которых один организм воздействует на другой и подавляет его жизнедеятельность, а сам не испытывает никаких отрицательных влияний со стороны подавляемого | Ель и растения нижнего яруса |
8. По характеру воздействия (для антропогенных) |
||
Прямое влияние | Оказывают прямое (непосредственное) воздействие на организм | Скашивание травы, вырубка леса, отстрел животных, отлов рыбы |
Косвенное влияние | Оказывают косвенное (опосредованное через другие экологические факторы) воз действие на организм | Загрязнение окружающей среды, разрушение местообитаний, беспокойство |
9. По последствиям (для антропогенных) |
||
Положительные | Улучшают жизнь организмов и увеличивают их численность | Разведение и охрана животных, посадка и подкормка растений, охрана окружающей среды |
Отрицательные | Ухудшают жизнь организмов и снижают их численность | Вырубка деревьев, отстрел животных, разрушение местообитаний |
10. По изменчивости в пространстве и во времени |
||
Относительно постоянные | Относительно постоянны в пространстве и во времени | Сила тяготения, солнечная радиация, солёность океана |
Очень изменчивые | Очень изменчивы в пространстве и во времени | Температура и влажность воздуха, сила ветра |
11. По характеру изменения во времени |
||
Регулярно-периодические | Меняют свою силу в зависимости от времени суток, сезона года, ритма приливов и отливов | Освещённость, температура, длина светового дня |
Нерегулярные (непериодические) | Не имеют чётко выраженной периодичности | Наводнение, ураган, землетрясение, извержение вулкана, нападение хищника |
Направленные | Действуют на протяжении длительного промежутка времени в одном направлении | Похолодание или потепление климата, зарастание водоёма, эрозия почвы |
12. По характеру ответной реакции организма на воздействие |
||
Раздражители | Вызывают биохимические и физиологические изменения (адаптации) | Недостаток кислорода в условиях высокогорья приводит к увеличению содержания гемоглобина в крови животных |
Модификаторы | Вызывают морфологические и анатомические изменения (адаптации) | Недостаток влаги привёл к видоизменению листьев в колючки у кактуса |
Ограничители | Обусловливают невозможность существования организма в данных условиях и ограничивают ареал его распространения | Недостаток воды ограничивает распространение жизни в пустынях |
Сигнализаторы | Информируют об изменении других факторов | Длина светового дня для листопадных растений |
13. По расходованию |
||
Ресурсы | Потребляются организма ми, то есть их количество в результате взаимодействия с организмом может уменьшаться | Пища, вода, солнечная энергия, кислород, углекислый газ |
Условия | Не потребляются организмами, то есть их количество не уменьшается, но они могут оказывать влияние на организм | Температура, влажность, атмосферное давление, гравитационное поле, солёность воды |
Действие экологических факторов на организм может быть прямым и косвенным. Косвенное воздействие осуществляется через другие экологические факторы. Например, высокая температура может вызвать ожог (прямое воздействие), а может привести к обезвоживанию организма (косвенное воздействие).
8.1.3. Адаптации
Адаптации — приспособления организмов к среде обитания. Они вырабатываются в процессе эволюции и индивидуального развития организмов. Адаптации развиваются под действием трёх основных факторов: наследственности, изменчивости и естественного (а также искусственного) отбора. Адаптации подразделяют на типы (табл. 8.3).
Таблица 8.3. Типы адаптаций живых организмов
Существуют три основных пути приспособления организмов к условиям окружающей среды (табл. 8.4). Обычно приспособление вида к среде осуществляется тем или иным сочетанием всех трёх возможных путей адаптации.
Таблица 8.4. Пути адаптаций живых организмов
8.1.4. Закономерности действия экологических факторов
Закон оптимума. Экологические факторы среды имеют количественное выражение. Каждый фактор имеет определённые пределы положительного влияния на организмы (рис. 8.2). Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей.
Рис. 8.2. Зависимость действия экологического фактора от его количества
По отношению к каждому фактору можно выделить зону оптимума (зону нормальной жизнедеятельности), зону пессимума (зону угнетения), верхний и нижний пределы выносливости организма.
Зона оптимума — такое количество экологического фактора, при котором интенсивность жизнедеятельности организмов максимальна.
Зона пессимума — такое количество экологического фактора, при котором интенсивность жизнедеятельности организмов угнетена.
Верхний предел выносливости — максимальное количество экологического фактора, при котором возможно существование организма.
Нижний предел выносливости — минимальное количество экологического фактора, при котором возможно существование организма. За пределами выносливости существование организма невозможно.
Значения экологического фактора между верхним и нижним пределами выносливости называются зоной толерантности.
Виды с широкой зоной толерантности называются эврибионтными, с узкой — стенобионтными (рис. 8.3).
