Законы генетики егэ биология

Предмет генетики

Генетика (греч. γενητως — порождающий, происходящий от кого-то) — наука о наследственности и изменчивости. Это определение
отлично соответствует афоризму А.П. Чехова «Краткость — сестра таланта». В словах наследственность и изменчивость скрыта
вся сущность генетики, к изучению которой мы приступаем.

Грегор Мендель

Наследственность подразумевает возможность передачи из поколения в поколение различных признаков и свойств, общих
особенностей развития. Это происходит благодаря способности ДНК к самоудвоению (репликации) и дальнейшему равномерному
распределению генетического материала.

Изменчивость подразумевает способность организмов приобретать новые признаки, которые отличают их от родительских особей.
Вследствие этого формируется материал для главного направленного фактора эволюции — естественного отбора, который
отбирает наиболее приспособленных особей.

Мы с вами — истинное чудо генетики :) Очевидно, что в чем-то мы схожи с собственными родителями, в чем-то отличаемся от них.
Гены, которые собраны в нас, уже миллионы лет передаются из поколения в поколение, в каждом поколении совершая
чудо вновь и вновь.

Отец и сын в одинаковом возрасте

Ген и генетический код

Ген — участок молекулы ДНК, кодирующий последовательность аминокислот для синтеза одного белка. Генетическая информация
в ДНК реализуется с помощью процессов транскрипции и трансляции, изученных нами ранее.

Ген

В одной молекуле ДНК зашифрованы сотни тысяч различных белков. Все наши соматические клетки имеют одну и ту же молекулу ДНК.
Задумайтесь: почему же в таком случае клетки кожи отличаются от клеток печени, миоцитов, клеток эпителия рта — ведь ДНК везде
одинакова!

Это происходит потому, что в разных клетках одни гены «выключены», а другие «активны»: транскрипция идет только
с активных генов. Именно из-за этого наши клетки отличаются по строению, функции и форме.

Разнообразие клеток в организме

Способ кодирования последовательности аминокислот в белке с помощью генов — универсальный способ для всех живых организмов,
доказывающий единство их происхождения. Выделяют следующие свойства генетического кода:

  • Триплетность
  • Каждой аминокислоте соответствует 3 нуклеотида (триплет ДНК, кодон иРНК). Существует 64 кодона, из которых 3 являются
    нонсенс кодонами (стоп-кодонами)

  • Непрерывность (компактность)
  • Информация считывается непрерывно — внутри гена нет знаков препинания: так как ген кодирует один белок, то было бы
    нецелесообразно разделять его на части. Стоп-кодоны — «знаки препинания» — есть между генами, которые кодируют разные белки.

  • Неперекрываемость
  • Один и тот же нуклеотид не может принадлежать 2,3 и более триплетам ДНК/кодонам иРНК. Он входит в состав только одного
    триплета.

  • Специфичность (однозначность)
  • Один кодон соответствует строго одной аминокислоте и никакой другой более соответствовать не может.

  • Избыточность (вырожденность)
  • Одна аминокислота может кодироваться несколькими кодонами (при этом одну а/к кодируют 3 нуклеотида.)

    Таблица генетического кода

  • Коллинеарность (лат. con — вместе и linea — линия)
  • Соответствие линейной последовательности кодонов иРНК последовательности аминокислот в молекуле белка.

  • Однонаправленность
  • Кодоны считываются строго в одном направлении от первого к последующим. Считывание происходит в процессе
    трансляции.

    Генетический код

  • Универсальность
  • Генетический код един для всех живых организмов, что свидетельствует о единстве происхождения всего живого.

Аллельные гены

Аллельные гены (греч. allélon — взаимно) — гены, занимающие одинаковое положение в локусах гомологичных хромосом и
отвечающие за развитие одного и того же признака. Такими признаками могут являться: цвет глаз (карий и голубой), владение рукой (праворукость и леворукость), тип волос (вьющиеся и прямые волосы).

Локусом (лат. locus — место) — в генетике обозначают положение определенного гена в хромосоме.

Аллельные гены

Обратите внимание, что гены всегда парные, по этой причине генотип должен быть записан двумя генами — AA, Aa, aa. Писать
только один ген было бы ошибкой.

Признаки бывают доминантными (от лат. dominus — господствующий), которые проявляются у гибридов первого поколения, и рецессивными (лат. recessus — отступающий) — не проявляющимися. У человека доминантный признак — карий цвет глаз (ген — А),
рецессивный признак — голубой цвет глаз (ген — а). Именно поэтому у человека с генотипом Aa будет карий цвет глаз: А — доминантный аллель подавляет a — рецессивный аллель.

Доминантные и рецессивные признаки

Генотип организма (совокупность генов — AA, Aa, aa) может быть описан терминами:

  • Гомозиготный (в случае, когда оба гена либо доминантны, либо рецессивны) — AA, aa
  • Гетерозиготный (в случае, когда один ген доминантный, а другой — рецессивный) — Аа

Понять, какой признак является подавляемым — рецессивным, а какой подавляющим — доминантным, можно в результате основного метода
генетики — гибридологического, то есть путем скрещивания особей и изучения их потомства.

Гаметы

Гамета (греч. gamos — женщина в браке) — половая клетка, образующаяся в результате гаметогенеза (путем мейоза) и обеспечивающая
половое размножение организмов. Гамета (сперматозоид/яйцеклетка) имеет гаплоидный набор хромосом — n, при слиянии двух гамет набор восстанавливается до диплоидного — 2n.

Часто в генетических задачах требуется написать гаметы для особей с различным генотипом. Для правильного решения задачи
необходимо знать и понимать следующие правила:

  • В гаметах представлены все гены, составляющие гаплоидный набор хромосом — n
  • В каждую гамету попадает только одна хромосома из гомологичной пары
  • Число возможных вариантов гамет можно рассчитать по формуле 2i = n, где i — число генов в
    гетерозиготном состоянии в генотипе
  • К примеру для особи AABbCCDDEeFfGg количество гамет будет рассчитываться исходя из количества генов в гетерозиготном состоянии, которых в генотипе 4: Bb, Ee, Ff, Gg. Формула будет записана 24 = 16 гамет.

  • Одну гомологичную хромосому ребенок всегда получает от отца, другую — от матери
  • Организмы, у которых проявляется рецессивный признак — гомозиготны (аа). У гетерозигот (при полном доминировании) всегда проявляется доминантный
    ген (гетерозигота — Aa).

Осознайте изученные правила и посмотрите на картинку ниже. Здесь мы образуем гаметы для различных особей: AA, Aa, aa.
При решении генетических задач гаметы принято обводить в кружок, не следует повторяться при написании гамет — это ошибка.

К примеру, у особи «AA» мы напишем только одну гамету «А» и не будем повторяться, а у особи «Aa» напишем два типа гамет
«A» и «a», так как они различаются между собой.

Образование гамет

Гибридологический метод

Мы приступаем к изучению методологии генетики, то есть тех методов, которые использует генетика. Один из первых методов
генетики, предложенный самим Грегором Менделем — гибридологический.

Этот метод основан на скрещивании организмов между собой и дальнейшем анализе полученного потомства от данного скрещивания.
С помощью гибридологического метода возможно изучение наследственных свойств организмов, определение рецессивных и доминантных
генов.

Гибридологический метод

Цитогенетический метод

С помощью данного метода становится возможным изучение наследственного материала клетки. Врач-генетик может построить
карту хромосом пациента (кариотип) и на основании этого сделать вывод о наличии или отсутствии
наследственных заболеваний.

Если быть более точным, кариотипом называют совокупность признаков хромосом: строения, формы, размера и числа. При наследственных заболеваниях может быть нарушена структура хромосом (часто летальный исход), иногда нарушено их количество (синдром Дауна, Шерешевского-Тернера,
Клайнфельтера).

Цитогенетический метод исследования

Генеалогический метод (греч. γενεαλογία — родословная)

Генеалогический метод является универсальным методом медицинской генетики и основан на составлении родословных.
Человек, с которого начинают составление родословной — пробанд. В результате изучения родословной врач-генетик
может предположить вероятность возникновения тех или иных заболеваний.

Правила написания родословной

По мере изучения законов Менделя, хромосомной теории, я непременно буду обращать ваше внимание на родословные. Вы
научитесь видеть детали, по которым можно будет сказать об изучаемом признаке: «рецессивный он или доминантный?»,
«сцеплен с полом или не сцеплен?»

Генеалогический метод

На предложенной родословной в поколениях семьи хорошо прослеживается наследование не сцепленного с полом (аутосомного)
рецессивного признака (например, альбинизма). Это можно определить по ряду признаков, которые я в
следующих статьях научу вас видеть. Аутосомно-рецессивный тип наследования можно заподозрить, если:

  • Заболевание проявляется только у гомозигот
  • Родители клинически здоровы
  • Если больны оба родителя, то все их дети будут больны
  • В браке больного со здоровым рождаются здоровые дети (если здоровый не гетерозиготен)
  • Оба пола поражаются одинаково

Сейчас это может показаться сложным, но не волнуйтесь — решая генетические задачи вы сами «дойдете» до этих правил,
и через некоторое время они будут казаться вам очевидными.

Близнецовый метод

Применение близнецового метода в генетике — вопрос удачи. Ведь для этого нужны организмы, чьи генотипы похожи «один в один»:
такими являются однояйцевые близнецы, их появление подчинено случайности.

Близнецовый метод

Близнецовый метод изучает влияние наследственных факторов и внешней среды на формирование фенотипа — совокупности внешних и
внутренних признаков организма. К фенотипу относят физические черты: размеры частей тела, цвет кожи, форму и особенности
строения внутренних органов и т.д.

Часто изучению подвергают склонность к различным заболеваниям. Интересный факт: если психическое расстройство — шизофрения
— развивается у первого из однояйцевых близнецов, то у второго она возникает с вероятностью 90%. Таким образом, удается
сделать вывод о значительной доле наследственного фактора в развитии данного заболевания.

Гебефреническая шизофрения

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Генетика — наука о закономерностях наследственности и изменчивости организмов. Наследственность и изменчивость – два противоположных свойства живых организмов, неразрывно связанные между собой. Благодаря наследственности сохраняется однородность, единство вида, а изменчивость делает вид неоднородным, создаёт предпосылки для дальнейшего видообразования. Основоположник генетики – чешский учёный Грегор Мендель, опубликовавший в 1865 г. труд «Опыты над растительными гибридами». Однако датой рождения генетики как науки является 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году. Генетика – фундаментальная наука, изучающая процесс преемственности жизни на молекулярном, клеточном, организменном и популяционном уровнях. Современная генетика является научной основой для селекции, медицины, генной инженерии, основой для понимания теории эволюции.

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Хромосомы

Хромосомы – нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена большая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосома эукариот образуется из единственной и чрезвычайно длинной молекулы ДНК, которая содержит линейную группу множества генов. Хромосомы прокариот — это ДНК-содержащие структуры в клетке без ядра.

Хромосома – это наиболее компактная форма наследственного материала клетки (по сравнению с нитью ДНК укорочение составляет примерно 1600 раз). У большинства эукариот ДНК скручивается до такой степени только на время деления. Хромосома может быть одинарной (из одной хроматиды) и двойной (из двух хроматид). Хроматида – это нуклеопротеидная нить, половинка двойной хромосомы.

У каждой хромосомы есть центромера (первичная перетяжка). Центромера – это место соединения двух хроматид, к центромере присоединяются нити веретена деления. По сторонам от центромеры лежат плечи хромосомы. В зависимости от места расположения центромеры хромосомы делят на:

  • равноплечие (метацентрические),

  • неравноплечие (субметацентрические),

  • палочковидные (акроцентрические) – имеется только одно плечо.

Рисунок 1. Схема строения хромосомы в поздней профазе — метафазе митоза. 1 — хроматида; 2 —центромера; 3 — короткое плечо; 4 — длинное плечо.