Рис. 8.3. Экологическая валентность (пластичность) видов: 1 — эврибионтные; 2 — стенобионтные
Организмы, переносящие значительные колебания температуры, называются эвритермными, а приспособленные к узкому интервалу температур — стенотермными. Таким же образом по отношению к давлению различают эври- и стенобатные организмы, по отношению к степени засоления среды — эври- и стеногалинные и т. д.
Явление акклиматизации. Положение оптимума и пределов выносливости может в определённых пределах сдвигаться. Например, человек легче переносит пониженную температуру окружающей среды зимой, чем летом, а повышенную — наоборот. Это явление называется акклиматизацией (или акклимацией). Акклиматизация происходит при смене сезонов года или при попадании на территорию с другим климатом.
Неоднозначность действия фактора на разные функции организма. Одно и то же количество фактора неодинаково влияет на разные функции организма. Оптимум для одних процессов может являться пессимумом для других. Например, у растений максимальная интенсивность фотосинтеза наблюдается при температуре воздуха +25… +35°С, а дыхания +55°С (рис. 8.4).
Рис. 8.4. Схема зависимости фотосинтеза и дыхания растения от температуры: tмин, tопт, tмакс — температурный минимум, оптимум и максимум для прироста растений (заштрихованная область)
Соответственно, при более низких температурах будет происходить прирост биомассы растений, а при более высоких — потеря биомассы. У холоднокровных животных повышение температуры до +40 °С и более сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. У человека семенники вынесены за пределы таза, так как сперматогенез требует более низких температур. Для многих рыб температура воды, оптимальная для созревания гамет, неблагоприятна для икрометания, которое происходит при другой температуре.
Экологическая валентность вида. Экологические валентности отдельных особей не совпадают. Они зависят от наследственных и онтогенетических особенностей отдельных особей: половых, возрастных, морфологических, физиологических и т.д. Поэтому экологическая валентность вида шире экологической валентности каждой отдельной особи. Например, у бабочки мельничной огнёвки — одного из вредителей муки и зерновых продуктов — критическая минимальная температура для гусениц -7 °С, для взрослых форм -22 °С, а для яиц —27 °С. Мороз в —10 °С губит гусениц, но не опасен для имаго и яиц этого вредителя.
Экологический спектр вида. Набор экологических валентностей вида по отношению к разным факторам среды составляет экологический спектр вида. Экологические спектры разных видов отличаются друг от друга. Это позволяет разным видам занимать разные места обитания. Знание экологического спектра вида позволяет успешно проводить интродукцию растений и животных.
Взаимодействие факторов. В природе экологические факторы действуют совместно, то есть комплексно. Зона оптимума и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Например, высокую температуру труднее переносить при дефиците воды, сильный ветер усиливает действие холода, жару легче переносить в сухом воздухе и т. д. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие (рис. 8.5). Соответственно, один и тот же экологический результат может быть получен разными путями. Например, компенсация недостатка влаги может быть осуществлена поливом или снижением температуры. Создаётся эффект частичного взаимозамещения факторов. Однако взаимная компенсация действия факторов среды имеет определённые пределы, и полностью заменить один из них другим нельзя.
Рис. 8.5. Смертность яиц соснового шелкопряда при разных сочетаниях температуры и влажности
Таким образом, абсолютное отсутствие какого-либо из обязательных условий жизни заменить другими экологическими факторами невозможно, но недостаток или избыток одних экологических факторов может быть возмещён действием других экологических факторов.
Например, полное (абсолютное) отсутствие воды нельзя компенсировать другими экологическими факторами. Однако если другие экологические факторы находятся в оптимуме, то перенести недостаток воды легче, чем когда и другие факторы находятся в недостатке или избытке.
Закон лимитирующего фактора. Возможности существования организмов в первую очередь ограничивают те факторы среды, которые наиболее удаляются от оптимума. Экологический фактор, количественное значение которого выходит за пределы выносливости вида, называется лимитирующим (ограничивающим) фактором. Такой фактор будет ограничивать существование (распространение) вида даже в том случае, если все остальные факторы будут благоприятными (рис. 8.6).
Лимитирующие факторы определяют географический ареал вида. Например, продвижение вида к полюсам может лимитироваться недостатком тепла, в аридные районы — недостатком влаги или слишком высокими температурами.
Рис. 8.6. Зависимость урожая от лимитирующего фактора («Бочка Либиха»)
Условия жизни и условия существования. Комплекс факторов, под действием которых осуществляются все основные жизненные процессы организмов, включая нормальное развитие и размножение, называется условиями жизни. Условия, в которых размножения не происходит, называются условиями существования.