Гомологичные хромосомы – пара хромосом приблизительно равной длины, с одинаковым положением центромеры и дающие одинаковую картину при окрашивании. Их гены в соответствующих (идентичных) локусах представляют собой аллельные гены — аллели, то есть кодируют одни и те же белки или РНК. При двуполом размножении одна гомологичная хромосома наследуется организмом от матери, а другая — от отца. Гомологичные хромосомы не идентичны друг другу. Они имеют один и тот же набор генов, однако они могут быть представлены как различными (у гетерозигот), так и одинаковыми (у гомозигот) аллелями, то есть формами одного и того же гена, ответственными за проявление различных вариантов одного и того же признака. Кроме того, в результате некоторых мутаций могут возникать гомологичные хромосомы, различающиеся наборами или расположением генов.

Хромосомы делятся на две группы: аутосомы и половые хромосомы. Аутосомы – парные хромосомы, одинаковые у мужских и женских организмов. Иными словами, кроме половых хромосом, все остальные хромосомы у раздельнополых организмов будут являться аутосомами. Половые хромосомы хромосомы, набор которых отличает мужские и женские особи. По традиции половые хромосомы в отличие от аутосом, обозначаемых порядковыми номерами, обозначаются буквами X или Y. Отсутствие половой хромосомы обозначается цифрой 0. Пол, имеющий две одинаковые половые хромосомы, продуцирует гаметы, не отличающиеся по половым хромосомам. Этот пол называется гомогаметным. У пола, определяемого набором непарных половых хромосом, половина гамет несёт одну половую хромосому, а половина гамет — другую половую хромосому. Этот пол называется гетерогаметным. У человека, как у всех млекопитающих, гомогаметный пол — женский (XX), гетерогаметный пол — мужской (XY). У птиц, напротив, гетерогаметный пол — женский (ХУ), а гомогаметный — мужской (ХХ).

Кариотип – совокупность хромосом клеток какого-либо вида растений или животных. Он характеризуется постоянным для каждого вида числом хромосом, их размеров, формы, деталей строения. Кариотип любого вида специфичен и может являться его систематическим признаком.

Рисунок 2. Кариотип мужчины.

Гены, генотип и фенотип

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность всех генов организма. Генотип – совокупность наследственных признаков и свойств, полученных особью от родителей, а также новых свойств, появившихся в результате мутаций генов, которых не было у родителей. Генотип складывается при взаимодействии двух геномов (яйцеклетки и сперматозоида) и представляет собой наследственную программу развития, являясь целостной системой, а не простой суммой отдельных генов.

Геном – совокупность генов в гаплоидном наборе хромосом данного организма. В геноме каждый ген представлен лишь одним геном из каждой аллельной пары (только доминантным или только рецессивным).

Аллель – пара генов, определяющая признак. Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом. Локус — местоположение гена в хромосоме.

Гомозигота – организм, имеющий аллельные гены одной молекулярной формы (оба доминантные или оба рецессивные).

Гетерозигота – организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Альтернативные признаки – два взаимоисключающих проявления признака (белая и пурпурная окраска цветов, жёлтая и зелёная окраска семян, гладкая и морщинистая поверхность семян, карие и голубые глаза).

Множественный аллелизм это существование в популяции более двух аллелей данного гена. Например, наследование групп крови у человека определяется тремя аллелями одного гена: I0, IA, IB.

Рисунок 3. Определение групп крови

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Чистая линия — группа организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей. В случае гена, имеющего несколько аллелей, все организмы, относящиеся к одной чистой линии, являются гомозиготными по одному и тому же аллелю данного гена. Чистыми линиями часто называют сорта растений, при самоопылении дающих генетически идентичное и морфологически сходное потомство. Аналогом чистой линии у микроорганизмов является штамм. Чистые (инбредные) линии у животных с перекрестным оплодотворением получают путём близкородственных скрещиваний в течение нескольких поколений. В результате животные, составляющие чистую линию, получают одинаковые копии хромосом каждой из гомологичных пар.

Фенотип — совокупность всех признаков и свойств организма, сложившихся в процессе индивидуального развития генотипа. Сюда относятся не только внешние признаки, но и внутренние: анатомические, физиологические, биохимические. Каждая особь имеет свои особенности внешнего вида, внутреннего строения, характера обмена веществ, функционирования органов, т. е. свой фенотип, который сформировался в определённых условиях среды.

Виды взаимодействия генов

Доминирование – форма взаимоотношений между аллелями одного гена, при которой один из них (доминантный) подавляет (маскирует) проявление другого (рецессивного) и таким образом определяет проявление признака как у доминантных гомозигот, так и у гетерозигот.

При неполном доминировании гетерозиготы имеют фенотип, промежуточный между фенотипами доминантной и рецессивной гомозиготы. Например, при скрещивании чистых линий львиного зева и многих других видов цветковых растений с пурпурными и белыми цветками особи первого поколения имеют розовые цветки.

При кодоминировании у гетерозигот признаки, за которые отвечает каждый из аллелей, проявляются одновременно и в полной мере. Типичный пример кодоминирования — наследование групп крови системы АВ0 у человека. Всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвертая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В). При кодоминировании назвать один из аллелей доминантным, а другой — рецессивным нельзя, эти понятия теряют смысл: оба аллеля в равной степени влияют на фенотип.

Правило определения количества гамет

Количество разновидностей гамет, которые даст организм, можно посчитать по следующей формуле. Количество гамет равно 2n, где n –количество пар разнородных хромосом, содержащих гетерозиготные гены. Например, тригетерозигота АаВbСс будет давать 8 типов гамет, если гены расположены в разных парах хромосом (n = 3) и только 2 типа, если гены находятся в одной паре (n = 1).

Методы генетики

Гибридологический метод

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар — дигибридным, нескольких пар —полигибридным.

Кроме гибридологического метода, в генетике используют и другие методы.

Генеалогический метод

Генеалогическийметод — составление и анализ родословных. Его применяют для определения типа наследования, изучения сцепленного наследования, определения типа взаимодействия генов. Данный метод позволяет сделать прогноз вероятности проявления изучаемого признака в потомстве и используется в медико-генетическом консультировании.

Популяционно-статистический метод

Популяционно-статистическийметод — изучение частот различных генов и генотипов в человеческих популяциях. Метод позволяет вычислить частоту встречаемости наследственных признаков, в т. ч. болезней, в различных местностях, среди разных рас и народностей, степень гетерозиготности и полиморфизма. Кроме того, метод позволяет установить особенности взаимодействия факторов, влияющих на распределение наследственных признаков, что позволяет определить адаптивную ценность конкретных генотипов.

Близнецовый метод

Близнецовый метод — изучение близнецов, сравнение частоты сходства по ряду признаков пар одно- и разнояйцевых близнецов. Близнецовый метод позволяет определить роль наследственности и среды в развитии различных признаков. Метод позволяет оценить роль генетического вклада, влияние воспитания и обучения в развитие сложных признаков.

Цитогенетический метод

Цитогенетический метод  — изучение строения и морфологических особенностей метафазных хромосом. Цитогенетический метод используется в медико-генетическом консультировании: для изучения нормального кариотипа, для точной диагностики наследственных заболеваний, вызываемых хромосомными мутациями, для определения последствий воздействия мутагенов.

Генетическая символика

Предложена Г. Менделем, используется для записи результатов скрещиваний:

Р — родители;

F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1— гибриды первого поколения — прямые потомки родителей, F2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F1);

× — значок скрещивания;

G — гаметы;

A — доминантный ген,

а — рецессивный ген;

АА — гомозигота по доминанте,

 аа — гомозигота по рецессиву,

Аа — гетерозигота.

Закон единообразия гибридов первого поколения, или первый закон Менделя

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха.

Особенности гороха:

1) относительно просто выращивается и имеет короткий период развития;

2) имеет многочисленное потомство;

3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий);

4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

Первый закон Менделя:

При моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

Генетическая схема закона единообразия Менделя (первый закон Менделя) (А — желтый цвет горошин, а — зеленый цвет горошин):

Закон расщепления, или второй закон Менделя

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;

  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;

  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением. Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

Второй закон Менделя:

При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Генетическая схема закона расщепления Менделя (А — желтый цвет горошин, а — зеленый цвет горошин):

Закон чистоты гамет

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;

  2. организмы содержат два фактора, определяющих развитие признака;

  3. при образовании гамет в каждую из них попадает только один из пары факторов;

  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание — скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F1 с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин — желтого».

Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.

Цитологические основы первого и второго законов Менделя

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А, а зеленую — а. Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А, а другого — с геном а.

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А, другая половина — ген а. Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а), 1/4 — гомозиготы по доминантному признаку (несут два гена А) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска (А) и гладкая форма (В) семян — доминантные признаки, зеленая окраска (а) и морщинистая форма (b) — рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что:

1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена);

2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании.

Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

Третий закон Менделя:

При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Генетическая схема закона независимого комбинирования признаков (третьего закона Менделя):

Анализ результатов скрещивания по фенотипу:

* желтые, гладкие — 9/16,

* желтые, морщинистые — 3/16,

* зеленые, гладкие — 3/16,

* зеленые, морщинистые — 1/16.

Расщепление по фенотипу 9:3:3:1.

Анализ результатов скрещивания по генотипу:

* AaBb — 4/16, * AABb — 2/16,

* AaBB — 2/16, * aaBb — 2/16,

* ААBB — 1/16, * Aabb — 2/16,

* ААbb — 1/16,* aaBB — 1/16,

* aabb — 1/16.

Расщепление по генотипу 4:2:2:2:2:1:1:1:1.

Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Цитологические основы третьего закона Менделя

Пусть А — ген, обусловливающий развитие желтой окраски семян, а — зеленой окраски, В — гладкая форма семени, b — морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb. При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b, а ген а — с геном В или с геном b. Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВ,Ab, aB, ab. Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

Сцепленное наследование генов

Мендель изучил наследование только семи пар признаков у душистого горошка. Его законы подтвердились на самых разных видах организмов, т. е. было признано, что эти законы носят всеобщий характер. Однако позже было замечено, что у душистого горошка два признака — форма пыльцы и окраска цветков — не дают независимого распределения в потомстве. Потомки оставались похожими на родителей. Постепенно таких исключений из третьего закона Менделя накапливалось все больше. Стало ясно, что принцип независимого распределения в потомстве и свободного комбинирования распространяется не на все гены. Действительно, у любого организма признаков очень много, а число хромосом невелико.

Число генов у каждого организма значительно превышает число хромосом. Следовательно, в каждой хромосоме должно находиться много генов. Каковы же закономерности наследования генов, локализованных в одной хромосоме? Этот вопрос был изучен американским генетиком Т. Морганом и его учениками.

Предположим, что два гена — А и В — находятся в одной хромосоме и организм, взятый для скрещивания, гетерозиготен по этим генам. В анафазе мейоза I гомологичные хромосомы расходятся в разные клетки и образуется два сорта гамет — АВ и ab (вместо четырех, как это должно быть при дигибридном скрещивании), которые повторяют комбинацию генов в хромосоме родителя. Такое отклонение от независимого распределения означает, что гены, локализованные в одной хромосоме, наследуются совместно, или сцепленно (закон Томаса Моргана или закон сцепленного наследования признаков).

Группы генов, расположенных в одной хромосоме, составляют группу сцепления. Сцепленные гены расположены в хромосомах в линейном порядке. Число групп сцепления соответствует числу пар хромосом, т.е. гаплоидному набору. Так, у человека 46 хромосом — 23 группы сцепления, у дрозофилы 8 хромосом — 4 группы сцепления.

Однако при анализе наследования сцепленных генов было установлено, что сцепление не бывает абсолютным, может нарушаться, в результате чего возникают новые гаметы и аВ Аb с новыми комбинациями генов, отличающимися от родительской гаметы. Причина нарушения сцепления и возникновения новых гамет — кроссинговер — перекрест хромосом в профазе мейоза I. Перекрест и обмен участками гомологичных хромосом приводит к возникновению качественно новых хромосом и, следовательно, к постоянной «перетасовке» — рекомбинации генов. Кроссинговер — важный источник комбинативной генетической изменчивости.

Чем дальше друг от друга расположены гены в хромосоме, тем выше вероятность перекреста между ними и тем больший процент гамет с рекомбинированными генами, а следовательно, и больший процент особей, отличных от родителей. Т. Морган и его сотрудники показали, что, изучив явление сцепления и перекреста, можно построить карты хромосом с нанесенным на них порядком расположения генов. Карты, построенные на этом принципе, созданы для многих генетически хорошо изученных организмов: человека, дрозофилы, мыши, кукурузы, гороха, пшеницы, дрожжей и др.

Генетическая карта — схема взаимного расположения структурных генов, регуляторных элементов и генетических маркеров, а также относительных расстояний между ними на хромосоме (группе сцепления).

Рисунок 4. Частичная генетическая карта 18 хромосомы человека

Хромосомная теория наследственности

Исследования Томаса Моргана легли в основу сформулированной в 1911 году хромосомной теории наследственности. Её сущность заключается в следующем:

  • основным материальным носителем наследственности являются хромосомы с локализованными в них генами;

  • гены наследственно дискретны, относительно стабильны, но при этом могут мутировать;

  • гены в хромосомах расположены линейно, каждый ген имеет определённое место (локус) в хромосоме;

  • гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются совместно;

  • число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

  • сцепление генов может нарушаться в результате кроссинговера;

  • частота кроссинговера прямо пропорциональна расстоянию между генами.

Значение этой теории заключается в том, что она дала объяснение законам Менделя, вскрыла цитологические основы наследования признаков и генетические основы теории естественного отбора.

Наследование признаков, сцепленных с полом

Признаки, гены которых находится в половых хромосомах, называется сцепленные с полом. В Y — хромосоме генов почти нет, поэтому если говорят, что признак сцеплен с полом, значит, ген находится в Х – хромосоме. У человека известно около 300 генов, находящихся в Х — хромосоме и вызывающих наследственные болезни. Почти все они рецессивны. Наиболее известны гемофилия, дальтонизм, мускульная дистрофия. Если рецессивный ген болезни сцеплен с Х — хромосомой, то носителем является женщина, а болеют чаще всего мужчины, т.к. у них этот ген находится в одинарной дозе. Доминантных Х — сцепленных заболеваний известно мало, в том числе некоторые формы рахита, нарушение пигментации кожи.

Наследственные заболевания

Определяя формирование фенотипа человека в процессе его развития, наследственность и среда играют определенную роль в развитии порока или заболевания. Вместе с тем, доля участия генетических и средовых факторов варьируется при разных состояниях. Выделяют наследственные и мультифакторные заболевания. В зависимости от степени повреждения генетического материала различают хромосомные и генные заболевания. Развитие этих заболеваний целиком обусловлено дефектностью наследственной программы, а роль среды заключается в модификации фенотипических проявлений болезни. К этой группе относят хромосомные и геномные мутации. Наследственные болезни всегда связаны с мутацией, однако фенотипические проявления последней, степень выраженности у разных особей могут различаться. В одних случаях это обусловлено дозой мутантного аллеля, в других – влиянием окружающей среды.

Мультифакторные заболевания (болезни с наследственной предрасположенностью)

В основном это болезни зрелого и преклонного возраста. Причинами их развития являются факторы окружающей среды, однако степень их реализации зависит от генной конституции организма.

Наиболее частыми наследственными заболеваниями являются следующие.

1. Болезнь Дауна. В основе болезни лежит нерасхождение по 21-й паре хромосом. Кариотип больного содержит 47 хромосом, при этом лишней оказывается хромосома 21.

2. Синдром Патау. В основе синдрома лежит нерасхождение по 13-й паре хромосом. В кариотипе больного наблюдается 47 хромосом с лишней хромосомой 13.

3. Синдром «кошачьего крика». Цитологически у всех больных обнаруживается укорочение приблизительно на треть короткого плеча одного из гомологов хромосомы 5.

4. Синдром Шерешевского – Тернера. В клетках организма больного имеется лишь одна половая хромосома Х.

5. Синдром Клайнфельтера. Больные имеют хромосомную конституцию ХХУ синдрома.

Основные понятия генетики

Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность генов организма.

Локус — местоположение гена в хромосоме.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Методы генетики

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар — дигибридным, нескольких пар — полигибридным. Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных;цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

Генетическая символика

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1 — гибриды первого поколения — прямые потомки родителей, F2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота.

Закон единообразия гибридов первого поколения, или первый закон Менделя

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

При моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

Генетическая схема закона единообразия Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин)

Р AA
желтые
× аа
зеленые
Типы гамет    гамета А     гамета а 
F1
желтые
100%

Закон расщепления, или второй закон Менделя

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Признаки Доминантные Рецессивные Всего
Число % Число %
Форма семян 5474 74,74 1850 25,26 7324
Окраска семядолей 6022 75,06 2001 24,94 8023
Окраска семенной кожуры 705 75,90 224 24,10 929
Форма боба 882 74,68 299 25,32 1181
Окраска боба 428 73,79 152 26,21 580
Расположение цветков 651 75,87 207 24,13 858
Высота стебля 787 73,96 277 26,04 1064
Всего: 14949 74,90 5010 25,10 19959

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называютрасщеплением. Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Генетическая схема закона расщепления Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин):

P Aa
желтые
× Aa
желтые
Типы гамет    гамета A   гамета a     гамета A   гамета a 
F2 AA
 желтые 
Aa
 желтые 
75%
  Aa
 желтые 
aa
 зеленые 
25%

Закон чистоты гамет

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание — скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F1с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин — желтого». Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.

Р Аа
желтые
×
зеленые
Типы гамет   гамета A    гамета a    гамета a 
F Аа
желтые
50%
  аa
зеленые
50%

Цитологические основы первого и второго законов Менделя

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А, а зеленую — а. Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А, а другого — с геном а.

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А, другая половина — ген а. Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а), 1/4 — гомозиготы по доминантному признаку (несут два гена А) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска (А) и гладкая форма (В) семян — доминантные признаки, зеленая окраска (а) и морщинистая форма (b) — рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Р АABB
желтые, гладкие
× aаbb
зеленые, морщинистые
Типы гамет   гамета AB     гамета ab 
F1 AaBb
желтые, гладкие, 100%
P АaBb
желтые, гладкие
× AаBb
желтые, гладкие
Типы гамет   гамета AB    гамета Ab    гамета aB    гамета ab     гамета AB    гамета Ab    гамета aB    гамета ab 

Генетическая схема закона независимого комбинирования признаков:

Гаметы: AB Ab aB ab
 
AB AABB
желтые
гладкие
AABb
желтые
гладкие
AaBB
желтые
гладкие
AaBb
желтые
гладкие
Ab AABb
желтые
гладкие
AАbb
желтые
морщинистые
AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aB AaBB
желтые
гладкие
AaBb
желтые
гладкие
aaBB
зеленые
гладкие
aaBb
зеленые
гладкие
ab AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aaBb
зеленые
гладкие
aabb
зеленые
морщинистые

Анализ результатов скрещивания по фенотипу: желтые, гладкие — 9/16, желтые, морщинистые — 3/16, зеленые, гладкие — 3/16, зеленые, морщинистые — 1/16. Расщепление по фенотипу 9:3:3:1.

Анализ результатов скрещивания по генотипу: AaBb — 4/16, AABb — 2/16, AaBB — 2/16, Aabb — 2/16, aaBb — 2/16, ААBB — 1/16,Aabb — 1/16, aaBB — 1/16, aabb — 1/16. Расщепление по генотипу 4:2:2:2:2:1:1:1:1.

Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков (желтые и зеленые семена) и дают во втором поколении два фенотипа (21) в соотношении (3 + 1)1, то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (22) в соотношении (3 + 1)2. Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: восемь фенотипов (23) в соотношении (3 + 1)3.

Если расщепление по генотипу в F2 при моногибридном поколении было 1:2:1, то есть было три разных генотипа (31), то при дигибридном образуется 9 разных генотипов — 32, при тригибридном скрещивании образуется 33 — 27 разных генотипов.

Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Цитологические основы третьего закона Менделя

Пусть А — ген, обусловливающий развитие желтой окраски семян, а — зеленой окраски, В — гладкая форма семени, b — морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb. При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b, а ген а — с геном В или с геном b. Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВAbaBab. Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

Сцепленное наследование

В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган. Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

Дрозофила каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка внешне хорошо различимы — у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Дрозофила

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, имеющие серое тело и нормальные крылья (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, — над геном недоразвитых). При проведении анализирующего скрещивания самки F1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% — серые длиннокрылые и 41,5% — черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% — черные длиннокрылые и 8,5% — серые с зачаточными крыльями). Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.

Механизм кроссинговера

1 — некроссоверные гаметы; 2 — кроссоверные гаметы.

Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов —АВ и аb, а отцовский — один тип — аb. Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ иааbb. Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb. Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток — мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, появляются гаметы Аb и аВ, и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

Группа сцепления — гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.

Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Полное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным. Неполное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Независимое наследование — наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.

Некроссоверные гаметы — гаметы, в процессе образования которых кроссинговер не произошел.

Гаметы Образуются гаметы: Гаметы

Кроссоверные гаметы — гаметы, в процессе образования которых произошел кроссинговер. Как правило кроссоверные гаметы составляют небольшую часть от всего количества гамет.

Гаметы Образуются гаметы: Гаметы

Нерекомбинанты — гибридные особи, у которых такое же сочетание признаков, как и у родителей.

Рекомбинанты — гибридные особи, имеющие иное сочетание признаков, чем у родителей.

Расстояние между генами измеряется в морганидах — условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

У дигетерозигот доминантные гены могут располагаться или в одной хромосоме (цис-фаза), или в разных (транс-фаза).

Механизм цис- и транс-фазы

1 — Механизм цис-фазы (некроссоверные гаметы); 2 — механизм транс-фазы (некроссоверные гаметы).

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности:

  1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. гены расположены в хромосомах в определенной линейной последовательности;
  4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. каждый вид имеет характерный только для него набор хромосом — кариотип.

Генетика пола

Хромосомное определение пола

Большинство животных являются раздельнополыми организмами. Пол можно рассматривать как совокупность признаков и структур, обеспечивающих способ воспроизводства потомства и передачу наследственной информации. Пол чаще всего определяется в момент оплодотворения, то есть в определении пола главную роль играет кариотип зиготы. Кариотип каждого организма содержит хромосомы, одинаковые у обоих полов, — аутосомы, и хромосомы, по которым женский и мужской пол отличаются друг от друга, — половые хромосомы. У человека «женскими» половыми хромосомами являются две Х-хромосомы. При образовании гамет каждая яйцеклетка получает одну из Х-хромосом. Пол, у которого образуются гаметы одного типа, несущие Х-хромосому, называется гомогаметным. У человека женский пол является гомогаметным. «Мужские» половые хромосомы у человека — Х-хромосома и Y-хромосома. При образовании гамет половина сперматозоидов получает Х-хромосому, другая половина — Y-хромосому. Пол, у которого образуются гаметы разного типа, называется гетерогаметным. У человека мужской пол — гетерогаметный. Если образуется зигота, несущая две Х-хромосомы, то из нее будет формироваться женский организм, если Х-хромосому и Y-хромосому — мужской.

У животных можно выделить следующие четыре типа хромосомного определения пола.

  1. Женский пол — гомогаметен (ХХ), мужской — гетерогаметен (ХY) (млекопитающие, в частности, человек, дрозофила).

    Генетическая схема хромосомного определения пола у человека:

    Р ♀46, XX × ♂46, XY
    Типы гамет   гамета 23, X     гамета 23, X   гамета 23, Y 
    F 46, XX
    женские особи, 50%
      46, XY
    мужские особи, 50%

    Генетическая схема хромосомного определения пола у дрозофилы:

    Р ♀8, XX × ♂8, XY
    Типы гамет   гамета 4, X     гамета 4, X   гамета 4, Y 
    F 8, XX
    женские особи, 50%
      8, XY
    мужские особи, 50%
  2. Женский пол — гомогаметен (ХХ), мужской — гетерогаметен (Х0) (прямокрылые).

    Генетическая схема хромосомного определения пола у пустынной саранчи:

    Р ♀24, XX × ♂23, X0
    Типы гамет   гамета 12, X     гамета 12, X   гамета 11, 0 
    F 24, XX
    женские особи, 50%
      23, X0
    мужские особи, 50%
  3. Женский пол — гетерогаметен (ХY), мужской — гомогаметен (ХХ) (птицы, пресмыкающиеся).