8.1.5. Характеристика основных экологических факторов
Свет. В спектре солнечного света выделяют области, различные по своему биологическому действию. Ультрафиолетовые лучи в небольших дозах необходимы живым организмам (бактерицидное действие, стимуляция роста и развития клеток, синтез витамина D и т. д.), в больших дозах губительны из-за способности вызывать мутации. Значительная часть ультрафиолетовых лучей отражается озоновым слоем. Видимые лучи — основной источник жизни на Земле, дающий энергию для фотосинтеза. Инфракрасные лучи — основной источник тепловой энергии.
Для растений солнечный свет необходим прежде всего как источник энергии для фотосинтеза. По отношению к условиям освещённости растения подразделяют на экологические группы (табл. 8.5).
Таблица 8.5. Классификация растений по отношению к условиям освещённости
Для животных свет — это условие ориентации. Животные могут вести дневной, ночной и сумеречный образ жизни.
По отношению к продолжительности дня организмы (в основном растения) делят на короткодневные (обитатели низких широт) и длиннодневные (обитатели умеренных и высоких широт).
Реакция организмов на продолжительность дня называется фотопериодизмом. Это очень важное приспособление, регулирующее сезонные явления у организмов. Изменение длины дня тесно связано с годовым ходом температуры, но в отличие от последней не подвержено случайным колебаниям. Фотопериодизм обусловливает такие сезонные явления, как листопад, перелёты птиц и т. п.
Температура. От температуры окружающей среды зависит температура организмов, а следовательно, скорость всех химических реакций, составляющих обмен веществ. В основном живые организмы способны жить при температуре от 0 до +50 °С, что обусловлено свойствами цитоплазмы клеток. Верхним температурным пределом жизни является + 120…+140°С (близкие к нему значения температуры выдерживают споры, бактерии), нижним —190…273 °С (переносят споры, семена, сперматозоиды).
По отношению к температуре организмы делят на криофилов (обитающих в условиях низких температур) и термофилов (обитающих в условиях высоких температур).
Организмы могут использовать два источника тепловой энергии: внешний (тепловая энергия Солнца или внутреннее тепло Земли) и внутренний (тепло, выделяемое при обмене веществ). В зависимости от того, какой источник преобладает в тепловом балансе, живые организмы делят на пойкилотермных и гомойотермных (табл. 8.6). Если речь идёт только о животных, то их ещё называют холоднокровными и теплокровными соответственно.
Таблица 8.6. Классификация организмов по преобладанию
источника тепла в их тепловом балансе
У живых организмов различают три механизма терморегуляции (табл. 8.7).
Таблица 8.7. Механизмы терморегуляции
Вода. Вода обеспечивает протекание в организме обмена веществ и нормальное функционирование организма в целом. Одни организмы живут в воде, другие приспособились к постоянному недостатку влаги. Среднее содержание воды в клетках большинства живых организмов составляет около 70 %.
По отношению к воде среди живых организмов выделяют следующие экологические группы: гигрофилы (влаголюбивые), ксерофилы (сухолюбивые) и мезофилы (промежуточная группа).
Из наземных животных к гигрофилам относятся ондатра и бобр, к ксерофилам — суслик и варан, к мезофилам — волк и косуля. Среди растений различают гигрофитов, мезофитов и ксерофитов (табл. 8.8).
Таблица 8.8. Классификация растений по отношению к воде
Водные организмы по типу местообитания и образу жизни объединяются в следующие экологические группы (табл. 8.9).
Таблица 8.9. Классификация водных организмов
по типу местообитания и образу жизни
8.1.6. Биологические ритмы
Биологические ритмы представляют собой периодически повторяющиеся изменения интенсивности и характера биологических процессов и явлений. Они в той или иной форме присущи всем живым организмам и отмечаются на всех уровнях организации: от внутриклеточных процессов до биосферных. Биологические ритмы наследственно закреплены и являются следствием естественного отбора и адаптации организмов. Ритмы бывают внутрисуточные, суточные, сезонные, годичные, многолетние и многовековые. Биологические ритмы делят на эндогенные и экзогенные (табл. 8.10).
Таблица 8.10. Биологические ритмы
ВСЕ РАЗДЕЛЫ СПРАВОЧНИКА
Материалы для подготовки к ЕГЭ. Онлайн-Справочник по биологии.
8.1. Экология особей
Просмотров:
41 986
Законами экологии называют принципы взаимодействия человеческого общества с природой.
Их формулировкой занимались многие ученые. В этой статье мы рассмотрим наиболее яркие.