    Генетическая схема хромосомного определения пола у голубя:

    Р ♀80, XY × ♂80, XX
    Типы гамет   гамета 40, X   гамета 40, Y     гамета 40, X 
    F 80, XY
    женские особи, 50%
      80, XX
    мужские особи, 50%
  4. Женский пол — гетерогаметен (Х0), мужской — гомогаметен (ХХ) (некоторые виды насекомых).

    Генетическая схема хромосомного определения пола у моли:

    Р ♀61, X0 × ♂62, XX
    Типы гамет   гамета 31, X   гамета 30, Y     гамета 31, X 
    F 61, X0
    женские особи, 50%
      62, XX
    мужские особи, 50%

Наследование признаков, сцепленных с полом

Установлено, что в половых хромосомах находятся гены, отвечающие не только за развитие половых, но и за формирование неполовых признаков (свертываемость крови, цвет зубной эмали, чувствительность к красному и зеленому цвету и т.д.). Наследование неполовых признаков, гены которых локализованы в Х— или Y-хромосомах, называют наследованием, сцепленным с полом.

Изучением наследования генов, локализованных в половых хромосомах, занимался Т. Морган.

У дрозофилы красный цвет глаз доминирует над белым. Реципрокное скрещивание — два скрещивания, которые характеризуются взаимно противоположным сочетанием анализируемого признака и пола у форм, принимающих участие в этом скрещивании. Например, если в первом скрещивании самка имела доминантный признак, а самец — рецессивный, то во втором скрещивании самка должна иметь рецессивный признак, а самец — доминантный. Проводя реципрокное скрещивание, Т. Морган получил следующие результаты. При скрещивании красноглазых самок с белоглазыми самцами в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F1, то во втором поколении все самки оказываются красноглазыми, а среди самцов — половина белоглазых и половина красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F2 половина самок и самцов — красноглазые, половина — белоглазые.

Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Т. Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х-хромосоме (ХА — красный цвет глаз, Ха — белый цвет глаз), а Y-хромосома таких генов не содержит.

Р XAXA
красноглазые
× XaY
белоглазые
Типы гамет   гамета XA    гамета Xa    гамета  Y
F1 XAXa
♀ красноглазые
50%
  XАY
♂ красноглазые
50%
Р XAXa
красноглазые
× XAY
красноглазые
Типы гамет   гамета XA    гамета Xa    гамета XA    гамета  Y
F2 XAXA   XAXa
♀ красноглазые
50%
  XАY
♂ красноглазые 
25%
XaY
 ♂ белоглазые
25%
Р XaXa
белоглазые
× XAY
красноглазые
Типы гамет   гамета Xa    гамета XA    гамета  Y
F1 XAXa
♀ красноглазые
50%
  XaY
♂ белоглазые
50%
Р XAXa
красноглазые
× XaY
белоглазые
Типы гамет   гамета XA    гамета Xa    гамета Xa    гамета  Y
F2 XAXA
♀ красноглазые
25%
 
XaXa
 ♀ белоглазые
25%
  XАY
♂ красноглазые 
25%
XaY
 ♂ белоглазые
25%

Строение ядра

Схема половых хромосом человека и сцепленных с ними генов:
1 — Х-хромосома; 2 — Y-хромосома.

У людей мужчина получает Х-хромосому от матери, Y-хромосому — от отца. Женщина получает одну Х-хромосому от матери, другую Х-хромосому от отца. Х-хромосома — средняя субметацентрическая, Y-хромосома — мелкая акроцентрическая; Х-хромосома и Y-хромосома имеют не только разные размеры, строение, но и по большей части несут разные наборы генов. В зависимости от генного состава в половых хромосомах человека можно выделить следующие участки: 1) негомологичный участок Х-хромосомы (с генами, имеющимися только в Х-хромосоме); 2) гомологичный участок Х-хромосомы и Y-хромосомы (с генами, имеющимися как в Х-хромосоме, так и в Y-хромосоме); 3) негомологичный участок Y-хромосомы (с генами, имеющимися только в Y-хромосоме). В зависимости от локализации гена в свою очередь выделяют следующие типы наследования.

Тип наследования Локализация генов Примеры
Х-сцепленный рецессивный Негомологичный участок Х-хромосомы Гемофилия, разные формы цветовой слепоты (протанопия, дейтеронопия), отсутствие потовых желез, некоторые формы мышечной дистрофии и пр.
Х-сцепленный доминантный Негомологичный участок Х-хромосомы Коричневый цвет зубной эмали, витамин D устойчивый рахит и пр.
Х-Y-сцепленный (частично сцепленный с полом) Гомологичный участок Х— и Y-хромосом Синдром Альпорта, общая цветовая слепота
Y-сцепленный Негомологичный участок Y-хромосомы Перепончатость пальцев ног, гипертрихоз края ушной раковины

Большинство генов, сцепленных с Х-хромосомой, отсутствуют в Y-хромосоме, поэтому эти гены (даже рецессивные) будут проявляться фенотипически, так как они представлены в генотипе в единственном числе. Такие гены получили название гемизиготных. Х-хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм и пр.). Эти аномалии чаще встречаются у мужчин (так как они гемизиготны), хотя носителем генов, обусловливающих эти аномалии, чаще бывает женщина. Например, если ХА — нормальная свертываемость крови, Ха — гемофилия и если женщина является носительницей гена гемофилии, то у фенотипически здоровых родителей может родиться сын-гемофилик:

Р XAXa
норм. сверт. крови
× XAY
норм. сверт. крови
Типы гамет   гамета XA    гамета Xa    гамета XA    гамета  Y
F2 XAXA    XАXa
♀ норм. сверт. крови
50%
 
  XАY
♂ норм. сверт. крови 
25%
XaY
 ♂ гемофилики
25%

16 августа 2021

В закладки

Обсудить

Жалоба

Основы генетики

Учебно-методическое пособие.

osnovy_genetiki.pdf

Содержание

Основные понятия генетики
Законы наследственности Г. Менделя
Множественный аллелизм
Взаимодействие аллельных генов
Взаимодействие неаллельных генов
Аутосомное наследование
Наследование, сцепленное с полом
Генетика пола
Хромосомная теория наследственности
Сцепленное наследование
Особенности взаимосвязи между генотипом и фенотипом
Ген как единица наследственности
Генотип как целостная исторически сложившаяся система взаимодействующих клеток
Регуляция активности генов на уровне транскрипции (на примере лактозного оперона)
Виды изменчивости
Модификационная изменчивость
Комбинативная изменчивость
Мутационная изменчивость
Мутационная изменчивость
Геномные мутации
Хромосомные мутации
Генные мутации
Генетика популяций
Интересные вопросы по генетике
Задачи по генетике
Список литературы

Источник: ulsu.ru/media/documents/Основы_генетики.pdf

Управление образования администрации города Шахтёрска

Методический кабинет

Муниципальное общеобразовательное учреждение

«Шахтёрская гимназия»

УЧЕБНОЕ ПОСОБИЕ

«ТЕХНОЛОГИЯ РЕШЕНИЯ ГЕНЕТИЧЕСКИХ ЗАДАЧ»

Кобелева Елена Владимировна,

учитель   биологии                                             Муниципального общеобразовательного учреждения  «Шахтёрская   гимназия»                                                      

Шахтёрск — 2018

Автор-составитель Кобелева Е.В., учитель биологии Муниципального общеобразовательного учреждения «Шахтёрская гимназия», специалист высшей квалификационной категории.

Рецензенты:

  1. Гагулина В.В., методист методического кабинета Управления образования города Шахтёрска
  2. Ямковая О.Б, МОУ заместитель директора по УВР         «СШ №1», учитель биологии специалист высшей квалификационной категории.
  3. Фуникова О.А., учитель биологии УВК№1, специалист

Методическое пособие представляет собой  сборник   школьного курса биологии 11класса, тематически соответствует программе обучения и  учебнику.

В пособии представлены  алгоритмы решения задач по изучаемым темам раздела «Генетика»,   краткий теоретический материал, необходимый для решения задач  в виде карты-памяти, образец решения задачи по предложенному алгоритму и задачи для самостоятельного решения.

Работа со сборником позволит учащимся усвоить основные понятия, термины и законы генетики, разобраться в генетической символике, применять теоретические знания на практике, объяснять жизненные ситуации с точки зрения генетики, подготовиться к сдаче ГИА.

Содержание

Введение

Основные термины и понятия генетики

Глава 1. Общие рекомендации по решению генетических задач

  1. Техника решения задач
  2. Оформление задач по генетике
  3. Законы Менделя
  4. Закон Моргана
  5. Правила при решении задач по генетике
  6. Список доминантных и рецессивных признаков человека

Глава 2. Алгоритм решения задач

2.1.        Решение прямых задач

2.2.        Алгоритм решения обратных задач

2.3.        Алгоритм решения задач «Моногибридное скрещивание»

2.4.        Алгоритм решения задач «Дигибридное скрещивание»

2.5. Алгоритм решения задач «Анализирующее скрещивание»

2.6. Алгоритм решения задач «Сцепленное наследование»

2.7. Алгоритм решения задач «Генетика пола»

2.8. Алгоритм решения задач «Наследование признаков, сцепленных с полом»

Глава 3. Примеры решения задач по генетике

Заключение

Литература

Введение

Разделы «Основы генетики» и «Молекулярная биология» являются одними из самых сложных для понимания в школьном курсе общей биологии. Облегчению усвоения этих разделов может способствовать решение задач по генетике разных уровней сложности.

Решение задач, как учебно-методический прием изучения генетики, имеет важное значение. Его применение способствует качественному усвоению знаний, получаемых теоретически, повышая их образность, развивает умение рассуждать и обосновывать выводы, существенно расширяет кругозор изучающего генетику, т.к. задачи, как правило, построены на основании документальных данных, привлеченных из области частной генетики растений, животных, человека. Использование таких задач развивает у школьников логическое мышление и позволяет им глубже понять учебный материал, а преподаватель имеет возможность осуществлять эффективный контроль уровня усвоенных учащимися знаний. Несмотря на это школьные учебники содержат минимум информации о закономерностях наследования, а составлению схем скрещивания и решению генетических задач в школьной программе по общей биологии отводится очень мало времени. Поэтому возникла необходимость в создании данного сборника. Учебное пособие составлено согласно обновленным ГОС, программе основного общего и среднего общего образования по биологии

Метопредметные связи, реализуемые при составлении данного сборника:

  • Математика — умение производить простейшие вычисления, анализировать и прогнозировать результаты.
  • История — знание родословных основных персон мира для составления генеалогических древ при выполнении различных творческих работ.
  • Биология — основы цитологии, молекулярной биологии, строения клетки.
  • Органическая химия — строение углеводов, белков, аминокислот, нуклеиновых кислот.

Цель: развитие у учащихся умения и навыков решения задач по основным разделам классической генетики.

Задачи:

  1. Развивать познавательный интерес к предмету;
  2. Показать практическую значимость общей биологии для различных отраслей производства, селекции, медицины;
  3. Создать условия для формирования и развития у учащихся УУД, интеллектуальных и практических умений в области генетики.
  4. Ликвидировать  пробелы в знаниях учащихся;

Результат работы со сборником

Учащиеся  знают:

  • основные понятия, термины и законы генетики;
  • генетическую символику.

Учащиеся умеют:

  • правильно оформлять условия, решения и ответы генетических задач;
  • решать типичные задачи;
  • логически рассуждать и обосновывать выводы.

Учащиеся  умеют характеризовать:

  • причины биологической индивидуальности на разных уровнях;
  • модификационную, мутационную и комбинативную изменчивость, ее причины;
  • норму реакции;
  • значение генотипа и условий среды в формировании фенотипа;
  • значение мутаций в эволюции, генетике, здравоохранении и экологической безопасности населения.

Учащиеся  умеют  характеризовать основные положения:

  • мутационной теории;
  • закона гомологических рядов наследственной изменчивости;
  • закономерностей модификационной изменчивости;
  • Закона Харди — Вайнберга;
  • Вклад Н.И. Вавилова, И.А. Рапопорта, В.В. Сахарова, А.С. Серебровского, С.С. Четверикова, Н.П. Дубинина в развитие науки генетики, синтетической теории эволюции, селекции.