Законы Барри Коммонера
В 1974 году Барри Коммонер – американский биолог и эколог – сформулировал четыре закона:
- Все связано со всем
Любое воздействие влечет за собой последствия. Простой пример – вырубка лесов. Нарушается экосистема леса – массово гибнут животные и растения. - Все должно куда-то деваться
Так называемый закон сохранения массы. В первую очередь этот закон заставляет задуматься об отходах, о вторичной переработке и многоразовом использовании одной вещи, к примеру стеклянной банки. Не секрет, что продукты человеческой жизнедеятельности очень часто оказываются в океанах, в лесах, и ничего хорошего от этого ждать не стоит. - Природа «знает» лучше
Примером данного принципа является следующая ситуация – в Азии воробьи вредили урожаю, люди их уничтожили и теперь место воробьев заняли насекомые. - Ничто не дается даром
Данный закон говорит нам о цене развития. О том, что пользоваться богатствами природы следует рационально.
Закон толерантности Шелфорда
Виктор Эрнест Шелфорд сформулировал закон толерантности в 1913 году.
Он гласит: «Лимитирующим фактором процветания организма может быть как минимум, так и максимум экологического влияния, диапазон между которыми определяет степень выносливости (толерантности) организма к данному фактору».
Это говорит нам о том, что негативное влияние на организм оказывает не только недостаток какого-либо фактора, но и его избыток.
К примеру, для нормально работы организма человеку нужно есть. Если он съест мало – будет чувствовать себя уставшим, но если он съест много – он будет тоже чувствовать себя плохо.
Закон минимума Либиха
Закон минимума, открытый Юстусом фон Либихом в 1840 году, звучит так: «Для выживания организма наиболее значимым является тот экологический фактор, который наиболее удаляется от своего оптимального значения».
Для полного понимания обратимся к рисунку – бочке Либиха.
Мы видим, что вода переливается через самую маленькую доску, эта доска, а точнее, ее высота, и является лимитирующим фактором. Какими бы длинными не были другие доски, набрать воду выше высоты этой доски не получится. Так и с организмами.
Принцип Реди
Живое происходит только от живого.
Раньше (17 век) считалось, что мухи могут зарождаться сами по себе в гниющем мясе. Франческо Реди первый доказал, что это не так. Он клал два мяса, один накрывал тонкой тканью, другой – нет. Через какое-то время он снимал эту ткань и там не оказывалось ни мух, ни личинок, а в другом – были. Из этого он сделал вывод, что мухи садятся на мясо и откладывают личинки, то есть они там рождаются, а не появляются сами по себе.
Закон необратимости эволюции Л. Долло
Организм не сможет регрессировать, вернуться к прежнему состоянию, даже если вернется в прежнюю среду обитания.
По Дарвину, человек произошел от обезьяны, но если он попадет тропические леса Центральной Африки, то обратно в обезьяну он не превратится.
Знаменитый математик Н.И.Лобачевский сказал: «Человека называют властителем природы, но мудрость, с которой мы властвуем, от природы не дается. Этому надо учиться».
Так надо учиться и существовать в природной среде. Человек – это только часть природы. Без знания и практического использования основных законов и правил экологии может привести к глобальной экологической катастрофе.
Тест по теме «Законы экологии»
Добавляйтесь в друзья к Степенину в ВК! |
Подписывайтесь на группу химического кота! |
Смотрите наш YouTube-канал! |
У всякого экологического фактора существуют определенные границы в его положительном воздействии на живой организм. В этом состоит закон оптимума. С другой стороны, существуют законы минимума и максимума.
Закон минимума (закон ограничивающего фактора), или закон Либиха
Разработан в 1840 году немецким химиком Юстусом фон Либихом. Гласит, что самое большое воздействие на организм оказывает такой фактор, количество и качество которого дальше всего отклонилось от оптимального значения (иначе говоря, близится к тому минимуму, который вообще может пережить организм).
Поясним. Ограничивающие (лимитирующие) факторы
оказывают на развитие организма сдерживающее влияние — в случае их избытка или недостатка в сравнении с потребностями организма. Например, на участке почвы с избытком фосфора и азота, но малым содержанием калия, растение сможет расти только до тех пор, пока весь калий не будет усвоен. Недостаток калия — это слабое звено.
Закон минимума Либиха не работает, если имеются факторы взаимозаменяемые. В этом случае рост одного фактора просто компенсирует дефицит другого. Человеку проще перенести сильную жару, если воздух сухой. Он промерзнет быстрее при сильном ветре, чем в тихую погоду при таком же морозе. Если организм получает достаточное количество пищи, он легче переносит избыток или недостаток других факторов (низкую температуру воздуха, тяжелую работу и др.).
Закон Либиха был в 1913 году дополнен американским зоологом Виктором Шелфордом — лимитирующим фактором может быть как минимум, так и максимум экологического фактора. В этом состоит закон максимума.