Основные термины и понятия генетики.Описание: 669

Ген (с современных позиций) – это участок молекулы ДНК, содержащий информацию о  первичной структуре одного белка. Гены находятся в хромосомах, где они расположены линейно, образуя «группы сцепления».

Аллельные гены – это пара генов, определяющих контрастные (альтернативные) признаки организма. Каждый ген этой пары называется аллелью. Аллельные гены расположены в одних и тех же участках локусах гомологичных  (парных) хромосом.

Альтернативные признаки – это взаимоисключающие, контрастные признаки (например, жёлтые и зелёные семена гороха). Часто один из альтернативных признаков является доминантным, а другой – рецессивным.

Доминантный признак – это признак, проявляющийся у гибридов первого поколения при скрещивании представителей чистых линий. Например, у гороха доминантными признаками являются жёлтая окраска семян, гладкая поверхность семян, пурпурная окраска цветков

Рецессивный признак не проявляется у гибридов первого поколения при скрещивании представителей чистых линий.

Гомозигота – клетка или организм, содержащие одинаковые аллели одного и того же гена (АА или аа).

Гетерозигота – клетка или организм, содержащие разные аллели одного и того же гена (Аа).

Генотип – совокупность всех генов организма.

Фенотип – совокупность признаков организма, формирующихся при взаимодействии генотипа с окружающей средой.

Гибридологический метод – изучение признаков родительских форм, проявляющихся в ряду поколений у потомства, полученного путём гибридизации (скрещивания).

Моногибридное скрещивание – это скрещивание форм, отличающихся друг от друга по одной паре изучаемых контрастных (альтернативных) признаков, которые передаются по наследству.

Дигибридное скрещивание – это скрещивание форм, отличающихся друг от друга по двум парам изучаемых альтернативных признаков.

Полигибридное скрещивание – это сложное скрещивание, при котором родительские организмы отличаются по трём, четырём, и более парам контрастных (альтернативных) признаков.

Раздел 1 . Общие рекомендации по решению генетических задач. https://www.oncotrust.ru/news-images/Genler-icin-de-Egitim-Sart-Kanserde-Epigenetik-Tedaviler-620x420-245760.jpg

  1. Техника решения задач

Алгоритм

Символика

1. Краткая запись условий задачи. Введение буквенных обозначений генов, обычно А и В. Определение типа наследования (доминантность, рецессивность), если это не указано.

2. Запись фенотипов и схемы скрещивания словами.

3.Определение фенотипов в соответствии с условиями. Запись генотипов символам генов под фенотипами.

4. Определение гамет. Выяснение их числа и находящихся в них генов на основе установленных генотипов.

5. Составление решетки Пеннета.

6. Анализ решетки согласно поставленным вопросам.

7. Краткая запись ответов

1. Р – перента – родители. Родительские организмы, взятые для скрещивания, отличающиеся наследственными задатками.

2.F – филис – дети. Гибридное потомство.

3. F1 –гибриды I поколения, F2 – гибриды II поколения.

4. G- гаметы А а ….

5. А, В – доминантные гены, отвечающие за доминантные признаки (например, желтую окраску и гладкую поверхность семян гороха).

6. а, в – рецессивные  гены, отвечающие за развитие рецессивных признаков (например, зелёной окраски семян гороха и морщинистой поверхности семян гороха).

7. А, а – аллельные гены, определяющие конкретный признак.

8. АА, ВВ – доминантные гомозиготы, аа, вв – рецессивные гомозиготы.

9. Х – знак скрещивания.

10. ♀ — символ, обозначающий женский пол особи (символ Венеры – зеркальце с ручкой).

11.♂ — символ, обозначающий мужской пол особи (символ Марса – копьё и щит).

  1. Оформление задач по генетике.
  1. Первым  принято записывать генотип женской особи, а затем – мужской (верная запись — ♀ААВВ  х  ♂аавв;  неверная запись — ♂аавв  х  ♀ААВВ).
  2. Гены одной аллельной пары всегда пишутся рядом (верная запись – ♀ААВВ; неверная запись ♀АВАВ).
  3. При записи генотипа, буквы, обозначающие признаки, всегда пишутся в алфавитном порядке, независимо, от того, какой признак – доминантный или рецессивный – они обозначают (верная запись — ♀ааВВ; неверная запись -♀ ВВаа).
  4. Если известен только фенотип особи, то при записи её генотипа пишут лишь те гены, наличие которых бесспорно.  Ген, который невозможно определить по фенотипу, обозначают значком «_» (например, если жёлтая окраска (А) и гладкая форма  (В) семян гороха –  доминантные признаки, а зелёная окраска (а) и морщинистая форма (в) – рецессивные, то генотип особи с жёлтыми морщинистыми семенами записывают А_вв).
  5. Под генотипом всегда пишут фенотип.
  6. У особей определяют и записывают типы гамет, а не их количество:

               верная запись                                                      неверная запись

                     ♀ АА                                                                      ♀ АА

                          А                                                                         А      А

  1. Фенотипы и типы  гамет пишутся строго под соответствующим    генотипом.
  2. Записывается ход решения задачи с обоснованием каждого вывода  и полученных результатов.
  3. При решении задач на ди- и полигибридное скрещивание для определения генотипов потомства рекомендуется пользоваться решёткой Пеннета. По вертикали записываются типы гаметы от материнской особи, а по горизонтали – отцовской. На пересечении записываются сочетание гамет, соответствующие генотипу образующейся  дочерней особи.
  1. Законы Г. Менделя

Первый закон Менделя — закон единообразия гибридов F1

Этот закон выведен на основании результатов моногибридного скрещивания. Для опытов было взято два сорта гороха, отличающихся друг от друга одной парой признаков — цветом семян: один сорт имел желтую окраску, второй — зеленую. Скрещивающиеся растения были гомозиготными.

Для записи результатов скрещивания Менделем была предложена следующая схема:

А —желтая окраска семян
а — зеленая окраска семян

Р (родители)

АА

аа

Г (гаметы)

А

а

F1 (первое поколение)

Аа
(все растения имели желтые семена)

Формулировка закона: при скрещивании организмов, различающихся по одной паре альтернативных признаков, первое поколение единообразно по фенотипу и генотипу.

Второй закон Менделя — закон расщепления

Из семян, полученных при скрещивании гомозиготного растения с желтой окраской семян с растением с зеленой окраской семян, были выращены растения, и путем самоопыления было получено F2.

Р (F1)

Aa

Aa

Г

А; a

А; a

F2

АА; Аа; Аа; аа 
(75% растений имеют доминантный признак,25% — рецессивный)

Формулировка закона: у потомства, полученного от скрещивания гибридов первого поколения, наблюдается расщепление по фенотипу в соотношении 3:1, а по генотипу — 1:2:1.

Третий закон Менделя — закон независимого наследования

Этот закон был выведен на основании данных, полученных при дигибридном скрещивании. Мендель рассматривал наследование двух пар признаков у гороха: окраски и формы семян.

В качестве родительских форм Мендель использовал гомозиготные по обоим парам признаков растения: один сорт имел желтые семена с гладкой кожицей, другой — зеленые и морщинистые.

А — желтая окраска семян, а — зеленая окраска семян,
В — гладкая форма, в — морщинистая форма.

Р

ААВВ

аавв

Г

АВ

ав

F1

АаВв
100% (желтые гладкие).

Затем Мендель из семян F1 вырастил растения и путем самоопыления получил гибриды второго поколения.

Р

АаВв

АаВв

Г

АВ, Ав, аВ, ав

АВ, Ав, аВ, ав

F2

Для записи и определения генотипов используется решетка Пеннета

Гаметы

АВ

Ав

аВ

ав

АВ

ААВВ

ААВв

АаВВ

АаВв

Ав

ААВв

Аавв

АаВв

Аавв

аВ

АаВВ

АаВв

ааВВ

ааВв

ав

АаВв

Аавв

ааВв

аавв

В F2 произошло расщепление на 4 фенотипических класса в соотношении 9:3:3:1. 9/16 всех семян имели оба доминантных признака (желтые и гладкие), 3/16 — первый доминантный и второй рецессивный (желтые и морщинистые), 3/16 — первый рецессивный и второй доминантный (зеленые и гладкие), 1/16 — оба рецессивных признака (зеленые и морщинистые).

При анализе наследования каждой пары признаков получаются следующие результаты. В F2 12 частей желтых семян и 4 части зеленых семян, т.е. соотношение 3:1. Точно такое же соотношение будет и по второй паре признаков (форме семян).

Формулировка закона: при скрещивании организмов, отличающихся друг от друга двумя и более парами альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всевозможных сочетаниях.

Третий закон Менделя выполняется только в том случае, если гены находятся в разных парах гомологичных хромосом.

Закон (гипотеза) «чистоты» гамет

При анализе признаков гибридов первого и второго поколений Мендель установил, что рецессивный ген не исчезает и не смешивается с доминантным. В F2 проявляются оба гена, что возможно только в том случае, если гибриды F1 образуют два типа гамет: одни несут доминантный ген, другие — рецессивный. Это явление и получило название гипотезы чистоты гамет: каждая гамета несет только один ген из каждой аллельной пары. Гипотеза чистоты гамет была доказана после изучения процессов, происходящих в мейозе.

Гипотеза «чистоты» гамет — это цитологическая основа первого и второго законов Менделя. С ее помощью можно объяснить расщепление по фенотипу и генотипу.

Анализирующее скрещивание

Этот метод был предложен Менделем для выяснения генотипов организмов с доминантным признаком, имеющих одинаковый фенотип. Для этого их скрещивали с гомозиготными рецессивными формами.

Если в результате скрещивания все поколение оказывалось одинаковым и похожим на анализируемый организм, то можно было сделать вывод: исходный организм является гомозиготным по изучаемому признаку.

Если в результате скрещивания в поколении наблюдалось расщепление в соотношении 1:1, то исходный организм содержит гены в гетерозиготном состоянии.

Наследование групп крови (система АВ0)

Наследование групп крови в этой системе является примером множественного аллелизма (это существование у вида более двух аллелей одного гена). В человеческой популяции имеется три гена (i0, IА, IВ), кодирующие белки-антигены эритроцитов, которые определяют группы крови людей. В генотипе каждого человека содержится только два гена, определяющих его группу крови: первая группа i0i0; вторая IАi0 и IАIА; третья IВIВ и IВi0 и четвертая IАIВ.

Наследование признаков, сцепленных с полом

У большинства организмов пол определяется во время оплодотворения и зависит от набора хромосом. Такой способ называют хромосомным определением пола. У организмов с таким типом определения пола есть аутосомы и половые хромосомы — Y и Х.

У млекопитающих (в т.ч. у человека) женский пол обладает набором половых хромосом ХХ, мужской пол — ХY. Женский пол называют гомогаметным (образует один тип гамет); а мужской — гетерогаметным (образует два типа гамет). У птиц и бабочек гомогаметным полом являются самцы (ХХ), а гетерогаметным — самки (ХY).

В  задания ГИА  включены задачи только на признаки, сцепленные с Х-хромосомой. В основном они касаются двух признаков человека: свертываемость крови (ХН — норма; Xh — гемофилия), цветовое зрение (ХD — норма, Xd — дальтонизм). Гораздо реже встречаются задачи на наследование признаков, сцепленных с полом, у птиц.

У человека женский пол может быть гомозиготным или гетерозиготным по отношению к этим генам. Рассмотрим возможные генетические наборы у женщины на примере гемофилии (аналогичная картина наблюдается при дальтонизме): ХНХН — здорова; ХНXh — здорова, но является носительницей; ХhХh — больна. Мужской пол по этим генам является гомозиготным, т.к. Y-хромосома не имеет аллелей этих генов: ХНY — здоров; XhY — болен. Поэтому чаще всего этими заболеваниями страдают мужчины, а женщины являются их носителями.

  1. Закон Моргана

Число признаков организма многократно превышает число хромосом. Следовательно, в одной хромосоме располагается множество генов. Наследование признаков, гены которых находятся в одной паре гомологичных хромосом, называется сцепленным наследованием (закон Моргана). Гены, расположенные в одной хромосоме, образуют группу сцепления. Число групп сцепления равно гаплоидному числу хромосом.

  1. Правила при решении задач по генетике.

  Правило первое. Если при скрещивании двух фенотипически одинаковых особей в их потомстве наблюдается расщепление признаков, то эти особи гетерозиготны.

  Правило второе. Если в результате скрещивания особей, отличающихся фенотипически по одной паре признаков, получается потомство, у которого наблюдается расщепление по этой же паре признаков, то одна из родительских особей гетерозиготна, а другая – гомозиготна по рецессивному признаку.

 Правило третье. Если при скрещивании фенотипически одинаковых особей (по одной паре признаков) в первом поколении гибридов происходит расщепление признаков на три фенотипические группы в отношениях 1:2:1 , то это свидетельствует о неполном доминировании и о том, что родительские особи гетерозиготны.

  Правило четвертое. Если при скрещивании двух фенотипически одинаковых особей в потомстве происходит расщепление признаков в соотношении 9:3:3:1, то исходные особи были дигетерозиготны.

  Правило пятое. Если при скрещивании двух фенотипически одинаковых особей в потомстве происходит расщепление признаков в соотношении 9:3:4  9:6:1 , 9:7 , 12:3:1, то это свидетельствует о взаимодействии генов, а расщепление в отношениях 12:3:1, 13:3 и 15:1 – об эпистатическом взаимодействии генов.

  1. Список доминантных и рецессивных признаков человека

в этом списке приведены основные признаки человека и их доминантность/рецессивность.

Доминантный

Рецессивный

Кожа

Нормальная пигментация кожи, глаз, волос

Альбинизм

Смуглая кожа

Светлая кожа

Нормальный цвет кожи

Пегая пятнистость (белопегость)

Пигментированное пятно в области крестца

Отсутствует

Кожа толстая

Кожа тонкая

Зрение

Близорукость

Нормальное зрение

Дальнозоркость

нормальное зрение

Нормальное зрение

Ночная слепота

Цветовое зрение

Дальтонизм

Отсутствие катаракты

Катаракта

Отсутствие косоглазия

Косоглазие

Рост

Низкий рост (ниже 165 см)

Нормальный рост

Руки

Нормальное число пальцев

Полидактилия (добавочные пальцы)

Нормальная длина пальцев

Брахидактилия (короткие пальцы)

Праворукость

Леворукость

Нормальное строение пальца

Большой палец руки толстый и короткий (расплющенный)

Ногти тонкие и плоские

Нормальные

Ногти очень твердые

Нормальные

Узоры на коже пальцев эллиптические

Узоры на коже пальцев циркулярные

Ноги

Норма

Предрасположенность к варикозному расширению вен

Второй палец ноги длиннее большого

Второй палец ноги короче

Повышенная подвижность большого пальца

Норма

Слух

Нормальный слух

Врожденная глухота

Процессы в организме

Нормальное усвоение глюкозы

Сахарный диабет

Нормальная свёртываемость крови

Гемофилия

Черты лица

Веснушки

Отсутствие веснушек

Круглая форма лица (R–)

Квадратная форма лица (rr)

Круглый подбородок (K–)

Квадратный подбородок (kk)

Ямочка на подбородке (А–)

Отсутствие ямочки (аа)

Ямочки на щеках (D–)

Отсутствие ямочек (dd)

Густые брови (B–)

Тонкие брови (bb)

Брови не соединяются (N–)

Брови соединяются (nn)

Длинные ресницы (L–)

Короткие ресницы (ll)

Волосы

Тёмные

Светлые

Не рыжие

Рыжие

Кучерявые

Волнистые

Волнистые (???)

Прямые

Облысение (у мужчин)

Норма

Норма

Облысение (у женщин)

Норма

Белая прядь

Преждевременное поседение

Норма

Обильная волосатость тела

Мало волос на теле

Норма

Широкие пушистые брови

Нос

Круглый нос (G–)

Заострённый нос (gg)

Круглые ноздри (Q–)

Узкие ноздри (qq)

Высокая и узкая переносица

Низкая и широкая переносица

Нос с горбинкой

Прямая или согнутая переносица

Кончик носа направлен прямо

Курносый нос

Рот

Способность загибать язык назад

Нет

Способность свертывать язык трубочкой

Нет

Отсутствие зубов при рождении

Зубы при рождении

Выступающие вперед зубы и челюсти

Зубы и челюсти не выступают

Щель между резцами

Отсутствует

Предрасположенность к кариесу зубов

Норма

Полные губы

Тонкие губы

Норма

Габсбургская губа

Уши

Острая верхушка уха (дарвиновский бугорок имеется)

Отсутствует

Свободная мочка уха (S–)

Сросшаяся мочка уха (ss)

Кровь

Группы крови А, В и O

Группа крови AB

Наличие резус-фактора (Rh+)

Отсутствие резус-фактора (Rh-)

Раздел  2. Алгоритм решения  задач.

2.1. Решение прямых задач

Под прямой задачей подразумевается такая, в которой известны генотипы родителей, необходимо определить возможные генотипы и фенотипы потомства в первом и втором поколениях.

Для решения задачи следует составить схему, аналогичную той, что использовалась для записи результатов моногибридного скрещивания.

Алгоритм действий

Пример решения задачи.

1. Чтение условия задачи.

1. Задача. При скрещивании двух сортов томатов с гладкой и опушенной кожицей в первом поколении все плоды оказались с гладкой кожицей. Определите генотипы исходных родительских форм и гибридов первого поколения. Какова вероятность получения в  потомстве плодов с гладкой кожицей? Плодов с опушенной кожицей?

2. Введение буквенного обозначения доминантного и рецессивного признаков.

2. Решение. Если в результате скрещивания все потомство имело гладкую кожицу, то этот признак  — доминантный (А), а опушенная кожица – рецессивный признак (а).

3. Составление схемы 1-го скрещивания, запись фенотипов, а затем генотипов родительских особей.

3. Так как скрещивались чистые линии томатов, родительские особи были гомозиготными.

Р   фенотип        ♀ гладкая                х              ♂опушенная  

                                кожица                                кожица

Р    генотип             ♂  АА                  х             ♀ аа

4. Запись типов гамет, которые могут образовываться во время мейоза.

4.                                     ↓                                       ↓

G                                     А                                       а

(Гомозиготные особи дают только один тип гамет.)

5. Определение генотипов и фенотипов потомков, образующихся в результате оплодотворения.

5.

F1   генотип                                          Аа

      фенотип                                 гладкая кожица 

6. Составляем схему второго скрещивания.

6.

Р  фенотип                ♀гладкая            х              ♂гладкая

                                    кожица                              кожица    

Р  генотип                      ♂Аа                х                ♀Аа  

7. Определяем гаметы, которые дает каждая особь.

7.                                   ↓         ↓                             ↓         ↓

G                                   А         а                            А         а

(Гетерозиготные особи дают два типа гамет).

8. Составляем решетку Пеннета и определяем генотипы и фенотипы потомков.

8.              

F2                                            Генотип

                            Аа      Аа      Аа       аа

                        гл.       гл.      гл.      опуш. 

9. Отвечаем на вопросы задачи полными предложениями, записывая все вычисления.

Вероятность появления в F2 плодов с гладкой кожицей:

4  —  100%

3  —   х                х = (3х100):4 =75%

Вероятность появления в F2 плодов с опушенной кожицей:

100%-75% =25%.

10. Записываем ответ по образцу:

Ответ: АА, аа, Аа / 75%, 25%.

2.2.  Алгоритм решения обратных задач.

Под обратной задачей имеется в виду такая задача, в которой даны результаты скрещивания, фенотипы родителей и полученного потомства; необходимо определить генотипы родителей и потомства.

1. Читаем условие задачи.

1. Задача. При скрещивании двух дрозофил с нормальными крыльями у 32 потомков были укороченные крылья, а у 88 потомков – нормальные крылья. Определите доминантный и рецессивный признаки. Каковы генотипы родителей и потомства?

2. По результатам скрещивания F1 или F2 определяем доминантный и рецессивный признаки и вводим обозначение.

2. Решение. Скрещивались мухи с нормальными крыльями, а в потомстве оказались мухи с редуцированными крыльями. Следовательно, нормальные крылья – доминантный признак (А), а редуцированные крылья – рецессивный признак (а).

3. Составляем схему скрещивания и записываем генотип особи с рецессивными признаком или особи с известным по условию задачи генотипом.

3.

Р   фенотип      ♀норм.                х                  ♂норм.

                             крылья                                    крылья

Р    генотип           ♂А_                х                 ♀ А_

F1   фенотип        88 норм. крылья           32 редуц. крылья

      генотип                  А_                                       аа                         

4. Определяем типы гамет, которые может образовать каждая родительская особь.

4. Родительские особи обязательно образуют гаметы с доминантным геном. Так как в потомстве появляются особи с рецессивным признаком, значит у каждого из родителей есть один ген с рецессивным признаком. Отсюда:

Р   фенотип           норм. крылья        х   норм. крылья

Р   генотип                   Аа                   х              Аа

                                 ↓           ↓                        ↓           ↓

G                              А          а                        А           а 

5. Определяем генотип и фенотип потомства, полученного в результате оплодотворения, записываем схему.

5.

F1  генотип               АА           Аа            Аа            аа        

    фенотип         88 (норм.       норм.       норм.       редуц.)

6.Записываем ответ задачи.

Ответ: доминантный признак – нормальные крылья/ Аа и Аа/ АА, 2Аа, аа.

2.3. Алгоритм решения задач  «Моногибридное скрещивание».

  • Определите доминантный и рецессивный признак по результатам скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите буквенные обозначения: А — доминантный а — рецессивный.
  • Запишите генотип особи с рецессивным признаком или особи с известным по условию задачи генотипом и гаметы.
  • Запишите генотип гибридов F1.
  • Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в решетку Пеннета по горизонтали и по вертикали.
  • Запишите генотипы потомства в клетках пересечения гамет. Определите соотношения фенотипов в F1

 ТИП СКРЕЩИВАНИЯ

СХЕМА СКРЕЩИВАНИЯ

ЗАКОН. АВТОР

D:генетикаМоногибридное и дигибридное скрещивание, Генетика пола. - Биология - ШКола.LV_files1.gif

  Моногибридное скрещивание по одной паре признаков.

1. При полном доминировании проявляется только доминантный признак.

2. При неполном доминировании признак имеет среднее (промежуточное) значение между доминантным и рецессивным

Скрещивание гибридов при полном доминировании.

D:генетикаМоногибридное и дигибридное скрещивание, Генетика пола. - Биология - ШКола.LV_files2.gif

D:генетикаМоногибридное и дигибридное скрещивание, Генетика пола. - Биология - ШКола.LV_files3.gif 

при неполном доминировании.

I. Закон единообразия первого поколения.         (Г. Мендель).При скрещивании двух особей с противоположными признаками в первом поколении все гибриды одинаковы и похожи на одного из родителей.
II. Закон расщепления. (Г.Мендель).
При скрещивании гибридов I поколения во втором поколении наблюдается расщепление в соотношении 3:1 по фенотипу.

2.4. Алгоритм решения задач  «Дигибридное скрещивание».

  • Определите доминантный и рецессивный признак по результатам скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите буквенные обозначения: А — доминантный а — рецессивный.
  • Запишите генотип особи с рецессивным признаком или особи с известным по условию задачи генотипом и гаметы.
  • Запишите генотип гибридов F1.
  • Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в решетку Пеннета по горизонтали и по вертикали.
  • Запишите генотипы потомства в клетках пересечения гамет. Определите соотношения фенотипов в F1

Тип скрещивания

Схема скрещивания

Закон. автор

D:генетикаМоногибридное и дигибридное скрещивание, Генетика пола. - Биология - ШКола.LV_files4.gifСкрещивание гибридов

Закон единообразия I поколения соблюдается.

Дигибридное — это скрещивание по двум парам признаков

D:генетикаМоногибридное и дигибридное скрещивание, Генетика пола. - Биология - ШКола.LV_files5.gif

II. Закон независимого наследования признаков 

(Г. Мендель).При скрещивании гибридов

I поколения по двум парам признаков наследование по каждой паре признаков идет независимо друг от друга и образуются четыре фенотипические группы с новыми сочетаниями.
Расщепление по фенотипу 9:3:3:1

2.5. Алгоритм решения задач  «Анализирующее скрещивание».

  • Определите доминантный и рецессивный признак по результатам скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите буквенные обозначения: А — доминантный а — рецессивный.
  • Запишите генотип особи с рецессивным признаком или особи с известным по условию задачи генотипом и гаметы.
  • Запишите генотип гибридов F1.
  • Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в решетку Пеннета по горизонтали и по вертикали.
  • Запишите генотипы потомства в клетках пересечения гамет. Определите соотношения фенотипов в F1.

Тип скрещивания

Схема скрещивания

Закон. автор

Анализирующее — это скрещивание особи с доминантным фенотипом с особью с рециссивными признаками (гомозиготой) для определения генотипа особи с доминантным признаком

I вариантD:генетикаМоногибридное и дигибридное скрещивание, Генетика пола. - Биология - ШКола.LV_files6.gif

Если при скрещивании особи с доминантным признаком с рецессивной гомозиготной особью полученное потомство единообразно, то анализируемая особь с доминантным признаком гомозиготна (АА).

II вариантD:генетикаМоногибридное и дигибридное скрещивание, Генетика пола. - Биология - ШКола.LV_files7.gif

Если при скрещивании особи с доминантным признаком с рецессивной гомозиготой полученное потомство дает расщепление 1 : 1 , то анализируемая особь с доминантным признаком гетерозиготна (Аа).

2.6. Алгоритм решения задач  «Сцепленное наследование».

  • Определите доминантный и рецессивный признак по результатам скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите буквенные обозначения: А — доминантный а — рецессивный.
  • Запишите генотип особи с рецессивным признаком или особи с известным по условию задачи генотипом и гаметы.
  • Запишите генотип гибридов F1.
  • Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в решетку Пеннета по горизонтали и по вертикали.
  • Запишите генотипы потомства в клетках пересечения гамет. Определите соотношения фенотипов в F1.

Тип скрещивания

Схема скрещивания

Закон. автор

Сцепленное наследование — это наследование признаков, расположенных в одной хромосоме

Без кроссинговера

D:генетикаМоногибридное и дигибридное скрещивание, Генетика пола. - Биология - ШКола.LV_files8.gif

При кроссинговере

D:генетикаМоногибридное и дигибридное скрещивание, Генетика пола. - Биология - ШКола.LV_files9.gif

Закон сцепленного наследования генов, находящихся в одной хромосоме (Т. Морган).

Гены, находящиеся в одной хромосоме, наследуются совместно, сцеплено.

Сцепление генов может нарушаться в результате кроссинговера. Количество кроссверных особей всегда значительно меньше, чем количество основных особей (Т. Морган).

1. Полное сцепление

Перед решением задач на сцепленное наследование целесообразно сравнить результаты анализирующего скрещивания при независимом и сцепленном наследовании:

Независимое наследование

А – желтая окраска, а – зеленая окраска,
В – гладкие семена, b – морщинистые семена.

 Сцепленное наследование (кроссинговер отсутствует)

А – серое тело, а – черное тело,
В – нормальные крылья, b – короткие крылья.

2. Определение типов гамет

Количество гамет равно 2n, где n – не число гетерозиготных пар генов, а количество пар разнородных хромосом, содержащих гетерозиготные гены. Например, тригетерозигота АаВbСс будет давать 8 типов гамет, если гены расположены в разных парах хромосом (n = 3) и только 2 типа, если гены находятся в одной паре (n = 1).

 3. Неполное сцепление

При неполном сцеплении гомологичные хромосомы могут обмениваться аллельными генами. Причиной этого является кроссинговер, который, в свою очередь, является результатом того, что при мейозе гомологичные хромосомы конъюгируют и могут обмениваться участками.

В результате этого при скрещивании дигетерозигот с генотипом ab-ab      с гомозиготами по рецессиву, имеющими генотип ab-ab , в потомстве, наряду с обычными, появляется некоторое количество особей, образовавшихся в результате слияния кроссоверных гамет (рекомбинантов), имеющих генотип ab-ab      или ab-ab     .

4.Составление схем кроссинговера

При составлении схем кроссинговера следует помнить, что основное количество гамет будут составлять некроссоверные, а кроссоверные гаметы будут встречаться в небольших количествах. Образование кроссоверных гамет можно легко определить, воспользовавшись схемой:

 Напишите  возможные варианты кроссинговера между генами в группе сцепления ABC-abc  .

 Решение

1) Одиночный кроссинговер между генами А и В:

Схема кроссинговера-1

2) Одиночный кроссинговер между генами В и С:

Схема кроссинговера-2

3) Двойной кроссинговер между генами А и С:

Схема кроссинговера-3

5.Определение типа наследования (сцепленное или независимое) и расстояния между генами

Для определения типа наследования необходимо выяснить количество особей, получающихся при анализирующем скрещивании.

Соотношение фенотипических классов в F1, близкое к 1:1:1:1, позволяет с большой вероятностью предположить наличие независимого наследования, а присутствие в потомстве двух фенотипов в пропорции, близкой к 1:1, указывает на сцепленное наследование. Наличие небольшого количества рекомбинантов является результатом кроссинговера.

Количество таких организмов пропорционально вероятности кроссинговера между сцепленными генами и, следовательно, расстоянию между ними в хромосоме. Это расстояние измеряется в морганидах (М) и может быть определено по формуле:

где x –расстояние между генами (в морганидах),
а и с –количество кроссоверных особей,
n – общее число особей.

Таким образом, одна морганида равна 1% кроссинговера.

Если число кроссоверных особей дано в процентах, то расстояние между генами равно сумме процентного состава.

Определение числа кроссоверных гамет или полученного соотношения особей в потомстве в зависимости от расстояния между генами в хромосомах

Число кроссоверных гамет определяется по формуле (3), выведенной из формулы (2) для определения расстояния между генами в хромосоме:

где а и с – количество рекомбинантов каждого вида,
n – общее количество потомства,
x – расстояние между генами в морганидах.

Картирование хромосом

Для составления карт хромосом рассчитывают взаимное расстояние между отдельными парами генов и затем определяют расположение этих генов относительно друг друга.

Так, например, если три гена расположены в следующем порядке: А В С, то расстояние между генами А и С (процент рекомбинаций) будет равно сумме расстояний (процентов рекомбинаций) между парами генов АВ и ВС.

Если гены расположены в порядке: А С В, то расстояние между генами А и С будет равно разности расстояний между парами генов АВ и СВ.

ABC – 47,5%
abc – 47,5%
Abc – 1,7%
aBC – 1,7%
ABc – 0,8%
abC –          0,8%

Построить карту этого участка хромосомы.

 Решение

  1. Расщепление при анализирующем скрещивании, близкое к 1:1, указывает на то, что все три пары генов находятся в одной хромосоме.
  2. Расстояние между генами А и В равно: 1,7 + 1,7 = 3,4 М.
  3. Расстояние между генами В и С равно: 0,8 + 0,8 = 1,6 М.

Ген В находится между генами А и С. Расстояние между генами А и С равно: 1,7 + 1,7 + 0,8 + 0,8 = 5,0 М. 

Задача 1

Гены АВ и С находятся в одной группе сцепления. Между генами А и В кроссинговер происходит с частотой 7,4%, а между генами В и С – с частотой 2,9%. Определить взаиморасположение генов АВ и С, если расстояние между генами А и С равняется 10,3% единиц кроссинговера. Как изменится взаиморасположение этих генов, если частота кроссинговера между генами А и С будет составлять 4,5%?

 Решение

  1. По условию задачи расстояние от гена А до гена С (10,3 М) равно сумме расстояний между генами А и В (2,9 М) и генами В и С(7,4 М), следовательно, ген В располагается между генами А и С и расположение генов следующее: А В С.
  2. Если бы расстояние от гена А до гена С равнялось разности расстояний между парами генов АВ и ВС (4,5 = 7,4 – 2,9), то гены располагались бы в следующей последовательности: А С В. И в этом случае расстояние между крайними генами было бы равно сумме расстояний между промежуточными: АВ = АС + СВ.

Задача 2

При анализирующем скрещивании тригетерозиготы АаВbСс были получены организмы, соответствующие следующим типам гамет:

ABC – 47,5%
abc – 47,5%
Abc – 1,7%
aBC – 1,7%
ABc – 0,8%
abC –            0,8%

Построить карту этого участка хромосомы.

 Решение

  1. Расщепление при анализирующем скрещивании, близкое к 1:1, указывает на то, что все три пары генов находятся в одной хромосоме.
  2. Расстояние между генами А и В равно: 1,7 + 1,7 = 3,4 М.
  3. Расстояние между генами В и С равно: 0,8 + 0,8 = 1,6 М.
  4. Ген В находится между генами А и С. Расстояние между генами А и С равно: 1,7 + 1,7 + 0,8 + 0,8 = 5,0 М.
  5. Карта участка хромосомы:

карта участка хромосомы

2.7. Алгоритм решения задач  «Генетика пола».

  • Определите доминантный и рецессивный признак по результатам скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите буквенные обозначения: А — доминантный а — рецессивный.
  • Запишите генотип особи с рецессивным признаком или особи с известным по условию задачи генотипом и гаметы.
  • Запишите генотип гибридов F1.
  • Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в решетку Пеннета по горизонтали и по вертикали.
  • Запишите генотипы потомства в клетках пересечения гамет. Определите соотношения фенотипов в F1.

Тип скрещивания

Схема скрещивания

Закон. автор

Генетика полаПол определяется наличием пары половых хромосом. Все остальные пары хромосом в кариотипе называются аутосомами.

I вариантD:генетикаМоногибридное и дигибридное скрещивание, Генетика пола. - Биология - ШКола.LV_files10.gif

Соотношение полов 1:1

Пол организма определяется сочетанием половых хромосом.Пол, содержащий одинаковые половые хромосомы (XX), называется гомогаметным, а различные половые хромосомы (XY) — гетерогаметным.Гетерогаметные особи образуют два типа гамет. У большинства организмов (млекопитающих, амфибий, рептилий, многих беспозвоночных) женский пол гомогаметный, а мужской — гетерогаметный (I вариант)

II вариантD:генетикаМоногибридное и дигибридное скрещивание, Генетика пола. - Биология - ШКола.LV_files11.gifСоотношение полов 1:1

У птиц, некоторых рыб, бабочек гетерогаметны самки, а гомогаметны самцы (II вариант)

III вариантD:генетикаМоногибридное и дигибридное скрещивание, Генетика пола. - Биология - ШКола.LV_files12.gif Соотношение полов 1:1

У прямокрылых, пауков, жуков самцы не имеют Y хромосому из пары. Тип ХО.

2.8. Алгоритм решения задач «Наследование признаков, сцепленных с полом».

  • Определите доминантный и рецессивный признак по результатам скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите буквенные обозначения: А — доминантный а — рецессивный.
  • Запишите генотип особи с рецессивным признаком или особи с известным по условию задачи генотипом и гаметы.
  • Запишите генотип гибридов F1.
  • Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в решетку Пеннета по горизонтали и по вертикали.
  • Запишите генотипы потомства в клетках пересечения гамет. Определите соотношения фенотипов в F1.

Тип скрещивания

Схема скрещивания

Закон. автор

Наследование признаков, сцепленных с полом.Признаки, гены которых локализованы в половых хромосомах, называются сцепленными с полом

D:генетикаМоногибридное и дигибридное скрещивание, Генетика пола. - Биология - ШКола.LV_files13.gif

Если одна из X хромосом содержит рецессивный ген, определяющий проявления аномального признака, то носителем признака является женщина, а признак проявляется у мужчин.Рецессивный признак от матерей передается сыновьям и проявляется, а от отцов передается дочерям.Примером наследования признаков, сцепленных с полом у человека, является гемофилия и дальтонизм.

Раздел 3. Примеры решения задач по генетике

  1. У дрозофилы доминантный ген красной окраски глаз (W) и рецессивный ген белой окраски (w) находятся в Х – хромосамах. Белоглазая самка скрещивалась с красноглазым самцом. Какой цвет глаз будет у самцов и самок в первом и втором поколении?

Дано:
W – красный окрас глаз
w – белый окрас глаз
Х
W Х W – самки красной
Х
W Х w – самка крас.
Х
w Х w – самки белые глаза

Ответ: Среди потомства F1 50% будет красноглазых самок и 50% белоглазых самцов. Во втором поколении 25% — красноглазая самка, 25% — белоглазая самка, 25% — красноглазый самец, 25% — белоглазый самец.

  1. У домашних кур сцепленный с Х-хромосомой ген d имеет летальное действие. Какая часть потомства погибнет, если скрестить курицу с гетерозиготным петухом?

Дано:

А    ген, сцепленный с Х-хромосомой d имимеет летальное действие

         

F1 гибель-?

                    Решение:

1) Р ♀ XAY  x  ♂ XAXa 

          G   XA Y        XA Xa 

        F1  XAXA  YXA   XAXa   YXa 

  XAXA — норм.петух

   YXA  норм.курица

   XAXa   норм. петух

   YXa гибель  

Ответ: 25% погибнет потомства

  1. У человека рецессивный ген гемофилии (h) и рецессивный ген дальтонизма (d) локализованы в X-хромосоме на расстоянии 9,8 морганид. Известно, что женщина гетерозиготна по обоим признакам, аномальные гены локализованы в разных X-хромосомах. Определите, какие дети у нее могут быть от брака со здоровым мужчиной, и какова вероятность их рождения.

Дано:

Xh – гемофилия

XH – норма

Xd – дальтонизм

XD – норма

L(hd) = 9,8 мн = 9,8% кроссинговера

Решение

1) Проанализировав условие задачи, определим генотипы родителей:

 P:                          ♀                  ×            ♂

2) В результате кроссинговера с общей вероятностью 9,8% у матери образуется два новых типа гамет – кроссоверные гаметы. Вероятность появления каждого из типов кроссоверных гамет –  = 4,9%. На долю некроссоверных гамет остается 100 – 9,8 = 90,2%, на каждый тип некроссоверных гамет по  = 45,1%. Вероятность проявления каждой из гамет отца – 50%.

G:

некроссоверные,

вероятность – 90,2%

 = 45,1%

 = 50%

 = 45,1%

Y = 50%

кроссоверные,

вероятность – 9,8%

 = 4,9%

 = 4,9%

3) Определим вероятность появления детей с различными сочетаниями исследуемых признаков. Для этого по теореме умножения вероятностей вычислим произведение вероятностей материнской и отцовской гамет.

F1:  =  = 22,55% – здоровая девочка

       =  = 22,55%  – мальчик с гемофилией

       =  = 22,55% – здоровая девочка

       =  = 22,55% – мальчик-дальтоник

      =  = 2,45% – здоровая девочка

       = = 2,45%  – здоровый мальчик

       =  = 2,45% – здоровая девочка

       =  = 2,45% – мальчик-дальтоник с гемофилией

 F1 – ?

Ответ: вероятность рождения здоровой девочки в данном браке – 50%; вероятность рождения здорового мальчика – 2,45%; вероятность рождения мальчика с гемофилией – 22,55%; вероятность рождения мальчика-дальтоника – 22,55%; вероятность рождения мальчика-дальтоника с гемофилией – 2,45%.

  1. У коров гены A и B расположены в одной хромосоме на расстоянии 24 морганиды. Определите генотипические группы потомков и вероятности их появления при скрещивании двух дигетерозигот с генотипом .

Дано:

L(AB) = 24 мн = 24% кроссинговера

Решение

1) P:           ♀                         ×                  ♂

2) В результате кроссинговера с общей вероятностью 24% у матери и отца образуется два новых типа гамет – кроссоверные гаметы. Вероятность появления каждого из типов кроссоверных гамет –  = 12%. На долю некроссоверных гамет остается 100 – 24 = 76%, на каждый тип некроссоверных гамет по  38%.

G:

некросс.,

76%

 = 38%

некросс.,

76%

 = 38%

 = 38%

 = 38%

кросс.,

24%

 = 12%

кросс.,

24%

 = 12%

ab = 12%

ab = 12%

3) Определим вероятность появления детей с различными сочетаниями исследуемых признаков. Для этого по теореме умножения вероятностей вычислим произведение вероятностей материнской и отцовской гамет.

F1: 

 =  = 14,44%

 =  = 4,56%

 =  = 14,44%

 =  = 4,56%

 =  = 4,56%

 =  = 1,44%

 =  = 4,56%

 =  = 1,44%

 =  = 14,44%

 =  = 4,56%

 =  = 14,44%

 =  = 4,56%

 =  = 4,56%

 =  = 1,44%

 =  = 4,56%

 =  = 1,44%

 F1 – ?

Ответ: в потомстве наблюдается 16 групп генотипов; вероятность проявления генотипа  = 14,44%,  = 14,44%,  = 4,56%,  = 4,56%,  = 14,44%, = 4,44%,  = 4,56%,  = 4,56%,  = 4,56%,  = 4,56%,  = 1,44%,  = 1,44%,  = 4,56%,  = 4,56%,  = 1,44%,  = 1,44%.

Заключение.

Дорогие ребята!

 Это пособие создавалось в первую очередь для вас.

 Практика показывает, что именно  умение решать задачи вызывает у вас наибольшие затруднения.

Если вы хотите научиться решать задачи по  генетике, следуйте  советам:

  1. Каждая гамета получает гаплоидный набор хромосом (генов). Все хромосомы (гены) имеются в гаметах.
  2. В каждую гамету попадает только одна гомологичная хромосома из каждой пары (только один ген из каждой аллели).
  3. Число возможных вариантов гамет равно 2n, где n – число хромосом, содержащих гены в гетерозиготном состоянии.
  4. Одну гомологичную хромосому (один аллельный ген) из каждой пары ребенок получает от отца, а другую (другой аллельный ген) – от матери.
  5. Гетерозиготные организмы при полном доминировании всегда проявляют доминантный признак. Организмы с рецессивным признаком всегда гомозиготны.
  6. Решение задачи на дигибридное скрещивание при независимом наследовании обычно сводится к последовательному решению двух задач на моногибридное (это следует из закона независимого наследования).

Кроме того, для успешного решения задач по генетике следует уметь выполнять некоторые несложные операции и использовать методические приемы, которые приводятся ниже.

Прежде всего необходимо внимательно изучить условие задачи. Даже те учащиеся, которые хорошо знают закономерности наследования и успешно решают генетические задачи, часто допускают грубые ошибки, причинами которых является невнимательное или неправильное прочтение условия.

Следующим этапом является определение типа задачи. Для этого необходимо выяснить, сколько пар признаков рассматривается в задаче, сколько пар генов кодирует эти признаки, а также число классов фенотипов, присутствующих в потомстве от скрещивания гетерозигот или при анализирующем скрещивании, и количественное соотношение этих классов. Кроме того, необходимо учитывать, связано ли наследование признака с половыми хромосомами, а также сцепленно или независимо наследуется пара признаков. Относительно последнего могут быть прямые указания в условии. Также, свидетельством о сцепленном наследовании может являться соотношение классов с разными фенотипами в потомстве.

Для облегчения решения можно записать схему брака (скрещивания) на черновике, отмечая фенотипы и генотипы особей, известных по условию задачи, а затем начать выполнение операций по выяснению неизвестных генотипов. Для удобства неизвестные гены на черновике можно обозначать значками *, _ или ?.

Выяснение генотипов особей, неизвестных по условию, является основной методической операцией, необходимой для решения генетических задач. При этом решение всегда надо начинать с особей, несущих рецессивный признак, поскольку они гомозиготны и их генотип по этому признаку однозначен – аа.

Выяснение генотипа организма, несущего доминантный признак, является более сложной проблемой, потому что он может быть гомозиготным (АА) или гетерозиготным (Аа).

Гомозиготными (АА) являются представители «чистых линий», то есть такие организмы, все предки которых несли тот же признак. Гомозиготными являются также особи, оба родителя которых были гомозиготными по этому признаку, а также особи, в потомстве которых (F1) не наблюдается расщепление.

Организм гетерозиготен (Аа), если один из его родителей или потомков несет рецессивный признак, или если в его потомстве наблюдается расщепление.

В некоторых задачах предлагается выяснить, доминантным или рецессивным является рассматриваемый признак. Следует учитывать, что доминантный признак во всех случаях, кроме неполного доминирования, проявляется у гетерозиготных особей. Его несут также фенотипически одинаковые родители, в потомстве которых встречаются особи, отличные от них по фенотипу. При моногенном наследовании доминантный признак всегда проявляется у потомства F1 при скрещивании гомозиготных родителей (чистых линий) с разным фенотипом (исключение – неполное доминирование).

При определении возможных вариантов распределения генов в гаметах следует помнить, что каждая гамета содержит гаплоидный набор генов и что в нее попадает только один ген из каждой пары, определяющей развитие признака. Число возможных вариантов гамет равно 2n, где n – число рассматриваемых пар хромосом, содержащих гены в гетерозиготном состоянии.

Распространенной ошибкой при определении вариантов гамет является написание одинаковых типов гамет, то есть содержащих одни и те же сочетания генов. Для определения возможных типов гамет более целесообразным представляется запись генотипов в хромосомной форме. Это упрощает определение всех возможных вариантов сочетания генов в гаметах (особенно при полигибридном скрещивании). Кроме того, некоторые задачи невозможно решить без использования такой формы записи.

Сочетания гамет, а также соответствующие этим сочетаниям фенотипы потомства при дигибридном или полигибридном скрещивании равновероятны, и поэтому их удобно определять с помощью решетки Пеннета. По вертикали откладываются типы гамет, продуцируемых матерью, а по горизонтали – отцом. В точках пересечения вертикальных и горизонтальных линий записываются соответствующие сочетания генов. Обычно выполнение операций, связанных с использованием решетки Пеннета, не вызывает затруднений у учащихся. Следует учитывать только то, что гены одной аллельной пары надо писать рядом (например, ААВВ, а не АВАВ).

Конечным этапом решения является запись схемы скрещивания (брака) в соответствии с требованиями по оформлению, описанными ниже, а также максимально подробное изложение всего хода рассуждений по решению задачи с обязательным логическим обоснованием каждого вывода. Отсутствие объяснения даже очевидных, на первый взгляд, моментов может быть основанием для снижения оценки на экзамене.

Список литературы

  1. Биология. 11 класс: учеб. Для общеобразоват. организаций: базовый уровень/ Д.К. Беляев, Г.М. Дымшиц, Л.Н. Кузнецова – М.: Просвещение, 2016. – 223с.
  2. Капранова Г.В. Сборник задач по генетике. – Луганск: Янтарь, 2003. – 68с.
  3. Пепеляева О.А., Сунцова И.В. Поурочные разработки по общей биологии: 11 класс.- М.: ВАКО, 2006. -464с.

Дополнительная литература

  1. Анастасова Л.П. Самостоятельные работы учащихся по общей биологии: Пособие для учителя. М.: Просвещение, 1989. — 175 с.
  2. Борисова, Л.В. Тематическое и поурочное планирование по биологии: 11 кл.: к учебнику Мамонтова С.Г., Захарова В.Б, Сонина Н.И. «Биология. Общие закономерности. 11 класс»: Методическое пособие/Борисова Л.В. – М.: Издательство «Экзамен», 2006. – 159 с.
  3. Донецкая Э.Г. Общая биология. Тетрадь с печатной основой для учащихся 11кл. – Саратов, «Лицей», 1997.,80с.
  4. Ловкова Т.А. Биология. Общие закономерности. 11 класс: Методическое пособие к учебнику Мамонтова С.Г., Захарова В.Б, Сонина Н.И. «Биология. Общие закономерности. 9 класс»/ Ловкова Т.А., Сонин Н.И. – М.; Дрофа, 2003. – 128 с.
  5. Сухова Т.С. Общая биология. 10-11 кл.: рабочая тетрадь к учебникам «Общая биология. 10 класс» и «Общая биология. 11 класс»/Сухова Т.С, Козлова Т.А, Сонин Н.И; под редакцией Захарова В.Б. – М.: Дрофа, 2006. -171 с.

Like this post? Please share to your friends:
  • Закончила колледж хочу поступить в институт нужно ли сдавать егэ
  • Закончил колледж как поступить в институт без егэ
  • Закончив делать уроки у меня появилось желание сходить на прогулку ускользнувшие преступники егэ
  • Законотворчество план егэ обществознание
  • Законотворческий процесс это егэ обществознание